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Abstract
Understanding and predicting El Niño Southern Oscillation (ENSO) is of great interest in
order to minimise social, environmental and economic risks in many parts of the world that
are affected by this phenomenon. Therefore, this work aims to investigate future behaviour of
ENSO in Coupled Model Intercomparison Project Phase 6 (CMIP6) models.

A total of 50 models of the CMIP6 1 percent CO2 experiment (in which CO2 is increased by
1 % per year) are analysed and basic methods are used to find an overall trend in the ENSO-
Index. To identify the influence of internal variability, the same analysis is done for a 68-
member ensemble of the MPI-ESM-LR model, which was run with different initial conditions.
Furthermore, Linear Inverse Models (LIMs) are fitted to the single members as well as to
the complete ensemble of the MPI-ESM-LR model, to find out whether LIMs fitted to single
realisations deliver results that are representative for the entire ensemble.

As a result, it was found that the simple methods used do not capture any profound change
in ENSO behaviour. The LIMs fitted to single realisations prove not to be representative for
the entire ensemble, but the fit to the ensemble delivers promising results. They indicate that
ENSO frequency decreases in a warming climate.
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1 Introduction
El Niño Southern Oscillation (ENSO) is a coupled atmosphere-ocean oscillation in the tropical
Pacific. It is characterised by warm and cold sea surface temperature (SST) anomalies in the
eastern equatorial Pacific (Cai et al., 2015a; Kim et al., 2014; McPhaden et al., 2006; Kraus,
2004), which typically occur every 3 to 7 years (McPhaden et al., 2006; Berner et al., 2020;
Kraus, 2004). Usually, warm water accumulates in the western Pacific because of the easterly
trade winds, while upwelling brings colder water to the west coast of South America (Kraus,
2004). During a La Niña (LN) event this circulation strengthens, whereas during El Niño (EN)
it is weakened or even reversed. Warm water drifts from the western to the central and eastern
Pacific, where anomalously warm SSTs occur (McPhaden et al., 2006; Cai et al., 2015a; Kim
et al., 2014; Kraus, 2004).

SST anomalies due to ENSO have an effect on atmospheric convection which drives telecon-
nections (Cai et al., 2015a). Due to these atmospheric teleconnections ENSO affects weather
conditions worldwide (Cai et al., 2015a; Lin et al., 2018; Kraus, 2004) and is therefore one of
the most important climate variations on an inter-annual time-scale. Strong EN events can
for example, cause severe droughts in eastern Australia and floods in southern America (Cai
et al., 2015a; McPhaden et al., 2006). The same processes also have an effect on Rossby waves,
which is why they also affect weather conditions in higher latitudes. The resulting extreme
weather events have a great impact on ecosystems and agriculture (Cai et al., 2015a). In order
to reduce the social, environmental, and economic risks of those events, accurate forecasting is
required. Therefore, understanding and predicting ENSO mechanisms is a central question of
current research. In particular, the question of how ENSO will react to global warming is of
great interest.

If and how ENSO behaviour will change under a changing climate has been studied intensively
over the past years. The analyses of many different datasets with many different methods have
resulted in different and often contradicting conclusions (Vecchi and Wittenberg, 2010). Even
though climate models agree on the tendency of the climate’s mean state, there is not so much
consistency in the projections of ENSO properties (Guilyardi et al., 2009; Berner et al., 2020;
Vecchi and Wittenberg, 2010). While McPhaden et al. (2006) state that there is no sign for a
significant change in ENSO behaviour under increasing CO2 scenarios, Cai et al. (2014, 2015b)
conclude that as a result of changes in the mean state both extreme ENs and LNs become
considerably more frequent. However, this has not been reviewed yet for many members of the
newest generation of climate models (participating in Coupled Model Intercomparison Project
Phase 6 (CMIP6)).

Berner et al. (2020) recently investigated the change in ENSO properties predicted by the
large ensemble simulations of NCAR’s Community Earth System Model, version 1. Kestin
et al. (1998) indicated that ENSO could be a linear oscillator driven by stochastic forcing, and
Penland and Sardeshmukh (1995) have shown that tropical SSTs can be modelled adequately by
using Linear Inverse Models (LIMs). Based on this, Berner et al. (2020) used LIM simulations to
increase the statistical reliability of their results (a similar approach has been used by Capotondi
and Sardeshmukh (2017)). This method could open the possibility to derive statistically robust
results from small ensembles or even single realisations. The predictions of different climate
models could potentially be compared more easily if the method is applied to the single members
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1 Introduction

of a multi-model ensemble like in CMIP6. However, in order to use the method for the members
of the CMIP6-ensemble, it would have to be shown that the method is valid and robust if the
LIM is fitted only to a single ensemble member instead of to a whole ensemble of the given
model.

Therefore, this work aims to answer two central questions: Do CMIP6 models predict changes
in ENSO properties and do LIMs fitted to single climate model realisations yield robust and
reliable results? To answer these questions, I use three different simple approaches to determine
whether the climate models participating in CMIP6 predict future changes in ENSO behaviour.
An ENSO-Index based on SST-anomalies is chosen as a measure of ENSO activity. The moving
average of the ENSO-Index can be useful to identify overall trends in the index. Additionally, I
calculated the standard deviation of the ENSO-Index over 30-year moving windows. The third
simple approach is supposed to detect changes in periodicity by counting ENSO-events. The
analysis of these three simple methods shows no indication that there is a change in ENSO
behaviour predicted by the CMIP6 models.

Since changes are expected to be quite subtle, a more sophisticated and more sensitive method
might come to a different result. Therefore, I additionally use LIM simulations to find changes
in ENSO periodicity. I test the accuracy/suitability of this method by fitting LIMs to a com-
plete ensemble of the MPI-ESM-LR model, as well as to each single member of this ensemble.
The results from the LIMs fitted to single realisations differ substantially so they are not rep-
resentative for the entire ensemble. The results gained from the LIM fitted to the complete
ensemble seem to show a trend towards longer periods, but further analysis is necessary to
determine whether this trend is actually statistically significant.

This work is structured as follows. In chapter 2 the climate model ensembles used in this
work are introduced and the index used for ENSO description is explained. The methodology
chapter (3) is divided in three sections. I start by describing the simple methods used to identify
changes in ENSO behaviour in section 3.1, before explaining the more sophisticated method of
LIM in section 3.2. In section 3.3 a simple example is given to illustrate the method. Results
are given and discussed in chapter 4 before a summary and outlook is given in chapter 5.
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2.1 Ensembles

This work makes use of two different climate model ensembles which both ran simulations for
the 1 percent CO2 (1pctCO2) experiment: (a) a multi-model ensemble contributing to CMIP6
and (b) an initial conditions ensemble from the MPI-ESM-LR model. The 1pctCO2 experiment
is one of the Diagnostic, Evaluation and Characterization of Klima (DECK) experiments of the
Coupled Model Intercomparison Project (CMIP), which were defined to ensure consistency
between the phases of CMIP ( WCRP , 2020). The 1pctCO2 experiment is an idealised exper-
iment which is initialized from the pre-industrial control simulation (piControl). A 150-year

period is simulated. The CO2 concentration is increased by 1%̇ per year which results in a
doubling after 70 and a quadrupling after 140 years, respectively (Giorgetta et al., 2013).

In this work properties of ENSO shall be investigated in CMIP6 models. I use an ensemble
of 50 General Circulation Models (GCMs) participating in the CMIP6 1pctCO2 experiment.
This ensemble will be referred to as the CMIP6-ensemble. A list with detailed information
can be found in table 1. Because different models have different spatial resolution, different
implementation or parametrisation of physical and chemical processes, simulations differ some-
times substantially. Using a multi-model ensemble, such as the CMIP6-ensemble allows the
estimation of the uncertainty caused by these differences. Forecasts can be improved by using
multi-model ensembles instead of single simulations because by using such an ensemble the
most likely future state of the atmosphere can be predicted. The spread between the models
then corresponds to the uncertainty of the forecast ( UK Met Office , 2020).

The uncertainty due to differences in the model realisation is not the only uncertainty in such
ensembles. Because of the chaotic nature of the climate system, the slightest differences in the
model’s initial conditions can result in very different model outcomes ( UK Met Office , 2020;
Deser et al., 2020). By using so called initial conditions ensembles, the signal caused by this
internal climate variability can be identified. These ensembles consist of different realisations
of the same model run with different initial conditions ( UK Met Office , 2020; Deser et al.,
2020). To identify the internal variability as well as for method testing and comparison, a
second ensemble is used in this work. The MPI-ESM-LR model has been run for the 1pctCO2
experiment with slightly different initial conditions which results in a 68-member ensemble
(Plesca et al., 2017; Giorgetta et al., 2013; Stevens et al., 2013). This ensemble will from now
on be referred to as MPI-ensemble. It should be mentioned that this ensemble is older than the
CMIP6 one, since it was run for the Coupled Model Intercomparison Project Phase 5 (CMIP5).
The reason for using an older ensemble for this work was the availability of this dataset.
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Table 1: Details of the CMIP6 climate models
Horizontal

No. Model Variant Version Grid Institution Reference
lat x lon

1 ACCESS-CM2 r1i1p1f1 v20191109 300x360 Commonwealth Scientific and
Industrial Research Organisation,
Australian Research Council
Centre of Excellence for Climate
System Science, Australia

Dix et al. (2019)

2 ACCESS-ESM1-5 r1i1p1f1 v20191115 300x360 Ziehn et al. (2019)

3 AWI-CM-1-1-MR r1i1p1f1 v20181218 unstruc-
tured,
830305
wet
nodes

Alfred Wegener Institute,
Helmholtz Centre for Polar and
Marine Research, Germany

Semmler et al. (2018)

4 BCC-CSM2-MR r1i1p1f1 v20181015 232x360
Beijing Climate Center, China

Wu et al. (2018)
5 BCC-ESM1 r1i1p1f1 v20190611 232x360 Zhang et al. (2019)
6 CAMS-CSM1-0 r1i1p1f1 v20190708 200x360 Chinese Academy of

Meteorological Sciences, China
Rong (2019a)

7 CAMS-CSM1-0 r2i1p1f1 v20190726 200x360 Rong (2019b)
8 CESM2-WACCM r1i1p1f1 v20190425 384x320 National Center for Atmospheric

Research, USA
Danabasoglu (2019b)

9 CESM2 r1i1p1f1 v20190425 384x320 Danabasoglu (2019a)
10 CNRM-CM6-1-HR r1i1p1f2 v20191021 1050x1442

Centre National de Recherches
Meteorologiques and Centre
Europeen de Recherche et de
Formation Avancee en Calcul
Scientifique, France

Voldoire (2019)
11 CNRM-CM6-1 r1i1p1f1 v20180626 294x362 Voldoire (2018)
12 CNRM-ESM2-1 r1i1p1f2 v20181018 294x362 Seferian (2018a)
13 CNRM-ESM2-1 r2i1p1f2 v20181031 294x362 Seferian (2018b)
14 CNRM-ESM2-1 r3i1p1f2 v20181107 294x362 Seferian (2018c)
15 CNRM-ESM2-1 r4i1p1f2 v20190328 294x362 Seferian (2018d)
16 CanESM5 r1i1p1f1 v20190429 291x360*

Canadian Centre for Climate
Modelling and Analysis,
Environment and Climate
Change Canada, Canada

Swart et al. (2019)

17 CanESM5 r1i1p2f1 v20190429 291x360*

28 CanESM5 r2i1p1f1 v20190429 291x360*

19 CanESM5 r2i1p2f1 v20190429 291x360*

20 CanESM5 r3i1p1f1 v20190429 291x360*

21 CanESM5 r3i1p2f1 v20190429 291x360*

22 E3SM-1-0 r1i1p1f1 v20191008 180x360* Lawrence Livermore National
Laboratory, Argonne National
Laboratory, Brookhaven Na-
tional Laboratory, Los Alamos
National Laboratory, Lawrence
Berkeley National Laboratory,
Oak Ridge National Laboratory,
Pacific Northwest National
Laboratory, Sandia National
Laboratories, USA

Bader et al. (2019)

23 EC-Earth3-Veg r1i1p1f1 v20190702 292x362 EC-Earth consortium EC-Earth (2019)

24 GFDL-CM4 r1i1p1f1 v20180701 1080x1440 National Oceanic and
Atmospheric Administration,
Geophysical Fluid Dynamics
Laboratory, USA

Guo et al. (2018)

25 GFDL-ESM4 r1i1p1f1 v20180701 576x720 Krasting et al. (2018)

26 GISS-E2-1-G r102i1p1f1 v20190815 90x144*

NASA Goddard Institute for
Space Studies, USA

NASA/GISS (2018a)
27 GISS-E2-1-G r1i1p1f1 v20180905 90x144* NASA/GISS (2018b)
28 GISS-E2-1-G r1i1p3f1 v20190702 90x144* NASA/GISS (2018c)
29 GISS-E2-1-H r1i1p1f1 v20190403 90x144* NASA/GISS (2019a)
30 GISS-E2-2-G r1i1p1f1 v20191120 90x144* NASA/GISS (2019b)
31 HadGEM3-GC31-LL r1i1p1f3 v20190620 330x360

Met Office Hadley Centre,
United Kingdom

Ridley et al. (2019a)
32 HadGEM3-GC31-LL r2i1p1f3 v20190724 330x360 Ridley et al. (2019b)
33 HadGEM3-GC31-LL r3i1p1f3 v20190821 330x360

Ridley et al. (2019c)
34 HadGEM3-GC31-LL r4i1p1f3 v20190821 330x360

35 INM-CM4-8 r1i1p1f1 v20190530 180x360* Institute for Numerical
Mathematics, Russia

Volodin et al. (2019)

36 IPSL-CM6A-LR r1i1p1f1 v20180727 332x362 Institut Pierre Simon Laplace,
France

Boucher et al. (2018)

37 MCM-UA-1-0 r1i1p1f1 v20190731 80x192 Department of Geosciences,
University of Arizona, USA

Stouffer (2019)

to be continued on the next page
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Horizontal
No. Model Variant Version Grid Institution Reference

lat x lon

38 MIROC-ES2L r1i1p1f2 v20190823 265x360 Japan Agency for Marine-Earth
Science and Technology,
Atmosphere and Ocean Research
Institute, The University of
Tokyo, National Institute for
Environmental Studies, RIKEN
Center for Computational Science,
Japan

Hajima et al. (2019)

39 MIROC6 r1i1p1f1 v20181212 265x360 Tatebe and Watanabe
(2018)

40 MPI-ESM1-2-HR r1i1p1f1 v20190710 404x802 Max Planck Institute for
Meteorology, Germany

Jungclaus et al. (2019)
41 MPI-ESM1-2-LR r1i1p1f1 v20190710 220x256 Wieners et al. (2019)
42 MRI-ESM2-0 r1i1p1f1 v20190904 363x360* Meteorological Research Insti-

tute, Japan
Yukimoto et al. (2019)

43 NESM3 r1i1p1f1 v20190703 292x362* Nanjing University of Informa-
tion Science and Technology,
China

Cao and Wang (2019)

44 NorCPM1 r1i1p1f1 v20190914 384x320 NorESM Climate modeling
Consortium, Norway

Bethke et al. (2019)
45 NorESM2-LM r1i1p1f1 v20190815 385x360* Seland et al. (2019)

46 SAM0-UNICON r1i1p1f1 v20190323 384x320 Seoul National University,
Republic of Korea

Park and Shin (2019)

47 UKESM1-0-LL r1i1p1f2 v20190701 330x360
Met Office Hadley Centre,
United Kingdom

Tang et al. (2019a)
48 UKESM1-0-LL r2i1p1f2 v20191009 330x360 Tang et al. (2019b)
49 UKESM1-0-LL r3i1p1f2 v20190604 330x360

Tang et al. (2019c)
50 UKESM1-0-LL r4i1p1f2 v20190604 330x360

*values for the horizontal grid differ between the NetCDF file header and/or the reference given in the header
and/or the dimensions of the array that could be read in. The values given here are the dimensions of the
arrays read in with python’s netCDF4 Dataset function.
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2.2 ENSO-Index

In order to measure ENSO activity, several indices have been introduced, each with their
own advantages and disadvantages. Therefore, depending on the problem and the available
data, different indices have proven to be helpful. One scalar quantity defined by the NOAA
Climate Prediction Center, National Weather Service (NOAA CPC) (2020b) is the Ocean Niño
Index (ONI). It is calculated from monthly SSTs in the Nino3.4 region, which is located at
5°N -5°S and 120°-170°W (see Figure 1, NOAA CPC (2020b)). First, SST anomalies have
to be calculated for each grid-point. To account for the warming trend in the region, this is
done with respect to a centred 30-year base-period, which is updated every five years. The
base-period corresponding to the years x to x+5 is the period x-15 to x+15 ( NOAA CPC ,
2020a). Second, the 3-month-running mean of these anomalies has to be calculated. The ONI
is then defined as the field mean of the Nino3.4 region of those smoothed anomalies ( NOAA
CPC , 2020b).
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Figure 1: Map of the equatorial Pacific. The Nino3.4 region is marked with a black box. The
patterns of empirical orthogonal function (EOF) 1, 2 and 3 are displayed in colour
(model: ACCESS-CM2).

This method, however, creates problems at the beginning and the end of a dataset. For the
first and last 15 years there is no centred base-period available, so the first (last) 30-year base-
period has to be used for the first (last) 20 years. This means that the anomalies of the first
(last) 15 years are calculated with respect to a non-centred base-period, which, due to global
warming, is warmer (cooler) than the correct base-period would have been. The anomalies
therefore appear to be smaller (bigger) than they actually are, which creates an apparent trend
in the time series of the ONI. Therefore, the first and last 15 years of data can not be correctly
evaluated and will not be taken into account for the following analysis.
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The NOAA CPC (2020b) defines conditions which are considered EN- or LN-like as well
as EN- and LN-events. When the ONI is > 0.5 K or < 0.5 K, the conditions are considered
EN- or LN-like, respectively. Whenever this happens for 5 consecutive months, it is called an
EN-/LN-event.

Another way to define an ENSO-Index is by using the principle component (PC) of the
first empirical orthogonal function (EOF) of equatorial monthly SST anomalies (Berner et al.,
2020; Penland and Sardeshmukh, 1995). The pattern of the first EOF explains most of the
variability in the tropical Pacific, particularly in the Nino3.4 region (see Figure 1, Dommenget
et al. (2013)). The index is based on SST data from the tropical Pacific (120°E-60°W, 30°N-
30°S). To eliminate the climate trend and the annual cycle, anomalies are calculated for each
grid-point with respect to a centred base-period as described above. Subsequently, they are
smoothed by a 3-month-running mean. From these smoothed anomalies the EOFs can be
calculated, yielding the patterns as well as the time series of the PCs. The first PC is used
as an ENSO-Index and will from now on be referred to as PC-Index. The advantage of this
index is that, together with the higher PCs, it describes the properties of SST variation more
accurately than others. It can therefore be used for further analysis (see section 3.2), which is
why I chose this index for my investigations.

It can be shown that ONI and PC-Index are highly correlated, which means that they indeed
describe the same ENSO variations. For the 50-member ensemble of the CMIP 1pctCO2
experiment the correlation of the two indices lies between 0.869 and 0.994 with an ensemble
mean of 0.981. To show this in an example, the time series of both indices are shown for five
arbitrarily selected ensemble members in figure 2.
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2.5 ACCESS-ESM1-5PC-Index ONI
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2.5
0.0
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Figure 2: Time series of ONI (black, dotted) and PC-Index (red, solid) for five arbitrarily chosen
ensemble members (ACCESS-ESM1-5,CanESM5,GISS-E2-1-G,HadGEM3-GC31-LL,
SAM0-UNICON, compare table 1).
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3.1 Simple Approaches

In the beginning, I choose three very simple approaches to determine if ENSO behaviour is
projected to change in a changing climate.

In order to determine whether the SST fluctuations caused by ENSO underlie an overall
trend, a 30-year moving average (MA) was calculated. When a MA is applied, fluctuations
are smoothed and therefore longer term trends in time series can be detected. By calculating
a MA periodical fluctuations in particular are eliminated. Therefore, this method can only
pick up overall trends in the time series. It might be able to pick up increases or decreases of
amplitude or frequency, if they change more (or less) for positive than for negative values. The
length of the time window over which the average is build has to be chosen according to the
data. In this case the window has to be long enough for the method to pick up climate trends
but not shorter variabilities. On the other hand it has to be short enough, so that a mean-
ingful time series can be generated by moving the window. Thirty years therefore seem to be
a good compromise. If Ii is the PC-Index at time-step i then the MA at time-step t is defined as:

MAt =
1

(30 · 12)

t+(14·12)∑
t−(15·12)

Ii (1)

The multiplication by 12 is due to the fact that monthly data is used.
If both EN- and LN-events become stronger (weaker) and/or more (less) frequent, this would

not necessarily show up as a trend in the moving average, but it would manifest in an increasing
(decreasing) standard deviation. Therefore the standard deviation is calculated for a 30-year
moving window. It could, however, be the case that for example the frequency of the oscillation
increases while the amplitude decreases. So, there would be two major changes, which together
would have a compensating effect on the standard deviation and therefore might go undetected
by the method.

Cai et al. (2014 and 2015b) analysed models from CMIP phases 3 and 5 and suggested that,
due to a warmer base state, both EN and LN events will occur considerably more often in the
future. To check whether a change in ENSO frequency is detectable in the CMIP6 models, a
third simple approach is introduced. I counted the number of ENSO-events in a 30-year period,
to see whether the number increases for later periods. I considered the number of months with
EN-/LN-like conditions, as well as the number of events, where the threshold (of ±0.5K) was
exceeded for at least 5 consecutive months.
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3.2 Linear Inverse Model

Berner et al. (2020) used Linear Inverse Models (LIMs) to increase the statistical confidence
of their results when using PCs to analyse ENSO behaviour. The question arises whether this
approach is also applicable to single members of an ensemble. Therefore, I compare results
derived from fitting LIMs to the complete MPI-ensemble to results gained from fitting LIMs to
single members of that same ensemble.

A pattern at the time t + τ can be predicted from a pattern at the time t, if a system is
assumed to be linear and markovian (Penland, 1989). Penland (1989) expects the LIM to be
useful for longer-range prediction, but it is required that non-linear effects have to be slow
with respect to the sampling rate. Any dynamical system that meets these conditions can be
described as (Penland, 1989; Penland and Sardeshmukh, 1995):

dx̂/dt = Bx̂+ n(x̂) + f (2)

In this equation x̂ is the state vector, B the linear feedback matrix and n and f are non-linear
and external forcing terms. Penland and Sardeshmukh (1995) show that tropical SSTs can be
described by the N-dimensional Markov process:

dx/dt = Lx+ ξ (3)

where x is the new state vector containing only the variables of the subsystem of interest (SSTs
in this case), L is the new feedback matrix (a submatrix of B), and ξ is a white noise forcing.
This does not mean that the non-linear forcing terms in equation 2 are neglected, but rather
that they can be described by a linear process and white noise (Penland, 1989; Penland and
Sardeshmukh, 1995). The process is considered to be continuous and discretely sampled rather
than an intrinsically discrete process (Penland, 1989).

In order to determine a pattern at time t + τ from the pattern at the time t one has to
integrate equation 3, which results in:

x(t+ τ) = exp(Lτ)x(t) + ζ(t, τ) = G(τ)x(t) + Sr (4)

For simplicity, the Green-function G(τ) is introduced. The noise ζ = Sr is white. A LIM is a
N-dimensional Markov process (like equation 3), in which one determines the feedback matrix L
(or G) of the system from (observational) data (Newman et al., 2009), as well as the properties
of the noise ζ. It can be useful to do this in EOF space, because by choosing a certain number
of PCs the dimensionality can easily be reduced, and the covariance matrix C0 of x becomes
diagonal (Penland, 1989). If x is N-dimensional (e.g a time-series of the first N PCs), L is
the constant NxN feedback matrix. The covariance matrix (denoted with angle brackets 〈〉)
and lag-covariance matrix of the vector x are defined as (Penland, 1989; Newman et al., 2009;
Penland and Sardeshmukh, 1995):

〈x(t)xT (t)〉 = C0 (5)

〈x(t+ τ)xT (t)〉 = Cτ (6)

xT is the transposed of x. The covariance matrix Q of the noise ξ is constant (Penland, 1989;
Penland and Sardeshmukh, 1995):

〈ξξT 〉 = Q (7)

The transition probability of the stochastic differential equation (3) is described by a Fokker-
Planck-equation, from which (after some mathematical manipulations and integration) follows

10



3 Methodology

an equation for Q (Penland, 1989; Penland and Sardeshmukh, 1995):

LC0 + C0L
T +Q = 0 (8)

Q = −LC0 − C0L
T (9)

By manipulating the Fokker-Planck equation again, and solving the resulting differential equa-
tion, the following relation between C0, Cτ and G(τ) is found (Penland, 1989; Penland and
Sardeshmukh, 1995; Berner et al., 2020):

Cτ = G(τ)C0 (10)

G(τ) = CτC
−1
0 (11)

With equations 11, 5 and 6, G(τ) or L can be calculated from the data. The noise ζ in equa-
tion 4 is white with covariance E = SST , so ζ = Sr, where r is a normally distributed random
vector. Penland (1989) shows that E can be calculated from the data (see also Newman et al.
(2009)):

E = 〈ζζT 〉 = C0 −G(τ)C0G
T (τ) = SST (12)

From equation 12, S can be deduced by means of the Cholesky matrix decomposition. For
the system to be stationary, G is required to tend to zero for long lags τ and therefore the
covariance matrix of the noise tends to the covariance matrix of x itself (Penland, 1989).

Overall, in order to fit a LIM to a given SST time series (of one ensemble member), I take the
following steps: First, I calculate the EOFs and PC time series. I use the eofs python package
(Dawson, 2016) with the pc-scaling option 1 (scaled to unit-variance), because this yields the
best compatibility with the ONI. Penland and Sardeshmukh (1995) argued that using the first
15 PC time series as x is a good compromise and they show that using 10 or 20 EOFs does
not change the main results. Therefore, I choose the time series of the first 15 PCs to be the
15 components of x. Second, I calculate the covariance matrices of x as in equations 5 and 6.
As a lag, I choose τ = 1 month. Berner et al. (2020) expect that, if the approximation is valid,
there should be several τ for which the LIM delivers accurate results. They show that for their
application a range of τ from 1 to 12 months shows qualitatively similar results. This range lies
between the limits of the time scale on which non-linearities become important and the time
scale where sampling errors dominate (Berner et al., 2020).

With equations 11 and 12 G and E can be derived. Then, E needs to be decomposed to get
S. The Cholesky matrix decomposition is only possible for positive-definite matrices, which
can create problems if the noise is correlated. This is prevented here by setting all values in the
covariance matrix E to zero except the elements of the main diagonal. S can then be calculated
as S =

√
E. This manipulation can be made without changing the main properties of the

model, because it only concerns the noise ζ. The feedback matrix L (and therefore G), which
contains all the information about the oscillation, is not altered by this adjustment. Having
derived G and S, I can now use equation 4 and different random vectors r to get as many
realisations of the LIM as required.

To fit a LIM to the whole ensemble, I calculate the EOFs for the whole ensemble by stacking
the SST time series of the single members. Then, I split the PC time series again, in order
to calculate the covariance matrices for each member. Subsequently, those covariance matrices
are averaged before calculating G and ultimately the LIM.
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3.3 LIM: Example

In order to get a better understanding of the method and check the accuracy of my implemen-
tation, I calculated a simple case as an example. This example is supposed to be similar to
actual SSTs but with known properties of the oscillation. I artificially generated a propagating
wave of SST anomalies based on a damped linear oscillator forced by noise with the following
properties:

dx/dt = Lx + Ar (13)

L is the linear feedback matrix given by

L =

(
−ν ω
−ω −ν

)
(14)

where the damping rate is ν = 0.01 month−1 and the angular frequency ω = 2π/24 month−1,
respectively. The chosen noise forcing is uncorrelated with amplitude A:

A

K month−1 =

(
10 0
0 10

)
(15)

r is a random vector.
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Figure 3: First 35 years of the time series of x (according to eq. 13-15) integrated with (blue)
and without (black) noise. The two components of x, x1 (a) and x2 (b), are plotted
separately.

I integrated equation 13 over 10.000 months to receive a time series of the 2D state vector
x = ( x1

x2 ), which are two time series of temperatures. As visualised in figure 3, integration of

12



3 Methodology

equation 13 without noise Ar results in a simple 2D damped oscillator, whereas if integrated
including the noise the oscillator becomes forced and statistically stationary, although still with
the same frequency and damping rate. Stationarity (of the statistical properties) is one major
condition for the use of a LIM, so the noise is necessary for the method to be applicable to the
example.

Now a dataset of artificially generated
”
SST-anomalies” with known damping rate ν and

angular frequency ω can be created. I chose a xxy-field with 90x60 grid-points to illustrate this
artificial data.

C(x, y, t) = (x1(t) · cos(kx)− x2(t) · sin(kx)) · cos(ly) +N(µ, σ) (16)

with:

k = 2π/90 (17)

l = 2π/60 (18)

µ = 0 K (19)

σ = 2 K2 (20)

where k is the zonal wave number, l the meridional wave number, and N represents normally
distributed noise with mean µ and variance σ. In figure 4, three time steps of the resulting
dataset are displayed.
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)

Figure 4: Three time steps of the artificially generated, propagating SST-anomaly wave in the
xxy-grid

This is now a propagating but statistically stationary wave of artificial SST anomalies which
can be modelled with a LIM. I calculated the PCs of the first 15 EOFs, the covariance matrices,
G, E, S, and finally the LIM as described in 3.2. The time series of the first PC of the artificial
data and five realisations of the LIM can be seen in figure 5. All the properties of the oscillation
are captured in the eigenvalues (λ1/2) of the feedback matrix L (Berner et al., 2020).

λ1/2 = −ν ± iω (21)

Therefore, the real and imaginary parts of these eigenvalues indicate the e-folding time τd and
the frequency f of the eigenmodes (Berner et al., 2020):

τd = −1/ν = 1/real(λ) (22)

f = ω/2π = ±imag(λ)/2π (23)
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Figure 5: Time series of the first PC for the example data (blue) and 5 realisations of the LIM
(grey).

Thus, one can easily identify dominant frequencies of the process. In figure 6 the e-folding
times are plotted against the frequencies for the example from figure 5. Note that the feedback
matrix L is the same for all realisations.

A different way to identify dominant frequencies is to look at the spectra of the time series.
As suggested by Berner et al. (2020), the power spectral density (PSD) is computed directly
from the Fourier coefficient of the time series using Welch’s periodogram method (which is
included in python’s scipy.signal package). The Welch’s periodograms for the data and the 5
realisations of the LIM are also plotted in figure 6.

It can be seen that there is a distinct peak in the Welch’s periodogram of the data (denoted
by the red vertical line). The LIMs show almost exactly the same peak position. At the same
time, the eigenvalues of L show the longest e-folding time at almost exactly the same frequency.
According to the eigenvalues of L the most dominant oscillation has period T = 23.92 months.
The Welch’s periodograms of the data and four of the LIMs have their maximum at T = 23.81
months. The remaining LIM shows a period of 24.09 as the most dominant oscillation. This
indicates that the LIM is capable of reproducing the dominant frequencies and that the two
methods of finding them lead to very similar results. Therefore, the feedback matrices of LIMs
can be used to identify the most dominant frequency and its e-folding time in an oscillating
time series.
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ted against the imaginary part (frequency)(right y-axis). Blue (grey dashed) lines:
Welch’s periodograms of the data (LIM) (left y-axis).

15





4 Results and Discussion

4.1 Simple Approaches

The analysis of the moving average (MA) (of both, the CMIP6- and MPI-ensemble) revealed the
results presented in table 2. The MA of the first three PCs of the CMIP6-ensemble can be seen
in figure 7. The slope of the regression line of the PC-Index (PC1) is only 5·10−6 K/month. The
slopes of the second and third PC are similarly small. This indicates that there is no noticeable
trend in the PC-Index or secondary patterns. Thus, the index is not (strongly) shifted to more
positive than negative values with a warming climate.

Table 2: Slopes of regression lines of ensemble means for moving average and standard deviation
for CMIP6- and MPI-ensemble. Also see figures 7, 8,9 and 10.

CMIP6-ensemble MPI-ensemble
Slope Slope Slope Slope

Moving average Standard Deviation Moving Average Standard Deviation
(K/month) (K/month) (K/month) (K/month)

PC1 5.0 · 10−6 3.83 · 10−5 −1.1 · 10−6 −5.01 · 10−5

PC2 6.2 · 10−6 3.01 · 10−5 −1.03 · 10−5 −3.76 · 10−5

PC3 3.6 · 10−6 2.66 · 10−5 5.9 · 10−6 −4.15 · 10−5

As mentioned in section 3.1, a trend towards stronger EN and stronger LN or an increase or
decrease in both their frequencies would not show in the moving average but rather in a larger
or smaller standard deviation. The standard deviation over 30-year moving windows for the
first 3 PCs of the CMIP6-ensemble can bee seen in figure 8 and the values of the slopes of the
regression line are also denoted in table 2. With a value of 3.83 · 10−5 K/month, the slope of
the regression line for the PC-Index (PC1) is similarly small for the standard deviation as it is
for the MA, which indicates no pronounced trend in the standard deviations either. This test
therefore provides no indication that EN- and LN-events do both become noticeably stronger
or more frequent.

The fit of the regression line does not only deliver the estimated parameters themselves but
also their standard deviation. In this case, the standard deviations are much smaller than the
estimated parameters themselves, so that the slope plus or minus its standard deviation still
has the same sign. Therefore, I can be confident that the calculated trends are truly positive
(negative), even though very small.

With these two simple tests I therefore come to the conclusion that the trends in the CMIP6-
ensemble are, even though definitely positive, extremely small if not negligible. The same
analysis can be done for the MPI-ensemble (see table 2 and figures 9 and 10). In this case the
trends are negative, indicating a shift towards more negative values in the PC-Index (PC1) and
a reduction in amplitude or frequency of both EN- and LN-events. However, the trends for the
MPI-ensemble are also extremely small.
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Figure 7: CMIP6-ensemble. Moving average of the PC-Index (a), the second (b) and third PC
(c) for each model (grey). The ensemble mean is shown in red, a regression line has
been fitted to the ensemble mean (black).
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Figure 8: CMIP6-ensemble. Standard deviation of the PC-Index (a), the second (b) and third
PC (c) over a 30-year moving window for each model (grey). The ensemble mean is
shown in red, a regression line has been fitted to the ensemble mean (black).
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Figure 9: MPI-ensemble. Moving average of the PC-Index (a), the second (b) and third PC (c)
for each model (grey). The ensemble mean is shown in red, a regression line has been
fitted to the ensemble mean (black).
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Figure 10: MPI-ensemble. Standard deviation of the PC-Index (a), the second (b) and third
PC (c) over a 30-year moving window for each model (grey). The ensemble mean is
shown in red, a regression line has been fitted to the ensemble mean (black).
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4 Results and Discussion

As mentioned in section 3.1, there are studies (e.g. Cai et al. 2014 and 2015b) that suggest a
relevant change in ENSO frequency. In order to test if the ENSO frequency changes in the two
ensembles I analyse here, I counted EN- and LN-like conditions as well as events. The results
of this analysis are summarised in table 3. The condition is considered EN- (LN-) like, when
the PC-Index exceeds a threshold of 0.5◦C (−0.5◦C). It is called a EN (LN) event whenever
this condition is met for at least 5 consecutive months ( NOAA CPC , 2020b).

Table 3: Slopes of regression lines of ensemble means for EN/LN occurences for CMIP6- and
MPI-ensemble. Also see figures 11 and 12.

CMIP6-ensemble MPI-ensemble
slope EN-like conditions (month−1) 1.72 · 10−3 −1.41 · 10−3

slope LN-like conditions (month−1) 1.72 · 10−3 −2.67 · 10−3

slope EN events (month−1) 4.3 · 10−4 5.8 · 10−4

slope LN events (month−1) 2.8 · 10−4 1.7 · 10−4

For the CMIP6-ensemble, the number of occurrences can be seen in figure 11. Again, the
slopes of the regression lines are very small, which indicates no pronounced trend in periodicity
either. For the whole time period an average of just above 8 ENs and LNs per 30-year window
is detected, which corresponds to one ENSO cycle every 3 to 4 years on average. For the
MPI-ensemble the results are very similar, only the average number of EN and LN events is
smaller with an average between 5 and 6 and corresponds to the longer period of 5 to 6 years
(Fig. 12). For both ensembles these periods lie within the ENSO-band of 3 to 7 years.

50

100

150

oc
ur

re
nc

es

y = 0.00172month 1 t + 113.12

El Nino-like conditions

y = 0.00172month 1  t + 111.96

La Nina-like conditions

35 45 55 65 75 85 95 105 115
years

5

10

15

oc
ur

re
nc

es

y = 0.00043month 1 t + 8.08

El Ninos

35 45 55 65 75 85 95 105 115
years

y = 0.00028month 1 t + 8.19

La Ninas

Figure 11: CMIP6-ensemble. Occurrences EN-/ LN-Conditions (upper panels) and events
(lower panels) for every model (grey). The ensemble mean is denoted in red and the
regression line in black.

In previous studies (Guilyardi et al., 2009; Berner et al., 2020; Cai et al., 2015a) it has become
apparent that there is not much consistency between the predictions of ENSO future in the
different models participating in CMIP. If the different models in the CMIP6-ensemble come
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Figure 12: MPI-ensemble. Occurrences EN-/ LN-Conditions (upper panels) and events (lower
panels) for every model (grey). The ensemble mean is denoted in red and the
regression line in black.

to contradicting conclusions too, the analysis of the ensemble mean might not be conclusive
at all, and further analysis of the single members is necessary. Therefore, the values of the
trends in each model are depicted in figure 13. It is obvious that the different models do indeed
predict different outcomes for ENSO periodicity. The errors of the estimated gradients are
considerably smaller than their value, so however small the gradient is, its sign does not change
within the range of uncertainty. Again, the trends are very small if not negligible. Figure
14 shows the same results as figure 13 but for the MPI-ensemble. It becomes clear that the
variability within the MPI-ensemble is similarly large as in the CMIP6-ensemble. This means
that internal climate variability (which can be estimated from the MPI-ensemble) is as large
as the variability due to differences between the models of the CMIP6-ensemble. Reality could
evolve like any of the ensemble members and they can be quite different from the ensemble
mean. This means that there remains an irreducible uncertainty when predicting ENSO on a
time scale of 150 years because of the internal climate variability.
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Figure 13: CMIP6-ensemble. Gradients of the trends in EN/LN-like conditions (top) and
EN/LN events (bottom) for each model. Values towards the top of the plot in-
dicate increasing number of LN conditions/events, values toward the right of the
plot indicate an increasing number of EN conditions/events. Numbers correspond
to models as in table 1.
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Figure 14: Same as figure 13 but for MPI-ensemble.
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4.2 Linear Inverse Model

Since the simple methods described above failed to pick up pronounced changes in ENSO
behaviour, the purpose of the following analysis is to test whether more sophisticated methods
are better suited for the task. In particular, the hypothesis shall be tested as to whether
Linear Inverse Models (LIMs) are able to find changes in ENSO periodicity, since, as described
in section 3.3 the feedback matrix is a measure that describes the oscillatory behaviour in a
relatively detailed way. For this purpose, I fitted LIMs to the whole 120-year time series as
well as to three consecutive 40-year periods (P1-P3). By fitting to the whole ensemble as well
as to single members, it should be tested whether LIMs fitted to single ensemble members are
representative for the ensemble and can therefore be used to achieve robust results.

I fitted a LIM to the complete MPI-ensemble by calculating the EOF for the stacked data
and averaging the covariance matrices (see section 3.2). The Welch’s periodograms of the
ensemble, the LIMs, and their mean can be seen in figure 15. It is clear that the mean of the
periodograms of the ensemble data (solid lines) and the mean of the periodograms of the LIM
fits (thick dashed lines) are very similar for all three periods. But it also becomes apparent
that the single realisations of the LIM have an even greater spread than the single ensemble
members. This means that, in order to get a reliable result from Welch’s periodograms of LIM
fits, an ensemble of LIM realisations is needed.
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Figure 15: Power spectral density (PSD) of PC-Index as a function of frequency for the first
(left), second (middle), and last (right) 40 years of the time series. Coloured solid
lines denote the mean of the MPI-ensemble spectra, light shading denotes the ex-
tremes, and dark shading the standard deviation of the ensemble member spectra,
respectively. Thin dashed lines denote the PSDs of the different realisations of the
LIM fitted to the whole ensemble, the thick dashed line denotes their mean. Grey
shading denotes the ENSO-band between 3 and 7 years.

As discussed in section 3.3, the dominant frequencies of an oscillator modelled with a LIM
can be determined by analysing a periodogram of the data or the eigenvalues of the feedback
matrix of the LIM. In this case it can be expected that the peak of the periodogram lies in
the ENSO-band and that there is one frequency with a much longer e-folding time than all
others, which also lies in the ENSO-band. In Figure 16, both approaches are displayed for the
whole time series as well for the three sub-periods. It becomes apparent that, corresponding
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4 Results and Discussion

to the peaks in the periodograms, there is one frequency with a long e-folding time in the
same frequency range. The periodograms and the eigenvalues do not show exactly the same
frequency. This is because the periodogram shows a mixture of all frequencies, which results
in a shift in frequencies due to secondary oscillations. Figure 16 shows that the dominant
frequencies seem to become smaller for the later periods and the e-folding times shorter (the
green and red dots are further left and lower). This indicates that in a warmer climate ENSO
cycles become longer and the time of decay shorter. A similar result was found by Park et al.
(2009) who analysed an ensemble of eight model simulations for a similar experiment.
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Figure 16: MPI-ensemble. Welch’s periodograms (ensemble mean, lines, right y-axis) of the
data for the whole time series (black), the first (blue), second (green) and last (red)
40 years of the time series. E-folding time plotted against frequency, derived from
feedback matrices L for each period (dots, left y-axis).

It is important to investigate whether this trend is really statistically significant or a mere
coincidence. I checked for this by selecting four different sub-samples of half the ensemble size
(the first and second half, as well as the even and odd members). The analysis for these sub-
samples yield overall the same results for the shift in period (figures corresponding to Fig. 16
can be found in the appendix). This indicates that there actually is a statistically significant
development, but this still needs to be confirmed by more thorough analyses. The shift in the
e-folding time is not consistent in the four sub-samples. This quick method can therefore not
confirm a trend and further analysis is necessary.

Now the question of interest is whether the same conclusions can be drawn when fitting LIMs
to single members of the ensemble. To answer that question, the e-folding time and frequencies
are derived for each ensemble member. This is done by fitting a LIM to each member as
described in section 3.2 (for 68 resulting plots, see appendix). In figure 17, all the resulting
e-folding times are plotted in one panel per period for better visualisation. Qualitatively, the
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4 Results and Discussion

spread between the results of the different fits is by far greater than the difference between the
periods in the fit to the complete ensemble. An additional illustration is provided in figure 18.
Here, the medians and interquartile ranges of the light dots from figure 17, as well as their
means are displayed. It can be seen that the averaged results lie in the same range as the
ensemble fit, but they do not exhibit the same trend. From these results it seems likely that
there is no trend and the differences origin from internal variability. The dominant frequencies
and their change that are determined from the LIMs fitted to single ensemble members are
therefore not representative for the frequencies and changes determined from the LIM fitted to
the whole ensemble. Whether there is actually a trend, as suggested by the latter, has to be
investigated further, for example by using the bootstrapping method.
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Figure 17: MPI-ensemble. E-folding time (inverse of the real part of the eigenvalues of L)
plotted against the frequency (imaginary part) for the whole period (black), the
first (blue), second (green) and third (red) 40 years of the time series. Solid dots
represent the fits to the whole ensemble, while light dots represent the fits to the
different single members. For better visibility of the latter, they have been plotted
in separate panels.
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Figure 18: MPI-ensemble. E-folding time (inverse of the real part of the eigenvalues of L,
derived from the fit to the whole ensemble) plotted against the frequency (imaginary
part) for the whole period (black dots), the first (blue dots), second (green dots) and
third (red dots) 40 years of the time series. Crosses denote the means of the most
dominant frequencies, calculated from the fits to single ensemble members. Lines
mark their interquartile ranges.
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5 Summary and Outlook
El Niño Southern Oscillation (ENSO) has far reaching consequences in many parts of the
world. Understanding and predicting it is therefore a major focus in current climate research.
In particular, the question on how ENSO will react to a changing climate is of great interest.
I addressed this question with different methods, using two General Circulation Model (GCM)
ensembles. One of the ensembles is a multi-model ensemble of models participating in the
1 percent CO2 (1pctCO2) experiment of CMIP6 (CMIP6-ensemble). The other is an initial
conditions ensemble of the MPI-ESM-LR model, run for the same experiment in CMIP5 (MPI-
ensemble). The ENSO-Index used in this work is based on the principle component (PC) of
the first empirical orthogonal function (EOF) of the sea surface temperature (SST) data. This
index only requires one variable and describes the same variations as the commonly used Ocean
Niño Index (ONI). Together with the higher PCs it describes the SST oscillations even more
completely. A Linear Inverse Model (LIM) can be fitted to the first 15 PCs of the SST, which
can then be used for further analysis.

The analysis of the moving average (MA) of said PC-Index showed that in the CMIP6-
ensemble there is an almost unnoticeable trend towards more positive PC-Index values, whereas
it is similarly small but negative for the MPI-ensemble. Additionally, the standard deviation
was analysed over a moving 30-year window. As a result an extremely small increase of the
standard deviation for the CMIP6-ensemble and a decrease for the MPI-ensemble was found.
The trends are so small, however, that I can not conclude from this analysis whether there is
going to be a detectable change in ENSO-behaviour.

Previous work has shown that there might be a considerable change in ENSO-frequency (Cai
et al., 2015b, 2014). By counting ENSO-like conditions and -events I wanted to verify this
conclusion. Again, I could only find extremely small trends in both ensembles, so that I can
not confirm that there will be pronounced changes to ENSO-frequency in the analysed 120
years.

Because changes were expected to be quite subtle, I explored the possibility of using LIM
simulations to find changes, in addition to the simple approaches named above. For this purpose
I investigated if LIM fitting is suitable for detecting changes in ENSO-frequency. By fitting
LIMs to the complete MPI-ensemble as well as to each of the 68 members, I could test if
LIMs fitted to single realisations of one climate model represent the properties of the entire
ensemble accurately. I found that this is not the case. The LIMs fitted to single members differ
substantially and are not representative for the entire ensemble. Therefore one can not fit LIMs
to the members of a multi-model ensemble (like the CMIP6-ensemble) to simply compare their
predictions on ENSO’s future behaviour.

But even if the LIMs fitted to the single members are not useful for further analysis, the
fit to the complete MPI-ensemble delivered promising results. The eigenvalues of the feedback
matrix of the LIM contain information about the existing frequencies and their e-folding times.
This (as well as the analysis of the Welch’s periodogram of the data) yielded a very dominant
frequency within the ENSO-band.

In order to identify changes over the analysed 120-years of the simulation period, I split the
time series in three consecutive 40-year sub-series. When comparing the results from LIMs fitted
to these three sub-series, it became apparent that the dominant frequency becomes smaller.
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5 Summary and Outlook

This indicates that, with a warming climate, ENSO cycles are predicted to become longer and
El Niño (EN)- and La Niña (LN)-events therefore less frequent. The simulation of the MPI-
ensemble predicts an increase of the ENSO-period from 5.93 to 7.02 years (blue and red dots
in Fig. 16). This means that the number of ENSO cycles happening within a 40-year period is
projected to decrease by about one event (from about 6.8 to just 5.7). When comparing this
to the lower panel of figure 14 another finding becomes apparent. The most extreme members
in this figure predict an increase or decrease of EN- and/or LN-events by up to 0.6 per decade.
This means that during the simulated period of 120 years the number of EN-/LN-events will
increase (or decrease) by over 7. This is obviously a greater change than the analysis of the
LIMs of the three sub-period showed. It becomes clear that the range of possible ENSO changes
is more relevant than the change that can be determined by analysing the complete ensemble.
Reality is most likely not going to develop like the ensemble mean but like one of the members.
Therefore the great spread between the possible outcomes presents a challenge, especially when
thinking about adaptation or mitigation measures that are supposed to protect society and the
environment from the extreme weather events caused by EN- and LN-events.

As mentioned in chapter 4, further investigations need to be carried out in order to establish
if the trend towards longer ENSO periods is actually statistically significant. This, however,
went beyond the scope of this work but is recommended to be done in due course by e.g. using
the bootstrapping method. The bootstrapping method is a statistical method to estimate the
accuracy of properties estimated from (small) samples (Boos, 2003; Efron and Tibshirani, 1994).
By resampling (with replacement) the number of samples is increased, which can then be used
to determine these properties.

In this work the difference between LIMs fitted to single ensemble members and LIMs fitted
to a whole ensemble has only been examined using the MPI-ensemble. It might be of interest
to do this for the CMIP6-ensemble as well. In order to do this, the outputs of all members
have to be regridded to a common grid, such that a common EOF can be calculated.

Another topic that follow-up research could address is a multi-model ensemble contributing
to CMIP5. Since the analysis of the MPI-ensemble (which dates from CMIP5) showed a
slight decrease in the PC-index, it’s standard deviation and the ENSO frequency, it would be
interesting to see if a multi-model ensemble of the CMIP5 generation shows the same features.

Finally, to gain better insight into the likely ENSO changes it would be very interesting
to perform the analysis that was done here with the MPI-ensemble with initial conditions
ensembles of the models contributing to CMIP6.
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Appendix
All supplementary material can be found at: http://doi.org/10.5281/zenodo.4153740
The material includes the plots of the Welch’s periodograms and e-folding times derived from
fitting LIMs to different sub-samples of the MPI-ensemble. It also includes the same plots
derived from fitting LIMs to each of the 68 ensemble members individually.
Additionally, all scripts that have been used to process and analyse the data can be found
there.
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