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Abstract

El Niño–Southern Oscillation (ENSO) is one of the most important modes of

climate variability on interannual timescales. We aim to find out whether a

change in ENSO frequency can be predicted for the nearer future. We analyse

the unforced pre-industrial control run and the forced 1%/year CO2 increase

run for an ensemble of 43 general circulation models that participated in the

Coupled Model Intercomparison Project Phase 6 (CMIP6). We assume that the

uncertainty of ENSO frequency trend estimates from an ensemble is caused by

apparent trends as well as model differences. The part of the uncertainty

caused by apparent trends is estimated from the pre-industrial control simula-

tions. As a measure for ENSO frequency, we use the number of El Niño- and

La Niña-like months in a moving 30-year time window. Its linear decadal

trend is calculated for every member. The multimember mean of the trend for

both experiments is less than 0.7 events per decade. Given that the standard

error is of the same order of magnitude, we consider this a negligible trend.

The uncertainties are large in both experiments and we can attribute most of

the intermember variability to apparent trends due to natural variability rather

than different model reactions to CO2 forcing. This means that the impact of

intermodel differences might have been overstated in previous studies. Appar-

ent trends make it very difficult to make reliable predictions of changes in

ENSO frequency based on 120-year time series.

KEYWORD S

climate change, CMIP6, ENSO, ENSO frequency

1 | INTRODUCTION

El Niño–Southern Oscillation (ENSO) is one of the most
important modes of climate variability on interannual
timescales. Due to teleconnections, it impacts weather
conditions worldwide and can lead to extreme weather

Abbreviations: 1pctCO2, 1% CO2; CMIP, Coupled Model
Intercomparison Project; CMIP5, Coupled Model Intercomparison
Project Phase 5; CMIP6, Coupled Model Intercomparison Project
Phase 6; ENSO, El Niño–Southern Oscillation; EOF, empirical
orthogonal function; EN, El Niño; LN, La Niña; ONI, Ocean Nino
Index; PC, principal component; piControl, pre-industrial control;
SST, sea surface temperature.
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events. To reduce the social, economic, and environmen-
tal risks of these events, accurate forecasting is required.
Therefore, understanding ENSO mechanisms and pre-
dicting ENSO events is a central question of current
research, especially regarding global warming. Global
warming could have different effects on the equatorial
Pacific and can therefore affect ENSO in a variety of
ways. ENSO frequency can be affected by the sharpness
and depth of the equatorial thermocline, the meridional
and zonal sea surface temperature (SST) gradients as well
as the strength of the trade winds (Timmermann
et al., 1999; Yang et al., 2005; Deng et al., 2010). Which
one of these influences dominates when it comes to
ENSO frequency change, or if there are other processes
involved, has yet to be investigated.

There are many studies (e.g., Kestin et al., 1998; Wang
and An, 2001; Zhang et al., 2008; Aiken et al., 2013)
investigating ENSO dynamics with the help of observa-
tions, but it is difficult to conclude how ENSO reacts to
climate change. This is because the observational record
is short (especially with respect to the timescale of the
phenomenon) and ENSO frequency is quite irregular.
Also, the ENSO amplitude is large compared to changes
in the mean global temperatures; therefore, the variabil-
ity is large compared to the trend in mean global temper-
atures. It is well known that to detect a trend of a specific
size, a time series of a specific minimum length is needed
(or vice versa). How long a time series needs to be so that
a trend can be detected depends on the autocorrelation
and the variance of the noise in the data (Weatherhead
et al., 1998).

To overcome these problems, a longer time series or
stronger trend is required. To this end, climate models
can be helpful. Experiments can be run for longer times
or with increased forcing so that the expected trend is
bigger. There are many studies on ENSO frequency
change in climate models. Some of them found an
increase in ENSO frequency in the models they examined
(Timmermann et al., 1999; Collins, 2000b). Collins
(2000b), for example, studied ENSO frequency with the
second Hadley Centre coupled climate model (HadCM2).
The HadCM2 is a coupled climate model which, accord-
ing to Collins (2000b), represents present-day ENSO con-
ditions (amplitude and frequency) well. By running
different climate change scenarios he found that there
are only small changes until a quadrupling of CO2 when
the frequency doubles. On the other hand, Yang et al.
(2005) investigated ENSO in the Fast Ocean Atmosphere
Model and found that a reduction in ENSO frequency is
very likely as a result of a warming climate. Yet other
studies argued that ENSO frequency does not react to
global warming at all (e.g., Timmermann, 2001; Zelle
et al., 2005). Also, Collins (2000a) followed up on his

earlier study and found that in the third Hadley Centre
coupled climate model (HadCM3) there is no change in
ENSO frequency under different climate change
scenarios.

Timmermann (2001), Zelle et al. (2005) and Collins
(2000a) emphasized the effect that model specifics can
have on the sensitivity of ENSO to climate change. There-
fore, to increase the robustness, multimodel ensembles
have been used in many later studies. In a study by Mer-
ryfield (2006), 12 out of 15 models (prepared for IPCC
AR4) agreed on a decrease in ENSO period. Cai et al.
(2014) analysed extreme El Niño events in models that
participated in Coupled Model Intercomparison Project
(CMIP) Phases 3 and 5. They found that extreme El Niño
events, defined based on precipitation, will occur more
frequently in a changing climate, even though SST anom-
alies in the Niño3 region do not show a significant
change. Cai et al. (2015b) carried out a similar analysis
for extreme La Niña events. Based on both studies, they
concluded that there is a high model consensus that both
extreme La Niña and El Niño events become more fre-
quent under climate change (Cai et al., 2014; 2015a;
2015b). Wang et al. (2017) also used 13 models participat-
ing in CMIP Phase 5 (CMIP5) and came to the same con-
clusion. But, many studies that investigated multimodel
ensembles concluded that the predictions of ENSO fre-
quency are strongly model-dependent. Studies by Gui-
lyardi (2006), Deng et al. (2010), Chen et al. (2017), and
Xu et al. (2017) suggest that the model consensus is very
small on the topic of how ENSO frequency will change in
a changing climate.

There are first studies that analyse the newest genera-
tion of climate models, participating in CMIP Phase
6 (CMIP6). Fredriksen et al. (2020) investigate the agree-
ment of the models in this intercomparison project on
projected changes of ENSO. They find that although the
agreement seems improved compared to earlier phases of
CMIP, there is still no consensus regarding the ENSO
variance and spectra. However, they find that models
agree on some signals like the decreasing strength of the
east–west SST gradient or the increasing variance of SST
in the Niño3.4 region. Brown et al. (2020) analyse CMIP6
models in their assessment of ENSO changes in past and
future climates. They find that the models used in their
study simulate ENSO patterns that resemble observations
reasonably well. This study, once again, concludes that
changes in ENSO variability in future simulations are
highly model-dependent. Freund et al. (2020) studied fre-
quency and intensity changes of ENSO in CMIP5 and
CMIP6 models and could not find an overall agreement
between models. This disagreement persists when they
investigate only a subset of presumably better performing
models.
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The fact that many studies that concerned themselves
with changes in ENSO produce very different results
raises the question if there might be a reason why we
cannot predict these changes. Chen et al. (2017) men-
tioned that the difficulty in predicting ENSO properties is
not only the intermodel spread but also the significant
natural variability and Zheng et al. (2018) support this
hypothesis in a study about ENSO amplitude. A similar
study by Maher et al. (2018) showed that (depending on
the warming scenario) up to 90% of the variability of
ENSO amplitude can be attributed to internal variability.
Zheng et al. (2018) and Maher et al. (2018) stressed that
the internal variability of ENSO has a high impact on the
predictability of changes in amplitude and Chen et al.
(2017) mentioned that changes in many ENSO statistics
may not be significant.

We investigate this general issue further, introducing
a new approach to separate natural variability and inter-
model differences. We focus specifically on changes in
ENSO frequency. In particular, our goal is to find out if
the large uncertainty in predicted changes of ENSO fre-
quency is mainly due to different model reactions to CO2

forcing, or due to apparent trends resulting from a combi-
nation of natural variability and limited time series
length. We use the 1%/year CO2 increase experiment of
CMIP6. Additionally, we use the unforced control experi-
ment to quantify the role of natural variability, which is a
new approach that differentiated this study from earlier
work cited above.

Section 2 of this paper gives a short overview over the
data used. In section 3 we describe our methods. Results
are given in section 4 and section 5 contains the conclu-
sion and discussion.

2 | DATA

Our approach requires the comparison of simulations of
the same length (150 years) from a forced experiment
and the pre-industrial control (piControl) experiment
from CMIP6. As the forced experiment we chose the
1pctCO2 experiment, which is initialised from the control
run, and a 150-year period is simulated during which the
CO2 concentration is continuously increased by 1% each
year. This results in a doubling of CO2 after about
70 years and a quadrupling after 140 years, respectively.
This ensemble will be referred to as 1pct-ensemble. While
this is still a quite simplistic experiment, it is closer to
reality than others, for example, the abrupt quadrupling
of CO2 concentrations.

We compare the simulations from the 1pctCO2 exper-
iment to the piControl simulations. In the piControl
experiment the year 1850 is used as a reference year and

the simulations are run for at least 500 years (Eyring
et al., 2016). We use the last 150 years of each simulation
for our analysis and will refer to them as the Control-
ensemble.

For both experiments we have an ensemble of
43 members available (a list with detailed information
can be found in Table S1, Supporting Information). We
use monthly mean SST data in the tropical Pacific
(120�E–60�W, 30�N–30�S) from both of these ensembles
for the analysis.

It should be mentioned here that the goal of the study
is not to prove if there is a trend in ENSO frequency in
general or to find its natural variability. Rather the aim is
to see if one can predict changes in ENSO frequency for
the nearer future. If the former were the goals, other
datasets would be more suited.

3 | METHODS

3.1 | ENSO index

Many indices can be used to measure ENSO activity,
each of which has its advantages and disadvantages.
Depending on the available data and the question posed,
different indices prove to be helpful. In this work, we
make use of an index based on the first empirical orthog-
onal function (EOF) of SST data from the tropical Pacific
(120�E–60�W, 30�N–30�S), similar to the works of Pen-
land and Sardeshmukh (1995), Merryfield (2006), or
Berner et al. (2020). The pattern of the first EOF (EOF1)
explains most of the variability in the tropical Pacific,
particularly in the Niño3.4 region (Dommenget
et al., 2013). In our 43-member Control-ensemble, the
explained variance of the first EOF is 47.64% on average,
while the second EOF explains less than 13.87% for all
members (7.85% on average). Between the Control- and
1pct-ensemble the patterns and the amount of explained
variance differ only slightly. Therefore, the principal
component (PC) of the first EOF can be used as an ENSO
index.

We normalize the time series of the first principal
component (PC1) by scaling it to unit variance, which
makes the time series of different models comparable,
even if they have different ENSO amplitudes. We verified
that the resulting index is, in fact, highly correlated with
the Ocean Nino Index (ONI) defined by NOAA Climate
Prediction Center, National Weather Service (2020a)
(which is defined as the field mean of SST anomalies over
the Niño3.4 region, 5�N–5�S and 120�–170�W). The cor-
relation coefficient between the PC1 and the models' ONI
is 0.971 on average for the 43 models of the control exper-
iment (min: 0.883, max: 0.991). This means that they

FIX ET AL. 1169

 10970088, 2023, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7901 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



indeed describe the same ENSO variations (also see Pen-
land and Sardeshmukh, 1995; Berner et al., 2020). The
sign of the PC is chosen in such a way that the PC time
series is positively instead of negatively correlated with
the ONI.

To calculate the ONI or the PC1, the climate trend
and annual cycle have to be eliminated. This is done as
described by NOAA Climate Prediction Center, National
Weather Service (2020a) for the ONI. Anomalies are cal-
culated for each grid point with respect to a centred base-
period. This base-period is updated every 5 years to
account for the warming trend in the region. The base-
period corresponding to the years x to x + 4 is the period
x − 15 to x + 14 (NOAA Climate Prediction Center,
National Weather Service, 2020b), so that the 30-year
base-period centred around x is valid for 5 years of which
year x is the first (the base-period for the years x + 5 to
x + 9 would be x − 10 to x + 19 then). Subsequently, the
anomalies are smoothed by a 3-month running mean.
From these smoothed anomalies EOFs and scaled PC
time series can be calculated. The scaled first PC is used
as the ENSO index in this study and will be referred to as
the PC index. The base-period method creates artificial
trends at the beginning and end of a dataset because for
the first and last 15 years there is no correctly centred
base-period available, so the closest possible base-period
has to be used. This creates an unwanted effect, which
cannot be corrected. Hence, the first and last 15 years of
data cannot be correctly evaluated and will not be taken
into account for further analysis. We therefore effectively
analyse time series with a length of 120 years. An exam-
ple of the resulting time series for an arbitrarily chosen
ensemble member can be found in Figure S1.

3.2 | Analysis of ENSO frequency

The NOAA Climate Prediction Center, National Weather
Service (2020a) consider a month “El Niño-like” or “La
Niña-like” when the ONI exceeds ±0.5 K, respectively. The
properties of ENSO in coupled climate models are not nec-
essarily the same as the statistics of the observed phenome-
non, nor do they have to be the same for different models.
Therefore, a fixed threshold has a different meaning for dif-
ferent models. Instead, one should use a flexible threshold
like one standard deviation (like, e.g., Merryfield, 2006).
Because we use the normalized PC as ENSO index, the
time series of the different models are indeed comparable,
and a flexible threshold of one standard deviation corre-
sponds to the fixed value of ±1 for all PC indices. Accord-
ing to this definition, an El Niño (EN) occurs when the PC
index exceeds 1 and a La Niña (LN) occurs when the PC
index goes below −1. As a measure of ENSO frequency, we

use the number of ENs and LNs during 30 years. A time
series of occurrences of these ENs and LNs is created by
counting the months that meet the condition within a
30-year moving window. This way a time series can be
achieved where the number of ENs or LNs corresponding
to each month is the number of ENs or LNs within a
30-year window centred at that month.

We fit a regression line to time series resulting from
the mentioned counting method. Then, we can use the
slope of the regression line to evaluate if there is a change
in ENSO frequency. This trend calculation via the regres-
sion line is done for each ensemble member and both
experiments. Then, the average slope (m1pct, mControl)
and its standard deviation over all members (σ1pct,
σControl) are calculated for both experiments.

The choice of the correct window length is not obvious.
The shorter the window is, the bigger we can expect the
standard deviation of the resulting time series to be. The
longer the window is, the shorter the resulting time series
gets. Both can increase the uncertainty of trends in that
time series (Weatherhead et al., 1998). We tested window
lengths of 20, 30, and 40 years and found that the results
support the same conclusions, therefore we can confidently
do our analysis for the 30-year moving window.

According to the NOAA Climate Prediction Center,
National Weather Service (2020a), EN or LN events are not
counted until the condition is met for at least five consecu-
tive months. This definition has the disadvantage of fewer
occurrences in general and therefore a bigger statistical
error. Nevertheless, the same analysis described above for
EN/LN-like months can be done for these events. The
results are consistent with the ones for EN/LN-like months
and can be found in Supporting Information.

3.3 | Causes for uncertainty in the ENSO
frequency trend estimate

The time series which can be used to predict a change in
ENSO frequency in the nearer future are of limited length.
For the 1pct-ensemble, this is 150 years (120 years after
computing the PC index). ENSO is happening in the tropi-
cal Pacific, where variabilities on different timescales play a
role. SSTs and therefore ENSO frequency can be subject to
variability on scales of months, years, decades, or even cen-
turies. The variety of variabilities and their causes exceeds
the scope of this paper, but the reader is referred to litera-
ture on the topic like Zou and Latif (1994), Latif (2001),
Rodgers et al. (2004), or Latif et al. (2013).

Especially with a phenomenon with large internal vari-
ability, the limited length of the time series might lead to
apparent trends (see Weatherhead et al., 1998). In order to
illustrate this problem, we show an example here. We

1170 FIX ET AL.
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arbitrarily chose model 29 (IPSL-CM6A-LR) to demon-
strate. For this example, we use the first 340 years (also
arbitrarily chosen) of the piControl experiment. This results
in a time series of the PC index of 310 years. This time
series can be seen in Figure 1. We would not expect any
trend in ENSO frequency in the unforced run, no matter if
we use the entire time series or shorter subsets of it. To
show how the length and location of the time series chosen
to calculate the trends influences the results nevertheless,
we carry out the analysis for three different subsets of the
long time series. The chosen subsets are of 120-years length,
which is the maximum length we can look at for the 1pct
simulations. The subsets are marked in colours in Figure 1.
The resulting time series of occurrences of EN and their
trends can be seen in Figure 2. It becomes obvious that the
detected trends are very different. This is what we call
apparent trends. This example demonstrates that these
apparent trends stem only from internal variability together
with the limited length of the time series. The uncertainty
in the detected trends that is caused by this effect is
irreducible.

In this study, we want to estimate how much of the
uncertainty of detected changes in ENSO frequency is
because of this fact and how much can be attributed to the
different model reactions. Therefore, we need to quantify
how big the standard deviations of trends are that arise

from the limitation of the forced experiment to only
150 years. We do this by analysing time series of 150 years
from the piControl experiment (120 years after the index
calculation). Because there is no forcing in the piControl
experiment, we expect there to be no trend in ENSO fre-
quency. Any trend that can be detected is therefore an
apparent trend. From the Control-ensemble, we can there-
fore calculate an uncertainty in the estimated trend of
ENSO frequency, which is due to apparent trends,

σ2Control=σ2ApparentTrends: ð1Þ

Conversely, we can expect there to be a trend in the
1pct-ensemble due to CO2 forcing. This trend now is sub-
ject to two causes of uncertainty: The different reactions of
different models to the forcing (σModelDiff), as well as appar-
ent trends due to the limited length of the time series. It
has to be noted that the uncertainty due to apparent trends
does not necessarily have to be the same as in the Control-
ensemble, since internal variability could have changed,
too. If we assume that the two causes are uncorrelated, the
uncertainty of the ENSO frequency trend estimate in the
1pct-ensemble can be written as

σ21pct=σ2ModelDiff +σ2ApparentTrends−Δσ2ApparentTrends, ð2Þ

where Δσ2ApparentTrends is the difference between the two
experiments' uncertainty due to apparent trends.

4 | RESULTS

The first empirical orthogonal function (EOF1) shows a
distinct monopole pattern for all the models, which has
its maximum in the eastern central Pacific (Figure S2).
Although the intensity and meridional and zonal extent
vary between the models, it is obvious that the patterns
are similar. The pattern of the first EOF explains 47.64%
of the variance for the Control-ensemble on average, and
49.58% for the 1pct-ensemble. For most of the models the
explained variances are higher, with only a few excep-
tions. We believe that the models with low explained var-
iance also have a less pronounced ENSO. This is
supported by Figure 3, where the explained variances are
depicted against the maximum amplitude of the pattern
for each model. It becomes obvious that most models
show an explained variance between 40 and 70%. Overall,
larger amplitudes seem to be correlated with larger
explained variances. All models with small explained var-
iances (<30%) have amplitudes below 1 K. These models
with a weak ENSO should be treated carefully when used
to analyse changes in ENSO. We therefore conduct our

FIGURE 1 Long time series of PC index for model 29 (IPSL-

CM6A-LR), based on first 340 years of piControl simulation.

Different periods of 120 years are shaded in colours [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 2 Time series of occurrences of EN like months

(within a 30-year window). Calculated based on the 120-year

subsets of the time series shaded in Figure 1. Model 29 (IPSL-

CM6A-LR). Straight lines show linear fits [Colour figure can be

viewed at wileyonlinelibrary.com]
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analysis twice, once for the entire ensemble, once with a
reduced ensemble. In the reduced ensemble we excluded
all models that have less than 40% explained variance in
their EOF1 of the piControl experiment (models numbers
3, 12, 20, 27, 28, 30, 33, 34, 35, and 38, as in Table S1).
The EOF1 patterns for all ensemble members and both
ensembles can be found in Figures S2 and S3.

If one compares the patterns of the piControl experi-
ment to the 1pctCO2 experiment, it becomes obvious that
the patterns do not change by much, in fact the pattern
correlation is 0.97 on average (0.99 when excluding the
10 models mentioned above). The high pattern correla-
tion suggests that the ENSO pattern does not change
much under increased CO2, so that the trend-variability
estimated from the Control-ensemble can be transferred
to the 1pct-ensemble. For some models, the EOF spatial
pattern seems to change more than for others. This is
consistent with the literature suggesting that ENSO
might change to a more central Pacific than eastern
Pacific pattern (e.g., Yeh et al., 2009), although Xu et al.
(2017) find poor model consensus on this topic.

As a measure of ENSO frequency we use the number
of occurrences of El Niño-like and La Niña-like months
within a moving 30-year time window (=30 yearly
events). The average number of occurrences over all
30-year-windows for each model is depicted in Figure 4.
It seems as if in panel (b), showing the 1pct-ensemble,
the number of El Niños (ENs) and La Niñas (LNs) is bet-
ter correlated. This shows that there are indeed changes
in ENSO frequency under forcing for some models. The

changes seem to be correlated, since models that predict
more frequent EN also predict more frequent
LN. However, this picture is strongly dominated by only
three models (30, 21, 23). If they are removed the vari-
ability cloud looks similar to the control experiment.

To analyse the mean change in the frequency of EN
and LN events, we fit regression lines to the time series of
occurrences for each member (see section 3.2). The
ensemble mean of the slopes of the regression lines can
be interpreted as a measure for the mean change of
ENSO frequency in that ensemble. Figures 5 and 6 show
the time series of occurrences of EN and LN, respectively,
for the 1pctCO2 experiment for two randomly chosen
ensemble members and the ensemble mean. This linear
trend is expressed as the gradient in events per 30-year-
window/month. To convert this into a more convenient
and intuitive measure for the change in ENSO frequency,
we multiplied this value by 120 months, which gives the
change in the number of occurrences per 30-year-window
during one decade. If there are x EN-like months within
the 30-year-window centred at time t and the trend was
2, then there are x + 2 EN-like months within the
30-year-window centred at t + 10 years. The trends for all
models are depicted in Figure 7. It can be seen that the
different models yield quite different results. Because the
different models have a different mean ENSO frequency
(see Figure 4), one might argue that it is more informa-
tive to look at the relative change in events instead of the
absolute change. This is depicted in Figure 8. It becomes
obvious that the difference is marginal.

FIGURE 3 Explained variance against maximum amplitude of the EOF1 pattern for each member of the two ensembles: (a) the

Control-ensemble, (b) the 1pct-ensemble. Numbers in panels (a, b) correspond to models as in Table S1. Models excluded for the reduced

ensemble are shown as crosses [Colour figure can be viewed at wileyonlinelibrary.com]
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The results for the entire ensemble are summarized
in Table 1. Table 2 shows the same results for the reduced
ensemble. As described earlier we would expect no
change at all in the control climate due to a lack of forc-
ing. We see from the Control-ensemble that in the
ensemble average there is a slight decrease of both El
Niño and La Niña frequency, although it is still quite
close to the expected trend of zero with a change of
−0.15 ± 0.36 and −0.25 ± 0.37 30-yearly events per
decade for EN and LN, respectively (mean m ± standard
error σ=

ffiffiffiffi
N

p
, where N is the number of models; see

Table 1). The small trend that we do detect is due to the
finite size of the ensemble (so the apparent trends of indi-
vidual members are not averaged out entirely). Also, the
standard deviations are relatively large with 2.3 and 2.4
30-yearly events per decade, which is one order of magni-
tude bigger than the mean trend itself. This is therefore
the uncertainty that stems from only using 150-year time
series for the analysis. The mean over the 1pct-ensemble
on the other hand shows a slight increase in frequency
with 0.70± 0.47 and 0.13± 0.40 more 30-yearly events per
decade for EN and LN, respectively. The standard devia-
tions are 3.0 and 2.6 30-yearly events per decade, there-
fore they are again one order of magnitude bigger than
the mean change itself.

The results for the reduced ensemble look very similar,
although with a slight reduction in all mean values but a
bigger standard error: We find a change of −0.34 ± 0.42
and −0.30 ± 0.42 in EN and LN frequency in the Control-

FIGURE 4 Average number of El Niño/La Niña-like months for each member of the two ensembles: (a) the Control-ensemble, (b) the

1pct-ensemble. Numbers in panels (a, b) correspond to models as in Table S1. Models excluded for the reduced ensemble are shown as

crosses [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Time series of occurrences of EN like months

(within a 30-year window) for the 1pct-ensemble. Blue: model

39 (NorCPM1), green: model 42 (SAM0-UNICON), red: ensemble

mean. Straight lines show linear fits [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 6 Time series of occurrences of LN like months

(within a 30-year window) for the 1pct-ensemble. Blue: model

39 (NorCPM1), green: model 42 (SAM0-UNICON), red: ensemble

mean. Straight lines show linear fits [Colour figure can be viewed

at wileyonlinelibrary.com]
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FIGURE 7 Linear trend in El Niño/La Niña-like months for each member of the two ensembles: (a) the Control-ensemble, (b) the 1pct-

ensemble. The unit has been transformed from gradient in (occurrences per 30-year-window/month) into the more intuitive measure of

additional events per 30-year-window in 10 years by multiplying the gradient by 120 months. A value of 0.5 means that there will be half an

additional event per 30-year-window in 10 years. Numbers in panels (a, b) correspond to models as in Table S1 [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 8 Relative linear trend in El Niño/La Niña-like months for each member of the two ensembles: (a) the Control-ensemble,

(b) the 1pct-ensemble. Absolute numbers of occurrences in EN/LN have been divided by the mean value of the respective models, to create a

time series of relative number of occurrences before calculating the trends. Numbers in panels (a, b) correspond to models as in Table S1

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Means (m) and standard

deviations (σ) of predicted changes in

occurrences of El Niños and La Niñas

(units are #/month*120 months)

El Niños La Niñas

m± σ=
ffiffiffiffiffi
N

p
σ m± σ=

ffiffiffiffiffi
N

p
σ

piControl −0.1544 ± 0.3569 2.3403 −0.2488 ± 0.3685 2.4167

1pct 0.6974 ± 0.4671 3.0627 0.1341 ± 0.3962 2.5978
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ensemble. In the 1pct-ensemble the trends are 0.57 ± 0.53
and 0.17 ± 0.44 for EN and LN, respectively.

5 | DISCUSSION AND
CONCLUSION

We hypothesise that natural variability is too big (or the
trend too small) to reliably detect a trend in ENSO fre-
quency for the nearer future (e.g., 150 years) in a scenario
with reasonable changes in CO2 concentration. From the
trends presented in section 4 (Tables 1 and 2), it seems like
there is a slight increase in El Niños and La Niñas in the
future scenario. The question is, however, how important
this small change is, considering the large uncertainty. We
want to answer the question if the large uncertainties can
be reduced to improve the estimate of ENSO frequency
trends. This would be the case if the uncertainty in the
forced model is dominated by σModelDiff because this can
be reduced by improving the models. From Tables 1 and 2
one can see that the standard deviation in the forced
ensembles is big (compared to the mean change). How-
ever, it is also big in the unforced ensembles. We would
expect that the standard deviation of the forced ensembles
are increased compared to the unforced ensembles, due to
the uncertainty introduced by model differences (see also
Equation (2)). The increase is relatively small though,
which can be seen to imply that the uncertainty due to
apparent trends dominates and the uncertainty due to
model differences plays a subordinate role.

We now want to quantify these uncertainties. Since
there is no way to calculate σ2ModelDiff or Δσ2ApparentTrends
directly, assumptions have to be made. If we assume for a
moment that the natural variability of ENSO does not
change under climate change, and therefore the uncer-
tainty due to apparent trends stays the same
(Δσ2ApparentTrends=0, and still under the assumptions that
the uncertainties are uncorrelated), we get an estimate of
the remaining uncertainty, which is caused by different
reactions of the models to the forcing,

σ2ModelDiff =σ21pct−σ2ApparentTrends=σ21pct−σ2Control: ð3Þ

For the entire ensemble, the resulting standard devia-
tions due to model differences are calculated as

σModelDiff ENð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:06272−2:34032

p
=1:9756, ð4Þ

σModelDiff LNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:59782−2:41672

p
=0:9529: ð5Þ

The uncertainty caused by model differences is still
one order of magnitude larger than the mean changes,
but it is also smaller than the uncertainty due to apparent
trends (σControl = σApparentTrends). This means that the
greater part of the uncertainty actually stems from appar-
ent trends and can therefore not be reduced. The same
conclusion holds for the reduced ensemble, where
σModelDiff(EN) = 1.7802 and σModelDiff(LN) = 0.6576.

Obviously, the assumption made is a very strict one.
It is very well possible that the natural variability of the
system changes, so that the apparent trends and the
resulting uncertainty change. We want to estimate by
how much the uncertainty due to apparent trends could
reduce before the conclusion would no longer be valid
because it no longer dominates. Therefore, we now allow
Δσ2ApparentTrends to be positive, which represents a reduc-
tion of σ2ApparentTrends in the future climate. We focus only
on the case where σ2ApparentTrends is reduced because this
would potentially invalidate our conclusion. Our conclu-
sion would only change if (σ2ApparentTrends−Δσ2ApparentTrends)
does not dominate σ21pct anymore, and therefore is of the
same size as σ2ModelDiff or smaller. This is the case, when
(σ2ApparentTrends−Δσ2ApparentTrends) makes up less than half
of σ21pct. The tipping point can therefore be calculated as

1
2
σ21pct=σ2ApparentTrends−Δσ2ApparentTrends, ð6Þ

Δσ2ApparentTrends = σ2ApparentTrends−
1
2
σ21pct, ð7Þ

=σ2Control−
1
2
σ21pct: ð8Þ

For EN this means that σ2ApparentTrends has to be
reduced by 0.7869, which means a decrease of 14.4%. For
LN the change would even have to be 2.4662, which is
42.2% of the present value. In the reduced ensemble, the
values are 23.3% and 30.2% for EN and LN, respectively.
These numbers are also a little bit sensitive to the chosen
moving-window, but the results are in general

TABLE 2 Means (m) and standard

deviations (σ) of predicted changes in

occurrences of El Niños and La Niñas

(units are #/month*120 months).

Reduced ensemble

El Niños La Niñas

m± σ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N reduced

p
σ m± σ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N reduced

p
σ

piControl −0.3441 ± 0.424 2.4359 −0.299 ± 0.424 2.4358

1pct 0.5716 ± 0.5252 3.0171 0.1748 ± 0.4392 2.523
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agreement. According to Weatherhead et al. (1998) the
uncertainty introduced by a time series of limited length
(σ2ApparentTrends in our case) is dependent on the magnitude
and the autocorrelation of the noise in the data of a given
length. This means that for σ2ApparentTrends to decrease sig-
nificantly, either the magnitude and/or the autocorrela-
tion of the noise in the time series of occurrences of EN
and LN have to decrease significantly. While it is difficult
to say how much change is likely to happen, this analysis
gives an idea of the problem. The changes needed to
invalidate our conclusion are relatively big for the LN
case, which indicates that it is very difficult to predict if
LN frequency changes in a future scenario. For the EN
cases the picture is not so clear, changes to the natural
variability do not have to be so big to change our conclu-
sion. Nevertheless, even if the uncertainty due to appar-
ent trends would not dominate anymore, it would still be
responsible for a large part of the uncertainty, severely
limiting the scope for improving EN frequency prediction
by model improvements.

A major goal of current research is to predict how
ENSO behaviour will change under a changing climate.
In this study, we focused on the prediction of ENSO
frequency changes for the nearer future. For this pur-
pose, the 43-member CMIP6 1pct-ensemble and
Control-ensemble were analysed. Uncertainties about
the future change of ENSO frequency arise because
ENSO is a phenomenon with high internal variability
and the time series are of limited length so that appar-
ent trends can appear. We assumed that the uncer-
tainties stemming from apparent trends and different
model reactions are uncorrelated. Then, we could use
150 years of the piControl simulations to find how big
the uncertainty caused by these apparent trends is, and
we could subtract this result from the result for the
1pct-ensemble, to find the uncertainty caused by differ-
ent model reactions. We can conclude that, unless the
uncertainty due to apparent trends reduces by more
than 14.4% (23.3% in the reduced ensemble) in the
forced experiment relative to piControl, it dominates
the uncertainty of the ENSO frequency trend estimate.
This means that the major part of the uncertainty is
irreducible, which makes it very difficult to estimate
changes in ENSO frequency on a timescale of
150 years.
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