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A B S T R A C T

The overarching goal of this dissertation is to advance the understanding of uncer-
tainties in modelling the distribution of tropical relative humidity. Climate models
struggle to consistently simulate this distribution and its change with warming,
which introduces uncertainty in the present-day radiation budget as well as the
projected future warming. The sources of inter-model differences in the humid-
ity distribution are, however, poorly understood. In conventional climate models,
many processes involved in establishing the humidity distribution are not resolved,
but instead crudely represented by parameterizations. These processes include ver-
tical mixing by convection, small-scale turbulent mixing and cloud microphysical
processes. As they are all coupled through the convective parameterization, it is
difficult to relate humidity differences across models to physical processes. This
changes with global storm-resolving models (GSRMs), the latest generation of
global models. They are run at much higher horizontal resolution than conven-
tional models, which allows to explicitly simulate deep convection rather than
parameterizing it.

Whether resolving deep convection leads to a reduction of humidity differences
across models is not yet known. In my first study, I investigate this based on a
first 40-day comparison of nine atmospheric GSRMs. I find that, in the free tro-
posphere, the model spread in tropical mean relative humidity is approximately
halved compared to conventional atmospheric models, indicating that explicitly
simulating deep convection leads to a more consistent representation of relative
humidity. However, I also show that the remaining differences translate into a
significant uncertainty of the clear-sky radiation budget. By examining humidity
differences in different tropical moisture regimes, I find that comparably modest
differences in dry regimes have a similar clear-sky radiative impact as larger dif-
ferences in moist regimes. Although humidity differences are largest in the upper
troposphere, I identify the tropical lower and mid free troposphere as the altitude
region where a reduction of differences would be most beneficial from a radiative
perspective. Particularly in these altitudes, a better understanding of the processes
controlling the humidity differences is needed.

In my second study, I therefore aim to narrow down the sources of uncertain-
ties in modelling the distribution of tropical relative humidity with GSRMs. In
seven 45-day experiments I examine how much the relative humidity simulated
by a GSRM is affected by changes in model resolution and in the paramterizations
of microphysics and turbulence. To investigate the physical mechanisms behind
the changes in humidity, I perform trajectory-based reconstructions of the relative
humidity distribution. As a null-hypothesis I use the last-saturation paradigm, ac-
cording to which the water vapor content of an air parcel only depends on the
temperature it had when it was last saturated. I find that mid-tropospheric rel-
ative humidity is more sensitive to changes in parameterizations than in model
resolution, suggesting that model physics represent a major source of humidity
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differences across GSRMs. The relative humidity in moist tropical regions is dis-
proportionately sensitive to the strength of vertical turbulent mixing in the inner
tropics, which impacts relative humidity through its effect on last-saturation tem-
perature rather than its effect on the evolution of humidity since last-saturation.
The humidity of the dry regions depends on the pathways of exchange with the
extra-tropics. More research is needed to understand these pathways, and the un-
certainties in modelling them, in order to build trust in the simulated humidity
and its change with warming in the radiatively important dry regions.
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Z U S A M M E N FA S S U N G

Das übergeordnete Ziel dieser Dissertation ist es, ein besseres Verständnis der
Unsicherheiten bei der Modellierung der Verteilung der relativen Feuchte in den
Tropen zu erlangen. Klimamodelle stellen diese Verteilung und ihre Veränderung
im Zuge einer Erwärmung nicht konsistent dar, was zu Unsicherheiten im Strah-
lungsbudget sowie in der prognostizierten Erwärmung führt. Die Ursachen für
Modellunterschiede in der Feuchteverteilung sind jedoch nicht ausreichend ver-
standen. In konventionellen Modellen sind viele, für die Feuchteverteilung rel-
evante, Prozesse nicht aufgelöst, sondern werden nur vereinfacht in Form von
Parametrisierungen dargestellt. Dazu gehören vertikale Mischung durch Konvek-
tion, kleinskalige turbulente Mischung sowie mikrophysikalische Prozesse. Da sie
alle durch die Konvektionsparametrisierung gekoppelt sind, ist es schwierig, die
Modellunterschiede in der Feuchte mit physikalischen Prozessen in Verbindung
zu setzen. Dies ändert sich mit globalen sturmauflösenden Modellen (GSRMs),
der neuesten Generation globaler Modelle. Diese verfügen über eine viel höhere
horizontale Auflösung als herkömmliche Modelle und sind dadurch in der Lage
hohe Konvektion explizit zu simulieren, statt sie zu parametrisieren.

Ob das Auflösen hoher Konvektion zu einer Verringerung der Feuchteunter-
schiede zwischen Modellen führt, ist noch nicht bekannt. In meiner ersten Studie
untersuche ich dies basierend auf einem ersten 40-tägigen Vergleich von neun
atmosphärischen GSRMs. Ich zeige, dass die Modellstreuung in der gemittelten
tropischen relativen Feuchte im Vergleich zu herkömmlichen Klimamodellen in
der freien Troposphäre etwa halbiert ist. Dies deutet darauf hin, dass das Auflösen
tiefer Konvektion zu einer konsistenteren Darstellung der relativen Feuchte führt.
Ich zeige jedoch auch, dass die verbleibenden Feuchteunterschiede zu einer erhe-
blichen Unsicherheit des Strahlungsbudges bei wolkenfreier Atmosphäre führen.
Eine Untersuchung der Modellunterschiede in verschiedenen Feuchte-Regimen
der Tropen zeigt, dass vergleichsweise kleine Feuchteunterschiede in trockenen
Regimen bei wolkenfreier Atmosphäre eine ähnliche Strahlungswirkung haben
wie größere Unterschiede in feuchten Regimen. Außerdem zeige ich, dass, ob-
wohl Feuchtesunterschiede in der oberen Troposphäre am größten sind, eine Ver-
ringerung der Unterschiede in der unteren und mittleren freien Troposphäre aus
Strahlungssicht am wirksamsten wäre. Insbesondere in diesen Höhen ist deshalb
ein besseres Verständnis derjenigen Prozesse erforderlich, die die Feuchteunter-
schiede verursachen.

In meiner zweiten Studie versuche ich deshalb, die Unsicherheitsquellen bei
der Modellierung der tropischen Feuchteverteilung mit GSRMs einzugrenzen. In
sieben 45-tägigen Experimenten untersuche ich, wie stark die von einem GSRM
simulierte relative Feuchte durch Änderungen in der Modellformulierung beein-
flusst wird. Diese Änderungen betreffen sowohl die Modellauflösung als auch die
Parametrisierungen von Mikrophysik und Turbulenz, die auf sturmauflösenden
Skalen bestehen bleiben. Um zu untersuchen welche physikalischen Mechanismen
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für die Feuchteänderungen verantwortlich sind, rekonstruiere ich die Feuchtev-
erteilung basierend auf Rückwärts-Trajektorien. Als Nullhypothese nutze ich dabei
das Modell der letzten Sättigung, demzufolge der Wasserdampfgehalt eines Luft-
pakets nur von der Temperatur bei der letzten Sättigung abhängt. Ich zeige, dass
die relative Luftfeuchtigkeit in der mittleren Troposphäre stärker auf Änderungen
der Parametrisierungen als auf Änderungen der Modellauflösung reagiert. Dies
deutet darauf hin, dass die Modellphysik eine Hauptquelle für die Feuchteunter-
schiede zwischen GSRMs darstellt. In feuchten tropischen Regionen ist die relative
Feuchte besonders empfindlich gegenüber der Stärke der vertikalen turbulenten
Mischung in den inneren Tropen. Diese beeinflusst die relative Feuchte durch Än-
derungen in der Sättigungstemperatur, nicht durch Änderungen der Feuchteen-
twicklung nach der letzten Sättigung. In trockenen Regionen hängt die relative
Feuchte von den Austauschpfaden mit den Außertropen ab. Weitere Forschung ist
nötig um diese Austauschpfade, und die Unsicherheiten bei deren Modellierung,
zu verstehen, und so die Belastbarkeit der simulierten Feuchte und deren Än-
derung bei Erwärmung zu erhöhen.
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Part I

U N I F Y I N G E S S AY





1
M O T I VAT I O N : R E D U C I N G T H E U N C E RTA I N T Y I N
M O D E L L I N G T R O P I C A L H U M I D I T Y

Earth's climate is strongly shaped by water vapor in the atmosphere. Besides its
influence on atmospheric circulations through the release of latent heat, water
vapor plays a key role in establishing the radiative balance of the planet – both
directly and indirectly through the formation of clouds. Climate models, however,
struggle to consistently simulate the atmosphere's water vapor distribution. In
this thesis, I investigate the physical mechanisms underlying the model spread
in humidity and the uncertainty this spread introduces in the clear-sky radiation
budget.

Water vapor is the most important greenhouse gas in our atmosphere. Like all
greenhouse gases it interacts with the longwave thermal radiation emitted from
the Earth's surface. As a consequence, in those spectral regions of the emission
spectrum that are dominated by water vapor absorption, the radiation emitted to
space originates from within the troposphere rather than the surface. Since the
troposphere generally has a lower temperature than the surface, this effectively
reduces the total outgoing longwave radiation (OLR).

OLR is particularly sensitive to changes in atmospheric relative humidity
(e.g. Ingram, 2010), which denotes the ratio of the actual water vapor content
to its thermodynamic equilibrium value. The latter is an increasing function of
temperature. In the water-vapor-dominated parts of the spectrum, the absorption
by water vapor determines the altitude layer from which radiation is emitted to
space. The temperature of this layer sets the thermal emission. An increase in
atmospheric temperature increases the emission and hence OLR. However, if the
temperature increase is accompanied by an increase in water vapor concentration,
the emission layer shifts to higher levels of lower temperature, which in turn re-
duces OLR. If the atmospheric temperature profile and water vapor concentration
jointly increase or decrease such that the relative humidity stays unchanged, their
competing effects on OLR largely compensate. Therefore, the relative humidity
is a valuable proxy that measures the combined effect of temperature and water
vapor changes on OLR.

Relative humidity does not only influence the instantaneous clear-sky radiation
budget, but also the clear-sky climate feedback. The feedback determines the
amount of global surface warming needed to restore radiative equilibrium after
a radiative forcing such as an increase in greenhouse gas concentrations. There
is a wide agreement that, as the Earth's surface warms, the vertical thermal
structure of the atmosphere (in particular the lapse-rate, i.e. the temperature
decrease with height) and the water vapor concentration of the atmosphere will
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4 motivation

respond in such a way that relative humidity stays roughly unchanged (e.g.
Colman and Soden, 2021; Held and Soden, 2000). Compared to a basic Planck
response, which describes a vertically uniform warming at constant absolute
humidity, the non-uniform warming at constant relative humidity reduces the
efficiency at which the Earth can cool to space and therefore requires a stronger
surface warming to restore radiative equilibrium. This represents a positive
feedback, which is often expressed as the combined water-vapor–lapse-rate
feedback. Together with the Planck feedback the water-vapor–lapse-rate feed-
back describes the Earth's clear-sky response to a radiative forcing to a large extent.

Although there is agreement that the water-vapor–lapse-rate feedback is posi-
tive, its exact strength depends sensitively on the distribution of free-tropospheric
relative humidity and its response to warming. On the one hand, even small
changes of relative humidity with warming can significantly alter the clear-sky
feedback by changing the partial cancellation between water-vapor and lapse-rate
feedbacks (Bony et al., 2006). Such changes in relative humidity are expected to
occur particularly in the tropics (O’Gorman and Muller, 2010; Vial et al., 2013). On
the other hand, recent studies using 1D radiative-convective equilibrium models
show that the tropical clear-sky feedback is also influenced by the present-day
relative humidity (Bourdin et al., 2021; Kluft et al., 2019; McKim et al., 2021).
The mechanism behind this is a narrowing of the water vapor window, which
denotes the region of the emission spectrum in which radiation emitted from
the Earth's surface can escape to space because absorption by water vapor is
weak. This narrowing occurs at high surface temperatures characteristic for the
tropics and makes the feedback dependent on the present-day relative humidity,
even if it is assumed to stay unchanged under warming. Due to the mentioned
implications for the clear-sky feedback, it is crucial that climate models correctly
capture atmospheric relative humidity and its evolution under warming for them
to reliably project future warming.

The models that are currently most widely used to study the temperature
response to a given radiative forcing are General Circulation Models (GCMs;
IPCC, 2021). These models depict the atmosphere using a three-dimensional grid
with a horizontal grid spacing that is typically on the order of 100 km. However,
many processes relevant for climate act on scales smaller than a GCM grid cell.
These processes are parameterized. That is, they are represented in a simplified
manner, by relating their temporally and spatially averaged effect to resolved
(large-scale) variables using semi-empirical relations. An important parameterized
process in GCMs is moist convection, which accounts for most of the vertical
transport of heat, momentum, and moisture in the tropics. Other parameterized
processes include turbulent mixing and cloud microphysics. Parameterizations, in
particular the parameterization of deep convective clouds, are known to represent
a major uncertainty in GCMs (Stevens and Bony, 2013a) and are commonly used
to tune the models to match the observed state of the atmosphere (Mauritsen
et al., 2012).
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All of the parameterized processes mentioned above are potentially important
for the tropospheric humidity distribution, which is determined by advection
of water vapor on all scales as well as cloud microphysical processes, such as
evaporation of cloud particles (liquid or ice) and precipitation (e.g. Emanuel
and Pierrehumbert, 1996). Despite the uncertainties associated with these pa-
rameterizations, GCMs to a first approximation capture the large-scale humidity
distribution in the tropics because it is mainly driven by the large-scale circulation,
which GCMs are able to resolve (e.g. Dessler and Sherwood, 2000; Sherwood,
1996). Nevertheless, there is a considerable spread in relative humidity as well
as in its change with warming across GCMs (e.g. Po-Chedley et al., 2019). These
differences in the relative humidity response to warming control the current
spread in model-based estimates of the tropical water-vapor–lapse-rate feedback,
which accounts for a large part of the spread in the global clear-sky feedback
(Po-Chedley et al., 2018; Vial et al., 2013). Therefore, it is important to reduce the
uncertainty in tropical relative humidity and its change with warming. However,
a detailed understanding of the underlying physical mechanisms is difficult in
GCMs due to the number of parameterized processes, and due to the fact that
they are all coupled through the convective parameterization.

One approach to reduce the uncertainty associated with parameterizations, is
the development of global storm-resolving models (GSRMs), also referred to as
global cloud-resolving or convection-permitting models (Satoh et al., 2019). These
models are run at horizontal grid spacings on the order of a few kilometers, and
are therefore capable of explicitly resolving the vertical transport associated with
deep convection. Microphysical processes and turbulent mixing still need to be
parameterized in GSRMs. However, unlike in models with a convective parameter-
ization, they are now directly linked to the resolved circulation. Therefore, these
models promise new insights into the importance of these processes, particularly
regarding the tropical humidity distribution as investigated in this work.

GSRMs are still in an early phase of development. Running global simulations
on the kilometer-scale comes at a high computational cost and has therefore only
become feasible in recent years. Global storm-resolving simulations are therefore
currently limited to rather short time periods of weeks to months. Since the first
GSRM was developed about 18 years ago (Tomita and Satoh, 2004), several other
modeling groups have followed. This enabled a first, 40-day intercomparison
of GSRMs in 2019, an initiative called DYnamics of the Atmospheric general
circulation Modeled On Nonhydrostatic Domains (DYAMOND; Stevens et al.,
2019).

In the first study encompassed in this thesis I make use of the DYAMOND
multi-model ensemble to assess for the first time whether the spread in tropical
relative humidity is reduced across GSRMs compared to GCMs. I quantify how
much relative humidity differs within the DYAMOND ensemble and assess the
relevance of these differences by calculating their effect on the clear-sky radiation
budget using a radiative transfer model. I show that the inter-model spread in
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tropical relative humidity is indeed reduced in GSRMs compared to GCMs, but
that it still translates into a non-negligible spread in tropical mean clear-sky OLR.

To enable a further reduction of the humidity spread across GSRMs, its origins
must be understood. In my second study, I therefore investigate the sources
of uncertainties in modelling the distribution of tropical relative humidity. To
this end, I examine how much and through which physical mechanisms the
relative humidity in a GSRM is affected by changes in model resolution and the
parameterizations of microphysics and turbulence. To understand the physical
mechanisms, I perform trajectory-based reconstructions of relative humidity
based on the so-called last-saturation paradigm, which claims that the water vapor
content of an air parcel only depends on the temperature it had when it was last
saturated. My results suggest that differences in parameterizations, rather than in
model resolution, drive the humidity spread across GSRMs, mainly by changing
the statistics of last-saturation.

This essay is structured as follows. Chapter 2 provides more background on how
relative humidity affects clear-sky OLR and the climate feedback, as well as on
the last-saturation paradigm. Chapter 3 briefly introduces several accompanying
projects dealing with observations of humidity and clouds in the tropics, which I
worked on within my PhD term. In Chapters 4 and 5 I describe the key methods
and results of the two studies I conducted as part of my dissertation, which are
summarized and followed up by my conclusions in Chapter 6.



2
B A C K G R O U N D : T H E T R O P I C A L H U M I D I T Y D I S T R I B U T I O N
A N D I T S I M P O RTA N C E F O R R A D I AT I O N

This chapter provides background on the distribution of humidity in the tropical
atmosphere as well as its importance for the clear-sky radiation budget and climate
feedback. In my first study, I use the radiative impact as a measure of how relevant
the identified humidity differences across GSRMs are. Furthermore, this chapter
introduces the last-saturation paradigm, a simple theory of what determines the
tropical relative humidity distribution. In my second study, I use this paradigm as
a tool to understand the humidity differences between storm-resolving simulations
that I assessed in my first study.

2.1 basic properties of the atmospheric humidity distribution

Despite its profound climatic impact, water accounts for only 2.5 % of the total
mass of the atmosphere. Almost all of this water (about 99.5 %) is present in the
form of vapor (Stevens and Bony, 2013b). In the presence of liquid water, such as
cloud droplets, the partial pressure of water vapor in a given air parcel represents a
balance between evaporation of liquid and condensation of vapor (the same is true
for the presence of ice, where the balance is between sublimation and resublima-
tion). When the two rates are equal, the water vapor pressure of the parcel is said
to be saturated (although "equilibrated" would be a more appropriate term). The
equilibrium or saturation water vapor pressure e∗ only depends on temperature T,
and is governed by the Clausius-Clapeyron differential equation:

de∗

dT
=

L e∗

RvT2 , (1)

where L is the latent heat of vaporization (or sublimation) and Rv is the gas con-
stant for water vapor. As soon as the actual water vapor pressure e of the parcel
reaches the equilibrium vapor pressure e∗, any further addition of water vapor
leads to condensation, thereby bringing the vapor pressure back to equilibrium.
The condensed water either remains suspended in the air as cloud droplets or
aggregates and falls out as precipitation.

Equation 1 implies a roughly exponential increase of e∗ with T. At 300 K (a typ-
ical temperature of the tropical surface, Figure 1a) e∗ is 3664 Pa. At the freezing
point e∗ (over water) decreases to 614 Pa, whereas at 200 K (a typical temperature
of the tropical tropopause) e∗ (over ice) is only 0.3 Pa. This strong thermodynamic
constraint on atmospheric humidity is reflected in tropical humidity profiles sim-
ulated by a GSRM (Figure 1b). Both tropical mean specific humidity q and its
saturation value q∗ decrease roughly exponentially by four orders of magnitude
between the surface and the tropopause. Specific humidity denotes the mass of
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Figure 1: Tropical mean vertical profiles of (a) temperature T, (b) specific humidity q and
saturation specific humidity q∗, and (c) relative humidity R, averaged over a
45-day (27 June to 11 August) storm-resolving simulation with the ICOsahedral
Nonhydrostatic model (ICON).

water vapor per unit mass of moist air and relates to the water vapor pressure e as

q =

Mw
Md

e

p − (1 − Mw
Md

)e
≈ Mw

Md

e
p

, (2)

where p is the partial pressure of dry air and Mw and Md are the molar masses of
water and dry air, respectively.

The Clausius-Clapeyron relation only provides a maximum value for the
atmospheric water vapor concentration. Locally, the atmosphere can be highly
subsaturated. The degree of subsaturation is expressed by the relative humidity R,
which is defined as the ratio of the actual water vapor pressure e to its equilibrium
value e∗ and is commonly expressed in percent. The tropical mean vertical profile
of R is characterized by large values in the boundary layer, a minimum in the
mid troposphere and another maximum in the upper troposphere (Figure 1c). R
also strongly varies regionally within the tropics. Zonal mean R is largest in the
equatorial region, where air rises in the upward branch of the Hadley circulation
(Figure 2). The subsiding branches of the circulation in the subtropics, on the other
hand, are characterized by minima in zonal mean R (see also Section 2.3 for an
explanation of the dryness of these regions). Locally in these subsidence regions
R is frequently below a few percent (Spencer and Braswell, 1997). Thus, there are
large regional variations that are not explained by the Clausius-Clapeyron relation.
These are important because, as explained in the following section, the radiative
impact of water vapor is controlled by relative rather than by absolute humidity.
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Figure 2: Zonal mean distribution of relative humidity R as a function of latitude and
height in a 45-day (27 June to 11 August) storm-resolving simulation with the
ICOsahedral Nonhydrostatic model (ICON).

2.2 importance of relative humidity for the radiation budget

2.2.1 Radiative properties of water vapor

Water vapor has a strong impact on the Earth's outgoing longwave radiation (OLR).
Absorption by water vapor is responsible for about 60% of the total clear-sky
greenhouse effect in the thermal infrared (Kiehl and Trenberth, 1997) and reduces
the clear-sky OLR (OLRcs) in the tropics by about 100 W m−2 compared to an
atmosphere without water vapor (Pierrehumbert et al., 2007).

The infrared spectrum of water vapor is characterized by distinct absorption
bands (e.g. Goody and Robinson, 1951) consisting of thousands of densely packed
narrow absorption lines, which correspond to rotational and vibrational modes
of molecular excitation. Regions with weak absorption between such bands are
called window regions. Within the Earth's emission spectrum there is especially
one broad region where water vapor is optically thin, known as the water vapor
window, which is located at wavenumbers between about 800 cm−1 to 1200 cm−1

(Petty, 2006).

Like for most greenhouse gases, the effect of water vapor on OLRcs is ap-
proximately logarithmic in specific humidity (e.g. Huang and Shahabadi, 2014;
Pierrehumbert, 1999). Due to this logarithmic dependence the radiative impact
is determined by fractional rather than absolute changes in water vapor con-
centration. Small absolute changes in water vapor concentration in the upper
troposphere can therefore have a strong radiative impact (e.g. Shine and Sinha,
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1991).

2.2.2 The longwave clear-sky climate feedback

The humidity of the atmosphere does not only affect the present-day radiation
budget, but also the climate feedback. While in my PhD work I focus on the
effect of humidity on the present-day radiation budget, the effect on the feedback
represents another major motivation to reduce the uncertainty in model-simulated
humidity. Therefore, I briefly introduce the concept of the climate feedback,
focusing on the longwave clear-sky component, which is directly affected by
atmospheric humidity.

In equilibrium the net incoming solar radiation equals the Earth's outgoing long-
wave radiation such that the net radiation balance at the top of the atmosphere N
equals zero. If an external radiative perturbation or forcing is applied to the cli-
mate system, such as an increase in greenhouse gas concentrations, N changes by
an amount ∆F. In response to this imbalance the surface temperature Ts changes
in order to restore equilibrium. Simultaneously, atmospheric and surface processes
react in a way that in turn affects N, either by changing the outgoing longwave ra-
diation or the reflected shortwave radiation. Assuming that the effect of all these
processes is related to Ts, one can write:

∆N = ∆F + λ∆Ts, (3)

where λ = dN
dTs

is the climate feedback parameter. The temperature change
required to reach a new equilibrium (i.e. ∆N = 0) for a given forcing ∆F is then
given by ∆Teq

s = −∆F/λ.

The total feedback parameter λ can be divided into several components. The
most fundamental feedback is the Planck feedback. It describes the change in
outgoing longwave radiation that results from a vertically uniform temperature
change only: in response to a radiation imbalance the temperature of the Earth's
surface and the overlying atmosphere increase until a new radiative equilibrium is
reached. This represents a strong negative (stabilizing) feedback. In the real atmo-
sphere, however, deviations from this basic Planck response cause additional feed-
backs. The two most important feedbacks acting in the longwave spectral region in
the absence of clouds are the water-vapor and lapse-rate feedbacks. Together with
the Planck feedback they constitute the longwave clear-sky feedback λcs, which is
defined as:

λcs =
d OLRcs

d Ts
. (4)

The water-vapor feedback results from increasing water vapor concentrations
with warming, which leads to an upward shift of the emission height and
thereby diminishes longwave emission compared to the Planck response. In
consequence, a stronger surface warming is required to restore equilibrium,
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making the water-vapor feedback a positive feedback. The lapse-rate feedback
results from a vertically non-uniform warming of the atmosphere. In the tropics
and mid-latitudes the upper troposphere warms faster than the surface, enabling
the Earth to radiate to space more efficiently. The lapse-rate feedback is therefore
negative and partly offsets the positive water vapor feedback. Due to their strong
anti-correlation water vapor and lapse-rate feedbacks are typically considered
jointly as the combined water-vapor–lapse-rate feedback (e.g. Bony et al., 2006;
Soden and Held, 2006).

Apart from the longwave clear-sky feedbacks described here, other important
climate feedbacks are caused by changes in clouds and in surface albedo. I do
not further elaborate on these here because they are not directly affected by
atmospheric humidity.

2.2.3 The partly-Simpsonian nature of the atmosphere and the importance of relative
humidity

Much of the response of OLRcs to changes in surface temperature, atmospheric
temperature structure and water vapor concentration can be understood by
dividing the spectrum of OLRcs into two regions: the optically thin water vapor
window and the optically thick water vapor bands. Within the window, the
radiation emitted to space originates from the Earth’s surface and therefore
depends only on surface temperature according to Planck’s law. In the water
vapor bands, the emitted radiation originates from within the atmosphere, roughly
from the altitude region at which the optical thickness τ reaches a value of 1

at the respective wavenumber (e.g. Petty, 2006). The emission from the water
vapor bands is therefore independent of surface temperature. To first order it only
depends on R (e.g. Nakajima et al., 1992). As shown by Jeevanjee et al., 2021, if
temperature and water vapor concentration jointly change in such a way that R
remains unchanged, the effects induced by changes in thermal emission and by
the shift in emission height cancel almost completely. This behaviour was first
articulated by Simpson, 1928 and has therefore been referred to as Simpsonian
(e.g. Ingram, 2010; Seeley and Jeevanjee, 2021).

The partly-Simpsonian behavior of the atmosphere has important consequences
for OLRcs and in turn for the feedback λcs. One important consequence is the
positive combined water-vapor–lapse-rate feedback. If the atmosphere warms
at roughly constant R, as predicted by climate models and theory (e.g. Held
and Soden, 2000; Romps, 2014), the emission to space changes little within the
water vapor bands. The emission can only increase in the window regions of
the spectrum (e.g. Koll and Cronin, 2018), which strongly reduces the efficiency
at which the Earth emits energy to space compared to the Planck response and
therefore represents a positive feedback.
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The partly-Simpsonian model also explains why small deviations from a
constant R under warming strongly impact λcs. The emission from the water
vapor bands primarily depends on R. Thus, a change of R under warming
allows OLRcs to change in the water vapor bands and thereby strongly amplify
or weaken the feedback compared to a warming at constant R. Since the relation
between OLRcs and R is non-linear, OLRcs is particularly sensitive to changes in
R in the dry tropical subsidence regions (Spencer and Braswell, 1997). To date it is
not known how exactly tropical R will change under warming. GCMs on average
predict a slight reduction of R in the subsidence regions (Sherwood et al., 2010),
which reduces the global water vapor feedback by ∼5 % compared to the feedback
resulting from the assumption of constant R (Soden and Held, 2006). However,
there is a considerable spread in the R response across models, which drives the
current model spread in λcs (Vial et al., 2013).

Another mechanism by which R can affect OLRcs and hence λcs is by closing
the water vapor window, i.e. by increasing the portion of the emission spectrum
that behaves in a Simpsonian manner. The optical thickness in the window region
depends on the water vapor path of the atmosphere. At high surface temperatures
of about 300 K and correspondingly high water vapor concentrations, the optical
thickness sufficiently increases to a level such that a further addition of water
vapor rapidly closes the window (Koll and Cronin, 2018). For a given tropical
temperature profile, variations in R therefore significantly affect the spectral
width of the window (McKim et al., 2021) and hence OLRcs. It has been shown
that due to this mechanism the tropical λcs does not only depend on the R
response to warming, but also on present-day R (Bourdin et al., 2021; Kluft et al.,
2019; McKim et al., 2021).

The R-dependence underlines the importance of the dry tropical subsidence
regions. Not only are they particularly sensitive to changes in R under warming,
but even if R is assumed to stay unchanged, λcs is most negative in these regions
(McKim et al., 2021). Due to their importance in stabilizing Earth’s climate they
have been referred to as the "radiator fins" of the tropics (Pierrehumbert, 1995).

Due to the central role of R in determining OLRcs and λcs, I focus on inter-model
differences in tropial R rather than specific humidity in my PhD work. From the
above, it is clear that the radiative effect of these differences can only be deter-
mined based on the entire distribution of R rather than the tropical mean. The
following section introduces a simple model of how this distribution is established.

2.3 a simple model for the distribution of relative humidity – the

last-saturation paradigm

The processes controlling the humidity distribution in the tropical free tropo-
sphere are complex, as they include advective processes on all scales, ranging
from synoptic-scale over convective to turbulent mixing, as well as advection and
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evaporation of cloud particles and precipitation (Emanuel and Pierrehumbert,
1996). In the last two decades, great progress in understanding the distribution
of free-tropospheric R has been made by implementing the last-saturation or
advection-condensation paradigm (Pierrehumbert et al., 2007). This framework
only considers advection and saturation and thus represents the simplest pos-
sible perspective on how the R distribution is established. In the second study
presented in this thesis, I use the last-saturation paradigm as a null-hypothesis
to investigate the physical mechanisms behind differences in relative humidity
between simulations.

The last-saturation paradigm is based on the assumption that the specific hu-
midity q of an air parcel behaves as a conservative tracer, for which condensation
is the only sink. Under this assumption, the specific humidity of the air parcel is
conserved after the point at which it was last saturated (i.e. after leaving a cloud),
so that the specific humidity at any given target point Rt is equal to the saturation
specific humidity at last saturation q∗ls:

Rt =
qt

q∗t
=

q∗ls
q∗t

≈ e∗(Tls)

e∗(Tt)

pt

pls
, (5)

where the indices t and ls denote the target point and the point of last-saturation,
respectively. Here, R is defined as the ratio of q to its saturation value q∗.
While this definition is less common than that based on water vapor pressure
(see Section 2.1), it is more convenient within the last-saturation framework
because q is a materially conserved quantity. Numerical values yielded by the
two definitions differ by less than 1 %. To obtain the last expression in Equation
5, q is approximated according to Equation 2. According to Equation 5 Rt is
simply the fraction of saturation water vapor pressures e∗ at two temperatures,
multiplied by a pressure ratio. In practice, changes in last-saturation pressure
have a minor impact, which is why for a given target pressure Rt primarily
depends on last-saturation and target temperature. Due to their important role
in setting the humidity distribution within the last-saturation framework, the
atmospheric regions where last-saturation typically occurs are also referred to as
the "source regions" or "origins" of the air arriving in a given target region. The
last-saturation paradigm neglects any processes that could affect an air parcel’s
q after last-saturation. These processes include evaporation or sublimation of
hydrometeors advected with or sedimenting through the air parcel, as well as
mixing with air parcels of different humidity.

The evolution of R during the typical life cycle of a tropical air parcel is
schematically illustrated in Figure 3. In the boundary layer the parcel is supplied
with moisture by evaporation from the surface and therefore has a high R. As
it rises in a convective updraft it cools, which causes R to increase. As soon
as saturation is reached, the q of the parcel decreases due to condensation. At
some altitude level the parcel stops its ascent, detrains from the cloud and moves
through the atmosphere horizontally. During this horizontal advection the air
parcel looses energy by radiative cooling, causing it to gradually subside. While
it subsides the air parcel is compressed and its temperature increases, while it
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Figure 3: Illustration of the typical life of a tropical air parcel and the evolution of its
relative humidity according to the last-saturation paradigm. The air parcel is
depicted as a bucket with a size representing saturation specific humidity q∗,
and a content representing specific humidity q. The fill level of the bucket hence
represents its relative humidity. The last-saturation paradigm assumes that the
specific humidity of the air parcel is conserved after the point of last saturation.

maintains the q it had when it was last saturated. Hence, its R decreases. The
quasi-horizontal transport continues until the parcel is either entrained into
another convective system or it reaches the boundary layer again. This simple
picture already explains how an air parcel can end up with very low R in the free
troposphere.

If the atmospheric circulation and temperature distribution are known, regional
R variations within the tropics can be qualitatively understood from the last-
saturation paradigm. Figure 4 illustrates this based on the mid-tropospheric R
(4 km to 8 km averaged) field from a 25-day global storm-resolving simulation
and corresponding last-saturation statistics obtained from back-trajectories (both
the simulation and the trajectory calculations are described in more detail in
Section 5). To demonstrate how moist and dry tropical regions differ in their
last-saturation statistics, two exemplary target regions are selected: a region of
very high R in the Eastern Equatorial Pacific and a region of very low R in the
Eastern South Atlantic. The last-saturation events associated with the moist region
are located very close to the target region both in the horizontal (Figure 4a) and
in the vertical (Figure 4b). The corresponding parcels have therefore experienced
only a weak subsidence drying since last-saturation or are still saturated. In other
words, regions of high R are located in or close to deep convective or mid-level
clouds, which are concentrated in the Intertropical Convergence Zone (ITCZ). In
contrast, the air parcels associated with the dry target region have been advected
over larger horizontal and vertical distances since last-saturation. During their
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(a)
(b)

Figure 4: Origins of air parcels arriving in two exemplary regions of high and low rela-
tive humidity. (a) Mid-tropospheric (4 km to 8 km vertically averaged) relative
humidity R averaged over a 25-day (17 July to 11 August) period simulated
by the ICON storm-resolving model (shading), as well as number densities of
last-saturation points (contours) associated with two exemplary target regions
(rectangles) of high R (green) and low R (orange). (b) Number densities of
last-saturation points as a function of latitude and height (contours). Rectangles
shaded in green and orange indicate the moist and dry target regions, respec-
tively.

descent from the upper troposphere the parcels warm substantially, resulting in a
low R (Equation 5).

For the dry zone selected in Figure 4, last-saturation events are located both
in the equatorial region and in the extra-tropics. This is not an exception, as
a significant part of the dry subtropical air originates from outside the tropics
(e.g. Roca et al., 2012). Air parcels originating from the inner tropics typically
experience last-saturation when detraining from deep convective clouds in the up-
per troposphere (∼12 km) and subsequently gradually descend across isentropic
surfaces due to radiative cooling (as described above for the tropical air parcel
illustrated in Figure 3). In the extra-tropics, the primary dehydration process is
isentropic mixing: air that is transported from the tropics into mid-latitudes rises
along upward sloping isentropes, saturates there, and then descents back into
the tropics following isentropes (e.g. Galewsky et al., 2005). In both cases, air
subsides undisturbed over a large vertical distance and thereby experiences drying.

To test whether the last-saturation framework quantitatively explains tropical R
variations, a number of studies have implemented it numerically, using large-scale
wind and temperature fields from meteorological analyses to calculate Lagrangian
back-trajectories (e.g. Dessler and Sherwood, 2000; Pierrehumbert and Roca,
1998; Sherwood, 1996). None of these implementations explicitly accounted for
evaporation of hydrometeors or any mixing by motions on scales smaller than
those incorporated in the trajectories. Despite that, they successfully reproduced
the observed large-scale tropical humidity field, typically within an accuracy of
about 10%. This has lead to the conclusion that, if the large-scale atmospheric
circulation and temperature structure are known, any moistening or drying
from microphysical processes or unresolved mixing play a secondary role in
establishing the tropical humidity distribution. This is not to say that these
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processes are unimportant, rather to say that to the extent they are important,
it is through their indirect influence on the atmospheric circulation and the
temperature structure, which ultimately determine the location of last-saturation
events. Moisture sources or sinks caused by these processes after last-saturation
play a secondary role in explaining the large-scale R distribution. It is, however,
less clear whether these sources and sinks might be important when it comes to
explaining more subtle humidity differences between models, in particular when
different parameterizations are used to represent microphycis and turbulence.
This is what I test in my second study.
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O B S E RVAT I O N S O F H U M I D I T Y A N D C L O U D S I N T H E
T R O P I C S ( A C C O M PA N Y I N G P R O J E C T S )

In this chapter I briefly summarize two accompanying projects I pursued during
my PhD term and that resulted in publications or co-authorships, respectively.

3.1 an observational climate data record of free-tropospheric

humidity

As described in Section 2.2, the emission to space within the spectral regions
dominated by water vapor absorption strongly depends on atmospheric rel-
ative humidity. Inversely, this can be used to retrieve relative humidity from
measurements by passive infrared or microwave sensors onboard satellites (e.g.
Buehler, 2005; Soden and Bretherton, 1993). These so-called humidity sounders
measure the average relative humidity over broad layers in the free troposphere.
Operational weather satellites have carried such instruments over several decades.
This offers the possibility to create long-term data records, which can be used to
track the evolution of free-tropospheric humidity and validate climate models (e.g.
Buehler et al., 2008; Shi and Bates, 2011). In my master thesis project I created
a new climate data record (CDR) of upper-tropospheric humidity (UTH) based
on observations from three different microwave humidity sounders on eleven
satellites. During my PhD period, I performed a comparison of the new CDR to
an existing data record and published a description of the CDR including the
comparison:

Lang, T., Buehler, S. A., Burgdorf, M., Hans, I. and John, V. O. (2020). A new
climate data record of upper-tropospheric humidity from microwave observations.
Scientific Data, 7, 218. https://doi.org/10.1038/s41597-020-0560-1.

A major novelty of this CDR is that a different definition of UTH is used in the
retrieval from the brightness temperatures measured by the microwave sensor. The
same definition can be used to derive UTH from infrared observations, allowing
a more synergistic use of infrared- and microwave-derived UTH in the future.
Furthermore, the CDR is based on a lower-level data record that uses a new
approach for re-calibration of brightness temperatures. My comparison shows
that this results in a reduction of inter-satellite biases compared to the existing
data record.

Recently, the UTH CDR was part of a larger intercomparison with three other
microwave and infrared UTH data records, for which I provided combined
time series of UTH with measurements from overlapping satellite missions. A
manuscript on this intercomparison, which I co-authored, has recently been
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accepted for publication:

Shi, L., Schreck III, C. J., John, V. O., Chung, E.-S., Lang, T., Buehler, S. A., and
Soden, B. J. Assessing the consistency of satellite derived upper tropospheric
humidity measurements, Atmospheric Measurement Techniques Discussion [preprint].
https://doi.org/10.5194/amt-2022-204

The main outcome of the intercomparison is that all four data sets show a similar
seasonal variability of UTH, but there are significant disagreements on the decadal
trends of UTH across the data sets.

3.2 observations of shallow clouds during the eurec
4
a field cam-

paign

Due to their dryness, the tropical subsidence regions have a profound impact on
the longwave clear-sky feedback (see Section 2.2). At the same time, the subsi-
dence regions also play a key role in determining the shortwave component of the
climate feedback: The descending air creates a temperature inversion in the lower
troposphere, which prevents clouds from growing deep. The subsidence regions
are therefore populated by shallow clouds, of which trade-wind cumuli are the
most frequently occurring type. These clouds only weakly affect OLR, because
their temperature is not significantly different from the surface. However, they effi-
ciently reflect shortwave solar radiation and thereby influence the Earth's radiation
budget. How these clouds respond to warming is therefore critical for the cloud
feedback, and model differences in this response explain the largest part of the
current spread of climate sensitivity across GCMs (e.g. Bony, 2005; Medeiros et al.,
2014; Vial et al., 2013). Differences in the representation of lower-tropospheric ver-
tical mixing associated with convection and large-scale circulations are thought to
be the cause of this inter-model spread (e.g. Sherwood et al., 2014; Vial et al., 2016).

To gain a better understanding of the interplay between clouds and circulation,
the field campaign Elucidating the role of clouds-circulation coupling in climate
(EUREC4A) was launched in early 2020. It took place in the Atlantic trade-wind
regime, over the ocean east of Barbados, and included aircraft measurements as
well as surface and ship-based observations. As part of my PhD project I actively
participated in the EUREC4A campaign. During the two weeks I spent on site on
Barbados, one of my main tasks was to launch radiosondes from the Barbados
Cloud Observatory (BCO). Besides that, I had the chance to accompany one of the
research flights with the High Altitude and Long Range Research Aircraft (HALO;
Krautstrunk and Giez, 2012) and launch dropsondes from the aircraft. I also
assisted the ground control for the HALO aircraft. Furthermore, our group was
responsible for compiling a daily weather report, for which I analyzed radiosonde
data. Due to these contributions I am a co-author of the campaign overview paper:

https://doi.org/10.5194/amt-2022-204
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Stevens, B., Bony, S., Farrell, D., and 290 co-authors (2021). EUREC4A, Earth
System Science Data, 13, 4067–4119. https://doi.org/10.5194/essd-13-4067-2021

After the campaign, I joined the HALO flight phase segmentation initiative,
which aimed at promoting a consistent analysis of the flight data by providing
metadata on different modes of operation of the aircraft during a flight. To this
end, we divided each of the 15 research flights into several standard elements or
"flight segments", each of which is defined by a start and end time and belongs
to a pre-defined "kind" that indicates the operation mode of the aircraft. This
allows to distinguish between the circular tracks HALO followed most of the time,
straight excursions from the circle and different instrument calibration maneuvers.
Moreover, with each segment the IDs of dropsondes that were launched within the
respective time period are provided. This enables a convenient selection of sondes
from the EUREC4A dropsonde data set (JOANNE; George et al., 2021) based on
flight segments, which has been used in the generation of circle-averaged data
products (e.g. Albright et al., 2022; George et al., 2021). The flight segmentation
data are provided as YAML (YAML Ain't Markup Language) files and are openly
accessible online (https://doi.org/10.5281/zenodo.4900003). My contribution
lead to a co-authorship of the paper describing the EUREC4A HALO data:

Konow, H., Ewald, F., George, G., and 35 co-authors (2021). EUREC4A's
HALO, Earth System Science Data, 13, 5545–5563. https://doi.org/10.5194/

essd-13-5545-2021

https://doi.org/10.5194/essd-13-4067-2021
https://doi.org/10.5281/zenodo.4900003
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.5194/essd-13-5545-2021
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Q U A N T I F Y I N G T H E H U M I D I T Y S P R E A D A N D I T S I M PA C T
O N T H E R A D I AT I O N B U D G E T A C R O S S G L O B A L
S T O R M - R E S O LV I N G M O D E L S ( PA P E R 1 )

Reducing the model spread in tropical free-tropospheric relative humidity (R) and
its response to warming is a crucial step toward reducing the uncertainty in clear-
sky climate sensitivity. This is hoped to be achieved with recently developed global
storm-resolving models (GSRMs). The study included in Appendix A is the first
to quantify the tropical R spread in this new generation of models, making use
of the first multi-model ensemble of GSRMs. It addresses the following research
questions:

1. How large is the spread in tropical relative humidity across global storm-
resolving models?

2. How relevant is the spread in terms of its impact on the clear-sky radiation
budget?

3. In which regions of the tropical atmosphere is the spread most relevant?

In the following, I summarize the main methods I applied to answer these ques-
tions and the key results I obtained.

4.1 the humidity spread in the dyamond ensemble

The research questions are addressed by comparing nine different models that
participated in the Atmospheric general circulation Modeled On Nonhydrostatic
Domains (DYAMOND) project (Stevens et al., 2019). As an observationally
constrained reference data set I include the ERA5 reanalysis (Hersbach et al., 2020)
in the comparison. The DYAMOND models differ in many aspects, ranging from
the type of numerical grid they use to solve their governing equations to their
parameterizations of subgrid processes. This diversity makes the DYAMOND
ensemble well-suited to assess the dependence of R on model formulation.
The simulations cover a 40-day period in northern-hemisphere summer. After
a common initialisation the atmosphere was allowed to evolve freely without
further forcing. Daily observed sea-surface temperature and sea-ice concentrations
were used as boundary conditions. For the analysis I exclude the first ten days of
the simulations to minimize constraints from the common initialization as well as
biases due to differences in model spin-up. The size of the model output (∼60 TB)
represents a challenge for the analysis. By performing a random subsampling of
grid points I reduce the amount of data by about a factor of 100, while ensuring
that the resulting sampling error is negligible compared to inter-model differences.

21



22 quantifying the humidity spread and its impact on the radiation budget

I find that the DYAMOND models all capture the typical C-shape of the
tropical mean vertical profile of R (Figure 5a) and the multi-model mean agrees
remarkably well (within 2% of R) with the ERA5 profile. This suggests that there
is at least no systematic moist or dry bias of R with respect to observations that
is shared by all GSRMs, as it is the case for GCMs (e.g. John and Soden, 2007;
Pierce et al., 2006). This should be verified with other observational data sets, since
ERA5 itself is known to exhibit a moist bias with respect to satellite observations,
particularly in dry regions (Xue et al., 2020).

R differences among the models, however, are considerable. The inter-model
standard deviation of R (σ(R)) exceeds 5% in the upper troposphere as well as
in the lower troposphere around the top of the boundary layer (Figure 5c). The
latter is related to model differences in boundary layer depth. As the transition
from the boundary layer to the free troposphere is marked by a steep gradient in
R, differences in boundary layer depth cause a large inter-model spread in R. In
the mid troposphere the R spread is smallest (σ(R) ≈ 2 %).

To examine how the R spread in the DYAMOND GSRMs compares to that
in conventional atmospheric GCMs, I compare the DYAMOND ensemble to
29 GCMs that participated in the Atmospheric Model Intercomparison Project
(AMIP) experiments of the Coupled Model Intercomparison Project phase five
(CMIP5; Taylor et al., 2012). This comparison shows that in DYAMOND, the
spread in tropical mean R is reduced throughout most of the free troposphere,
except from the tropopause region and the transition to the boundary layer
(Figure 5c). The relative reduction is largest in the upper troposphere (∼50 %
to 70 %) and smaller in the mid troposphere (∼25 % to 50 %). The reduction
indicates that R is indeed better constrained in GSRMs than in GCMs. The
reduced spread is a promising result, especially considering that the models were
not specifically tuned for the DYAMOND simulations and some of them even ran
for the first time in this particular configuration and at storm-resolving resolutions.

A legitimate question that arises is how much one can learn about climatological
R biases from an intercomparison as short as 30 days. One important concern
is that the identified R differences might reflect a poor sampling of internal
variability. However, the DYAMOND inter-model spread is significantly larger
than what would be expected from internal variability, which is estimated from
five years of ERA5 reanalysis data (Figure 5c). This indicates that the inter-model
R differences mostly represent systematic differences due to differences in model
formulation. While this is true for the tropical mean, I show in my second study
that R differences in the driest tropical regions are indeed strongly coloured by
internal variability (see Section 5.2).

Besides the comparison of tropical means, I also compare the R distribution in
moisture space (e.g. Bretherton et al., 2005; Schulz and Stevens, 2018). Moisture
space is spanned by sorting the atmospheric state from dry to moist based on the
vertically integrated amount of water vapor (IWV). The IWV-ranked profiles are
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Figure 5: Tropical mean profiles of relative humidity R and inter-model spread in the
DYAMOND ensemble. (a) Tropical mean vertical profiles of R over ocean regions
from all nine DYAMOND models (colours), the ERA5 reanalysis (black solid)
and the CMIP5 AMIP 30-year multi-model mean (black dashed). (b) Vertical R
profiles for the DYAMOND models shown as deviation from the ERA5 profile.
(c) Inter-model standard deviation of tropical mean R in DYAMOND (solid line).
For comparison, the inter-annual R spread in five years of ERA5 (2014-2019;
dotted line) as well as the inter-model spread of the 30-year mean R in the CMIP5

AMIP ensemble (dashed line) are shown. Grey shading indicates the range of
inter-model standard deviations in individual months of the AMIP experiment.

aggregated within 50 equal-sized blocks and averaged. This allows to distinguish
between different dynamic regimes of the tropics: deep convective regimes are as-
sociated with high IWV percentiles, subsidence regimes with low IWV percentiles.
The representation in moisture space reveals that the large inter-model spread
in the upper troposphere and around the top of the boundary layer (σ(R) >

5 %) prevails throughout the tropics (Figure 6a). In the mid troposphere, however,
the spread increases from dry to moist regimes and maximizes between the
80th to 90th percentile of IWV (σ(R) > 5 %). This region of maximum spread
roughly marks the transition from deep convective to subsidence regimes in
moisture space and is associated with upper-level anvil clouds, which could point
to differences in the representation of convection, small-scale mixing and/or
microphysical processes as possible sources.

4.2 the impact of humidity differences on outgoing longwave ra-
diation

To assess the relevance of the R differences between the DYAMOND models, I
translate them into differences in clear-sky outgoing longwave radiation (OLRcs)
using a fast radiative transfer model. The calculations are performed based on
the block-averaged atmospheric state in moisture space rather than based on
individual instantaneous profiles. This strongly reduces the computing effort,
while still capturing most of the non-linearity of OLRcs in R (see Section 2.2).
Using the same radiation scheme for each model and fixing the concentrations of
other greenhouse gases than water vapor ensures that the resulting differences
in OLRcs solely reflect differences in atmospheric temperature and water vapor
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Figure 6: Inter-model spread in relative humidity R across the DYAMOND models and
its effect on clear-sky outgoing longwave radiation (OLRcs) in moisture space. (a)
Inter-model standard deviation of R (σ(R)) as a function of height and percentile
of vertically integrated water vapor (IWV). (b) Relative humidity response kernel
(KR,e) showing the sensitivity of OLRcs to a 1 % (additive) change in R in a
1 km layer under constant temperature. (c) Inter-model standard deviation σ(R)
weighted with KR,e. Acronyms denote three regions of particular relevance: The
transition between the boundary layer and the free troposphere (BL), the mid
troposphere of moist regimes (MM) and the mid troposphere of dry regimes
(MD).
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concentrations. The standard deviation in tropical mean OLRcs is 1.2 W m−2. The
most extreme models differ by about 4 W m−2. These differences are of similar
magnitude as the radiative forcing from a doubling of CO2 (3.7 W m−2) and hence
relevant.

To identify the regions in which a reduction in R spread would be most bene-
ficial, I use a radiative kernel technique to determine the impact of R differences
on OLRcs in different altitude layers and different regimes in moisture space.
The relative humidity kernel describes the sensitivity of OLRcs to perturbations
in R and is calculated by successively applying small perturbations in water
vapor pressure e in different altitude regions, using ERA5 as the base state. (Since
R is a function of vapor pressure and temperature, another possible way to
determine the R kernel is be to perturb the temperature instead of vapor pressure.
I elaborate more on the differences between these two approaches in Sections
A.4.3 and A.6.2.) The R sensitivity kernel is characterised by a distinct maximum
in the mid troposphere of the driest tropical regimes (Figure 6b), which is in
qualitative agreement with earlier studies (e.g. Spencer and Braswell, 1997).

Weighting the R kernel with the inter-model spread in R reveals how much
model differences contribute to differences in OLRcs within a certain region
(Figure 6c). I identify three regions of particular relevance (marked by acronyms
in Figure 6c). One is the transition between the boundary layer and the free
troposphere (BL). In this region model differences in R are large and therefore
cause a significant part (about one third) of the spread in OLRcs, although the
sensitivity of OLRcs to a given R perturbation is low in the lower troposphere.
The remaining part (about two thirds) of the OLRcs spread is caused by R
differences in the mid troposphere. The combination of increasing R spread
and decreasing sensitivity of OLRcs from dry to moist regions results in a
relatively uniform importance of R differences across the tropics. Local maxima
occur in the mid troposphere of dry regions (MD) near the 30th percentile of
IWV and in the mid troposphere of moist regions (MM) near the 80th IWV
percentile. The impact of the comparably large R differences in the upper tro-
posphere is negligible, because there OLRcs is virtually insensitive to changes in R.

These results are limited to the clear-sky case. High clouds, which are most
abundant in the moist regimes, would mask some of the clear-sky effect and hence
dampen the impact of the large R differences in the high IWV percentiles. This em-
phasizes even more the importance of the dry regimes, where high clouds are rare.

In summary, the first study yields the following key results:

1. The spread in tropical free-tropospheric relative humidity across global atmo-
spheric storm-resolving models is approximately halved compared to that
across general circulation models.

2. The remaining humidity differences still cause a relevant (∼1.2 W m−2)
spread in tropical mean clear-sky OLR.
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3. A further reduction of humidity spread in the lower and mid free tropo-
sphere, both in dry subsidence regimes and in moist regimes at the transition
to deep convective regimes, would be most beneficial to reduce the spread in
clear-sky OLR.
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U N D E R S TA N D I N G T H E S O U R C E S O F H U M I D I T Y S P R E A D
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The analysis summarized in the previous chapter showed that humidity differ-
ences across GSRMs are still relevant in terms of their radiative impact. This mo-
tivated the study included in Appendix B, in which I aim to better understand
the sources of uncertainties in modelling processes that drive the distribution of
humidity. I approach this by asking two research questions:

1. How much do different model uncertainties contribute to the spread in
relative humidity across global storm-resolving models?

2. Through which physical mechanisms do these model uncertainties affect
relative humidity?

5.1 sensitivity of relative humidity to different model uncer-
tainties

To answer the first question, I run a series of experiments with a GSRM. In these
I examine how much relative humidity R in the tropics changes in response to
different modifications in model formulation. These modifications are inspired by
the differences across the DYAMOND models (see Section 4) and thus represent
differences in current modeling approaches across modeling groups. I investigate
uncertainties in both the dynamical core and model physics by applying changes
to model resolution and parameterizations.

The experiments are performed with the ICOsahedral Nonhydrostatic model
(ICON; Zängl et al., 2015) in its storm-resolving setup (Hohenegger et al., 2022).
The control experiment is run with a horizontal grid spacing of ∼5 km and 110

terrain-following vertical levels, which corresponds to a vertical grid spacing
of 400 m in the mid to upper troposphere over an ocean surface. In the control
experiment turbulent mixing is represented by a 3D Smagorinsky-Lilly scheme,
microphysical processes are represented by a one-moment bulk scheme. The
simulated time period spans 45 days in June to August 2021 and the experimental
protocol closely follows that specified by the DYAMOND intercomparison (see
Section B.3). To test to what extent the humidity differences in the 45-day exper-
iments might reflect sampling error, I perform an additional control experiment
(Control 2) with perturbed initial conditions.

Three experiments test the sensitivity of R to changes in model resolution: In
the "∆x/2" experiment the horizontal grid spacing is halved relative to the control
experiment to 2.5 km. In the "2∆z" and "∆z/2" experiments the number of vertical
levels is changed such that the vertical grid spacing in the free troposphere is
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increased to 800 m and decreased to 200 m, respectively. Three further experiments
examine how R is affected by changes in model parameterizations. Here, I focus
on contrasting schemes, which I consider a stronger perturbation than perturbing
single parameters within a given scheme. For the "TTE" experiment the 3D
Lilly-Smagorinsky turbulence scheme is exchanged by a 1D total turbulent energy
(TTE) scheme and in the "2-mom" experiment the one-moment microphysics
scheme is exchanged by a two-moment scheme. Additionally, I also explore
a common parameter sensitivity by increasing (approximately doubling) the
terminal fall speed of ice particles in the 2vice experiment. For more background
on these choices the reader is referred to Section B.2.

The sensitivity experiments produce a spread in tropical mean R that is similar
to the inter-model spread in the DYAMOND ensemble found in the first study
(Figure 7c). There, I showed that this spread is smaller than that across classical
GCMs, which indicates that resolving deep convection reduces the model spread
in tropical R. The experiments performed in this second study support this
by showing that even strong perturbations in a GSRM cannot reproduce the
spread in R seen across models with convective parameterizations. Perturbing
the convective parameterization in a GCM, however, does reproduce a major part
of the inter-model spread of tropical clear-sky OLR (which largely represents
differences in R) across GCMs (Tsushima et al., 2020).

With few exceptions the changes in tropical mean R that are produced in the
sensitivity experiments are larger than the difference between the two control
experiments (Figure 7a, b), which indicates that they represent systematic changes
rather than internal variability. Halving the horizontal grid spacing (∆x/2) and
halving the vertical grid spacing (∆z/2) lead to modest (≤3 %) changes in tropical
mean R, whereas doubling the vertical grid spacing (2∆z) results in a strong
(>10 %) R increase in the upper troposphere. The latter experiment, however,
represents a rather extreme case, in the sense that GSRMs are not commonly run
at such coarse vertical grid spacings. Therefore, these results suggest that R is
rather robust to changes in model resolution within the general scale of GSRM
resolution. This does not exclude the possibility that reducing the horizontal grid
spacing to much finer scales (on the order of 200 m) could make a difference,
which needs to be tested in future experiments.

Larger R changes occur in the experiments with exchanged microphysics and
turbulence parameterizations. They maximize in the lower and mid troposphere,
where they have the largest impact on clear-sky OLR, as I showed in the first study.
Changing the turbulence scheme results in a R increase of about 8 % in a broad
mid-tropospheric layer. Employing the 2-mom microphysics scheme reduces R
by about 10 % in a rather thin lower-tropospheric layer, reflecting a shallowing of
the boundary layer. This could be related to an earlier onset of precipitation in
the 2-mom experiment, which results in clouds growing less deep (Stevens and
Seifert, 2008). In summary, the experiments suggest that a large part of the R
spread across today's GSRMs is explained by different formulations of small-scale
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mixing and cloud microphysical processes rather than by differences in model
resolution. I could not test to what extent differences in the dynamical core, in
particular the methods used to solve the governing equations, systematically
influence R. However, the fact that the sensitivity experiments produce a similar
spread as the inter-model spread in the DYAMOND models (which do differ in
their dynamical cores) as well as the modest influence of model resolution suggest
that this influence is not large.
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Figure 7: Tropical mean relative humidity R in the control and sensitivity experiments
shown in (a) absolute units and (b) as difference to the control experiment. (c)
Standard deviation of R across all experiments (solid) and across the DYAMOND
multi-model ensemble (dashed).

5.2 physical mechanisms controlling relative humidity changes

To better understand the physical mechanisms behind the R changes, I perform
two types of Lagrangian reconstructions of R based on back-trajectories. The first
reconstruction is an implementation of the last-saturation paradigm (Section 2.3).
The part of the R differences that is explained by this reconstruction is caused
by differences in last-saturation and/or target temperature (Equation 5). One
could also argue that this part is caused by differences in the resolved (gridscale)
circulation and temperature structure, which determine where saturation occurs.
However, I will show that this is not always the case, because parameterized
(sub-gridscale) processes like turbulent mixing can also directly influence last-
saturation statistics. The second reconstruction additionally accounts for processes
neglected in the last-saturation paradigm, i.e. any moisture sources and sinks that
affect the humidity of air parcels after last-saturation. These include moistening
from evaporation or sublimation of hydrometeors, as well as moistening or drying
from sub-gridscale turbulent mixing, both of which are parameterized. Based
on the two Lagrangian reconstructions, the actual ICON-simulated R changes
can be decomposed into contributions from a) changes in last-saturation and/or
target temperatures, b) changes in the parameterized moistening or drying after
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last-saturation and c) changes in any processes not captured by either Lagrangian
reconstruction. The latter include changes in the strength of numerical diffusion
in the ICON model and imperfections in the calculated trajectories, e.g. due to
limited temporal and spatial resolution of the model output fields the trajectories
are calculated on. Since the last-saturation paradigm has never been used before
to examine humidity differences between models, nor has it been implemented
based on wind fields of storm-resolving resolution, this work also tests the quality
of the paradigm in explaining differences between models as they begin to resolve
the spectrum of vertical motions in the atmosphere.

For this part of the study I focus on the mid troposphere, more precisely the
altitude layer between 4 km and 8 km, where I showed R differences to be of
particular relevance in my first study. For each experiment (except from the ∆x/2
experiment, due to limited resources), a large ensemble of back-trajectories is re-
leased once per day from random positions in the tropical mid troposphere. They
are calculated backward for 15 days based on hourly model wind fields, which are
re-gridded from the native ICON grid to a regular 0.1◦×0.1◦ latitude-longitude
grid. For each trajectory, points of last-saturation as well as subsequent moisture
sources and sinks are determined based on moisture tendencies produced by the
microphysics and turbulence schemes. A comparison shows that the R recon-
struction including moisture sources and sinks captures the ICON-simulated R
distribution in the control experiment slightly better than the plain last-saturation
reconstruction, as is expected if the approach worked as intended.

To distinguish between different tropical humidity regimes, the mid tropo-
sphere is depicted in "R-Space", i.e. it is split into ten equal-sized bins of R. This
representation reveals that R differences across experiments are generally larger
in moist than in dry regions (Figure 8a) – similar to the R differences across
the DYAMOND ensemble (Figure 6a). The depiction in R-Space also shows that
internal variability in R, which is measured by the difference between the control
experiment and the second control experiment with perturbed initial conditions
(Control 2), increases towards dry regions, where it is of similar magnitude than
the R differences in most sensitivity experiments. Thus, the R differences in the
dry regions are strongly coloured by internal variability and longer experiments
would be needed to quantify systematic differences resulting from differences in
model formulation.

For most experiments the reconstruction based on the plain last-saturation
model captures the actual, ICON-simulated R change compared to the control
simulation to a large extent (Figure 8b), whereas changes in parameterized mois-
ture sources and sinks only explain a minor part of the R change (Figure 8c). This
means that R differences between experiments are mainly caused by variations
in source and/or target temperature. A further decomposition shows that the
contribution from changes in source temperature to the R change is generally
larger than that from changes in target temperature (not shown here). These
results highlight the importance of source temperatures compared to subsequent
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Figure 8: ICON-simulated and reconstructed mid-tropospheric R differences between ex-
periments displayed in R-Space. (a) ICON-simulated R differences to the con-
trol experiment. (b) R differences reconstructed from the plain last-saturation
model and (c) differences in the effect from moisture sources and sinks after last-
saturation. (d) Differences in the residual, i.e. in the difference between ICON-
simulated and reconstructed R. The sum of the terms shown in (b) to (d) yields
the ICON-simulated R differences shown in (a).

moisture sources or sinks in causing R differences. In the particular case of
the TTE turbulence experiment, this means that the strong mid-tropospheric
moistening is not a direct consequence of enhanced vertical turbulent mixing that
moistens air parcels as they are transported from source to target regions. Instead,
it must be explained by changes in the properties of the source regions themselves.

There are two exceptions where the plain last-saturation model does not explain
a major part of the R change. Only a part of the moistening in the experiment with
coarser vertical resolution is captured by the plain last-saturation reconstruction
(Figure 8b) and the remaining part is not explained by changes in parameterized
moisture sources or sinks, as apparent from the rather large residuum term (Figure
8c). This could indicate that some of the moistening results from an increase
in numerical diffusion associated with the decrease in vertical resolution. Also,
the (rather weak) mid-tropospheric drying in the 2-mom experiment is mainly
due to a reduction in evaporation of cloud condensate and/or precipitation
after last-saturation. However, additional trajectory calculations show that the
stronger lower-tropospheric drying in the 2-mom experiment (cf. Figure 7) is
largely explained by the last-saturation model. The local moistening from shallow
convection in this layer is weaker in the 2-mom experiment, which is consistent
with the microphysics limiting the depth of shallow convection mentioned above.

As changes in last-saturation temperature turn out to be the main driver of R
differences across experiments, I further examine their origin by separating the
contributions from changes in inner-tropical and extra-tropical last-saturation tem-
peratures. This reveals that the R changes in moist regions (roughly the moistest
60 % in R space) are dominated by changes in inner-tropical last-saturation
temperatures. For the driest 40 % of the tropics, however, changes in tropical and
extra-tropical source temperatures are of similar relevance. In the rather short
experiments considered in this study, changes in the source temperature of dry
regions are explained by, or can at least not be distinguished from, internal vari-
ability. This variability likely reflects variations in the large-scale circulation that
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connects the dry target regions to their remote source regions. Internal variability
is particularly strong in extra-tropical source temperatures. This highlights the
importance of transport pathways by which extra-tropical air is brought into the
tropics in controlling the humidity of the dry regions (see Aemisegger et al., 2021;
Cau et al., 2007; Roca et al., 2012).

To better understand the strong impact of the turbulence parameterization
on last-saturation temperature, I compare moisture tendencies produced by the
turbulence and microphysics schemes in the control and TTE experiments. The
comparison reveals that, particularly in moist tropical regimes, the TTE scheme
performs a much more vigorous vertical mixing between boundary layer and
free troposphere than the Smagorinsky-Lilly scheme. This results in a strong
turbulent moistening of the mid troposphere, which favours condensation over
broader areas than in the control experiment. In other words, the TTE scheme
creates a cloudier inner-tropical mid-troposphere, which changes last-saturation
statistics such that the share of warm last-saturation temperatures increases. This
demonstrates that last-saturation statistics are not determined exclusively by the
resolved circulation and temperature structure, but can also be directly affected
by parameterized processes.

By exposing the strong mixing between boundary layer and free troposphere
performed by the TTE turbulence scheme, my analysis makes an important contri-
bution to the model development at our institute. There is an ongoing discussion
on which type of turbulence scheme to use in storm-resolving simulations. While
the TTE scheme has been used in the GCM version of ICON, the Smagorinsky-
Lilly scheme is designed for large-eddy simulations. My analysis reveals that the
TTE scheme, in its current form, behaves similar to a convective parameterization
when employed at storm-resolving scales, which was not intended. This highlights
that a better adaption of existing turbulence schemes is needed if they are to be
used for storm-resolving simulations. However, the fact that even the extreme
perturbation applied by switching between different types of turbulence schemes
did not change R far beyond the inter-model spread in DYAMOND is promising.
Many of the DYAMOND models used turbulence parameterizations that were
not specifically adapted to storm-resolving scales due to their early development
stage. Hence, a better adaption of the schemes in future model versions might
further reduce the spread in tropical R.

In summary, I find that mid-tropospheric R changes in the sensitivity experi-
ments, including the strong moistening in the turbulence experiment, are largely
explained by changes in last-saturation temperature. In the moist regions of the
tropics R is only sensitive to changes in inner-tropical last-saturation statistics
and hence depends on the representation of the tropical deep convective regions.
The latter is strongly influenced by the parameterization of small-scale turbulent
mixing. In the dry regions R is equally sensitive to changes in inner-tropical and
extra-tropical last-saturation statistics and depends on the large-scale circulation,
in particular on the mechanisms of exchange between the tropics and extra-tropics.
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The experiments are too short to say with certainty which model uncertainties
have the greatest impact on these mechanisms.

In a nutshell, the second study yields the following key results:

• Model parameterizations, rather than model resolution, represent the major
source of relative humidity spread across global storm-resolving models.

• Vertical mixing processes strongly impact the relative humidity of the moist
tropics by changing last-saturation statistics within the tropics rather than by
changing the evolution of humidity after last-saturation.

• The humidity of the dry tropics is disproportionately sensitive to changes in
the pathways of exchange with the extra-tropics.
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The studies presented in this essay are the first to examine uncertainties in
modelling the distribution of relative humidity in the tropics at kilometer-scale
resolution. In the first study, I use a first intercomparison of GSRMs (DYAMOND)
to quantify differences in relative humidity and assess their relevance by cal-
culating their effect on clear-sky OLR. In the second study, I narrow down the
sources of these differences by examining how much and through which physical
mechanisms relative humidity is affected by changes in model resolution and
parameterizations.

The first study revealed that the inter-model spread in tropical mean relative
humidity is reduced (approximately halved in the free troposphere) compared
to classical GCMs with convective parameterizations. This is a promising result,
particularly in light of the fact that the GSRMs that participated in DYAMOND
were not specifically tuned for that experiment. Considering the results of the
second study that highlighted the importance of variations in last-saturation
(or "source") temperatures in causing humidity differences, this could indicate
that the source regions of tropical air, indeed the convective regions, are better
constrained in GSRMs than in GCMs with convective parameterizations.

To quantify the uncertainty of relative humidity in GSRMs, besides comparing
the models to each other, they also need to be evaluated with observations. A first
comparison to the ERA5 reanalysis in my first study indicates that GSRMs as a
group are at least not systematically biased with respect to observations. Never-
theless, to improve individual models their biases need to be known precisely.
Since the humidity in (re-)analyses can be affected by errors in the underlying
forecast model (e.g. Pincus et al., 2017) and ERA5 is known to exhibit a moist bias
with respect to satellite observations (Xue et al., 2020), further comparisons should
also be made to purely observational data sets, e.g. from radiosondes and from
satellite instruments such as the humidity sounders I briefly introduced in this
thesis.

My analysis is limited to differences in the present-day humidity distribution
and their effect on the present-day radiation budget. A question that I cannot
answer yet is whether the inter-model spread in the tropical clear-sky feedback is
also reduced across GSRMs. However, there are reasons to be optimistic that the
feedback is more consistent across GSRMs. On the one hand, to the extent that
the feedback directly depends on the present-day humidity (Bourdin et al., 2021;
McKim et al., 2021), the reduced spread implies a more consistent feedback. On
the other hand, the feedback depends on the change of relative humidity under
warming. It seems unlikely that the spread in the relative humidity response
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is increased although the present-day relative humidity is better constrained
in GSRMs. This needs to be verified as soon as model intercomparisons are
performed for various climate states ("time slice experiments") or even over
climatological time periods.

Although the model spread in relative humidity is reduced across GSRMs,
it still causes a considerable spread (a standard deviation of ∼1.2 W m−2) in
tropical mean clear-sky OLR. I identified the lower and mid free troposphere as
the regions where future reductions of the spread in relative humidity would
be most beneficial to reduce uncertainty in clear-sky OLR. This applies both to
the comparably small relative humidity differences in dry regimes and the large
differences in moist regimes. However, eventually the clear-sky effect is expected
to be more relevant in the dry regimes, where upper-level clouds with a potential
masking effect are rare.

The sensitivity experiments in my second study suggest that the remaining
model spread in lower- and mid-tropospheric relative humidity is mainly driven
by differences in parameterizations rather than differences in model resolution.
In the limited number of sensitivity experiments, changes in the microphysics
parameterization most strongly affect relative humidity in the lower-tropospheric
region associated with shallow clouds, whereas changing the turbulence param-
eterization changes relative humidity in a broad layer in the mid troposphere.
The humidity differences produced in the sensitivity experiments, including
the most pronounced ones caused by parameterization changes, are to a large
extent explained by differences in last-saturation temperature, whereas differ-
ences in moisture sources or sinks after last-saturation play a minor role. This
highlights the importance of correctly capturing the source temperature of trop-
ical mid-tropospheric air, that is both the temperature structure and the circulation.

For the moist regimes of the tropical mid-troposphere (roughly the moist
half in terms of mid-tropospheric relative humidity) last-saturation takes place
in nearby mid-level or deep clouds. The sensitivity experiments indicate that
a major uncertainty in modelling the area covered by such clouds lies in the
representation of small-scale turbulent mixing. Today's GSRMs use turbulence
parameterizations that were either designed for higher-resolution large-eddy
simulations or coarser-resolution GCMs, but neither of them have been specifically
adapted to simulations at kilometer-scales. A better adaption of the schemes is
therefore an important step towards reducing the uncertainty in the representation
of the convective source regions.

For the dry half of the tropical mid troposphere, source regions are located
more remotely, both in the upper-level outflow regions of inner-tropical deep
convection and in the extra-tropical upper troposphere. Source temperatures are
therefore influenced by large-scale circulation patterns, which vary on longer time
scales than the simulations I could conduct. Hence, while for the moist tropics
one simulated month is sufficient to distinguish systematic changes in source
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temperature from internal variability, longer simulations are needed to understand
the sources of spread in the dry tropics. This represents an important limitation
of my study. At the same time it highlights the importance of different large-scale
transport pathways in controlling relative humidity in the dry tropical regions,
particularly the pathways from the extra-tropics into the tropics (see also Aemiseg-
ger et al., 2021; Cau et al., 2005; Roca et al., 2012). Understanding these transport
pathways, how they might change under warming and how they differ across
models is therefore key to reduce the uncertainty in the clear-sky climate feedback.

An important step to reduce the uncertainty in the source temperature of
tropical free-tropospheric air is to constrain the characteristics of the main source
regions, i.e. the deep convective regions, with observations. Satellite, airborne
and ground-based observations can provide constraints on quantities related to
last-saturation statistics, such as the depth and amount of convective clouds, the
height and extent of anvil clouds as well as on the circulation and thermal struc-
ture of the atmosphere. Apart from existing satellite missions and measurement
sites, valuable data will be provided by new satellite missions such as the Earth
Cloud Aerosol and Radiation Explorer (EarthCARE) mission (Illingworth et al.,
2015), as well as upcoming measurement campaigns focusing on the ITCZ region,
such as the "EarthCARE, Tropical Oceans and Organized Convection" (EC-TOOC)
campaign planned for the year 2024 in the tropical Atlantic. A technique to infer
the meso-scale circulation from dropsonde measurements distributed along a
circular flight path was developed for the EUREC4A campaign. Applying this
technique to deep convective regimes could allow to determine the altitude at
which air detrains from deep convection very precisely.

Besides the structure of the source regions themselves, the transport pathways
by which air is brought to the tropical free troposphere need to be evaluated. This
could be done using water vapor isotopologues. Since the isotopic composition
of water vapor is affected by phase changes of water, measurements of this com-
position can provide information on the origin of air, in particular on pathways
of transport from the extra-tropics into the tropics (e.g. Aemisegger et al., 2021;
González et al., 2016), which affect the humidity of the dry zones. Incorporating
isotopes in models and comparing modelled to observed isotopic signatures, as
performed by Risi et al., 2012 for GCMs, could be a promising approach to identify
differences between modelled and observed pathways.

In summary, already in their early development stage GSRMs show better
agreement in tropical free-tropospheric humidity than classical GCMs with
convective parameterizations, and hence represent a promising tool to reduce
the uncertainty in the tropical clear-sky climate feedback. To exploit their full
potential, more research is needed on adapting the remaining parameterizations
for use at kilometer-scale resolutions. A particular focus should be placed on a
realistic representation of the source regions and the transport pathways of air
arriving in the tropical mid troposphere.





B I B L I O G R A P H Y

Aemisegger, Franziska et al. (2021). “How Rossby wave breaking modulates the
water cycle in the North Atlantic trade wind region.” In: Weather and Climate
Dynamics 2.1, pp. 281–309. doi: 10.5194/wcd-2-281-2021.

Albright, Anna Lea et al. (2022). “Observed Subcloud-Layer Moisture and Heat
Budgets in the Trades.” In: Journal of the Atmospheric Sciences 79.9, pp. 2363–
2385. doi: 10.1175/JAS-D-21-0337.1.

Bony, S. et al. (2006). “How Well Do We Understand and Evaluate Climate Change
Feedback Processes?” In: Journal of Climate 19.15, pp. 3445–3482. doi: 10.1175/
JCLI3819.1.

Bony, Sandrine (2005). “Marine boundary layer clouds at the heart of tropical cloud
feedback uncertainties in climate models.” In: Geophysical Research Letters 32.20.
doi: 10.1029/2005GL023851.

Bourdin, S., L. Kluft, and B. Stevens (2021). “Dependence of Climate Sensitivity on
the Given Distribution of Relative Humidity.” In: Geophysical Research Letters.
doi: https://doi.org/10.1029/2021GL092462.

Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov (2005). “An Energy-Balance
Analysis of Deep Convective Self-Aggregation above Uniform SST.” In: Journal
of the Atmospheric Sciences 62.12, pp. 4273–4292. doi: 10.1175/JAS3614.1.

Buehler, S. A. (2005). “A simple method to relate microwave radiances to upper tro-
pospheric humidity.” In: Journal of Geophysical Research 110.D2. doi: 10.1029/
2004JD005111.

Buehler, S. A. et al. (2008). “An upper tropospheric humidity data set from opera-
tional satellite microwave data.” In: Journal of Geophysical Research 113.D14. doi:
10.1029/2007JD009314.

Cau, Piero, John Methven, and Brian Hoskins (2005). “Representation of dry tropi-
cal layers and their origins in ERA-40 data.” In: Journal of Geophysical Research:
Atmospheres 110.D6, n/a–n/a. doi: 10.1029/2004JD004928.

— (2007). “Origins of Dry Air in the Tropics and Subtropics.” In: Journal of Climate
20.12, pp. 2745–2759. doi: 10.1175/JCLI4176.1.

Colman, Robert and Brian J. Soden (2021). “Water vapor and lapse rate feedbacks
in the climate system.” In: Reviews of Modern Physics 93.4. doi: 10 . 1103 /

RevModPhys.93.045002.
Dessler, A. E. and S. C. Sherwood (2000). “Simulations of tropical upper tropo-

spheric humidity.” In: Journal of Geophysical Research 105.D15, pp. 20155–20163.
doi: 10.1029/2000JD900231.

Emanuel, K. A. and R. T. Pierrehumbert (1996). “Clouds, Chemistry and Climate.”
In: ed. by P.J. Crutzen and V. Ramanathan. Springer-Verlag Berlin Heidelberg.
Chap. Chapter 2: Microphysical and Dynamical Control of Tropospheric Water
Vapor, pp. 17–28.

39

https://doi.org/10.5194/wcd-2-281-2021
https://doi.org/10.1175/JAS-D-21-0337.1
https://doi.org/10.1175/JCLI3819.1
https://doi.org/10.1175/JCLI3819.1
https://doi.org/10.1029/2005GL023851
https://doi.org/https://doi.org/10.1029/2021GL092462
https://doi.org/10.1175/JAS3614.1
https://doi.org/10.1029/2004JD005111
https://doi.org/10.1029/2004JD005111
https://doi.org/10.1029/2007JD009314
https://doi.org/10.1029/2004JD004928
https://doi.org/10.1175/JCLI4176.1
https://doi.org/10.1103/RevModPhys.93.045002
https://doi.org/10.1103/RevModPhys.93.045002
https://doi.org/10.1029/2000JD900231


40 Bibliography

Galewsky, J., A. Sobel, and I. Held (2005). “Diagnosis of Subtropical Humidity Dy-
namics Using Tracers of Last Saturation.” In: Journal of the Atmospheric Sciences
62.9, pp. 3353–3367. doi: 10.1175/JAS3533.1.

George, Geet et al. (2021). “JOANNE: Joint dropsonde Observations of the Atmo-
sphere in tropical North atlaNtic meso-scale Environments.” In: Earth System
Science Data 13.11, pp. 5253–5272. doi: 10.5194/essd-13-5253-2021.

González, Yenny et al. (2016). “Detecting moisture transport
pathways to the subtropical North Atlantic free tropo-
sphere using paired H&ampltsub&ampgt2&amplt/sub&ampgtO-
&amplti&ampgt&amplt/i&ampgtD in situ measurements.” In: Atmospheric
Chemistry and Physics 16.7, pp. 4251–4269. doi: 10.5194/acp-16-4251-2016.

Goody, R. M. and G. D. Robinson (1951). “Radiation in the troposphere and lower
stratosphere.” In: Quarterly Journal of the Royal Meteorological Society 77.332,
pp. 151–187. doi: 10.1002/qj.49707733203.

Held, I. M. and B. J. Soden (2000). “Water Vapour Feedback and Global Warming.”
In: Annual Review of Energy and the Environment 25.1, pp. 441–475. doi: 10.1146/
annurev.energy.25.1.441.

Hersbach, Hans et al. (2020). “The ERA5 global reanalysis.” In: Quarterly Journal of
the Royal Meteorological Society 146.730, pp. 1999–2049. doi: 10.1002/qj.3803.

Hohenegger, Cathy et al. (2022). “ICON-Sapphire: simulating the components of
the Earth System and their interactions at kilometer and subkilometer scales.”
In: doi: 10.5194/gmd-2022-171.

Huang, Yi and Maziar Bani Shahabadi (2014). “Why logarithmic? A note on the
dependence of radiative forcing on gas concentration.” In: Journal of Geophysical
Research: Atmospheres 119.24, pp. 13,683–13,689. doi: 10.1002/2014JD022466.

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Work-
ing Group I to the Sixth Assessment Report of the Intergovernmental Panel on Cli-
mate Change. Ed. by V. Masson-Delmotte et al. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA. doi: 10 . 1017 /

9781009157896.
Illingworth, A. J. et al. (2015). “The EarthCARE Satellite: The Next Step Forward in

Global Measurements of Clouds, Aerosols, Precipitation, and Radiation.” In:
Bulletin of the American Meteorological Society 96.8, pp. 1311–1332. doi: 10.1175/
BAMS-D-12-00227.1.

Ingram, William (2010). “A very simple model for the water vapour feedback on
climate change.” In: Quarterly Journal of the Royal Meteorological Society 136.646,
pp. 30–40. doi: 10.1002/qj.546.

Jeevanjee, Nadir, Daniel D. B. Koll, and Nicholas Lutsko (2021). ““Simpson's Law”
and the Spectral Cancellation of Climate Feedbacks.” In: Geophysical Research
Letters 48.14. doi: 10.1029/2021GL093699.

John, V. O. and B. J. Soden (2007). “Temperature and humidity biases in global
climate models and their impact on climate feedbacks.” In: Geophysical Research
Letters 34.18, p. L18704. doi: 10.1029/2007GL030429.

Kiehl, J. T. and Kevin E. Trenberth (1997). “Earth's Annual Global Mean Energy
Budget.” In: Bulletin of the American Meteorological Society 78.2, pp. 197–208. doi:
10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

https://doi.org/10.1175/JAS3533.1
https://doi.org/10.5194/essd-13-5253-2021
https://doi.org/10.5194/acp-16-4251-2016
https://doi.org/10.1002/qj.49707733203
https://doi.org/10.1146/annurev.energy.25.1.441
https://doi.org/10.1146/annurev.energy.25.1.441
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/gmd-2022-171
https://doi.org/10.1002/2014JD022466
https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009157896
https://doi.org/10.1175/BAMS-D-12-00227.1
https://doi.org/10.1175/BAMS-D-12-00227.1
https://doi.org/10.1002/qj.546
https://doi.org/10.1029/2021GL093699
https://doi.org/10.1029/2007GL030429
https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2


Bibliography 41

Kluft, Lukas et al. (2019). “Re-Examining the First Climate Models: Climate Sen-
sitivity of a Modern Radiative–Convective Equilibrium Model.” In: Journal of
Climate 32.23, pp. 8111–8125. doi: 10.1175/JCLI-D-18-0774.1.

Koll, Daniel D. B. and Timothy W. Cronin (2018). “Earth’s outgoing longwave ra-
diation linear due to H2O greenhouse effect.” In: Proceedings of the National
Academy of Sciences 115.41, pp. 10293–10298. doi: 10.1073/pnas.1809868115.

Krautstrunk, Monika and Andreas Giez (2012). “The Transition From FALCON to
HALO Era Airborne Atmospheric Research.” In: pp. 609–624. doi: 10.1007/
978-3-642-30183-4_37.

Mauritsen, Thorsten et al. (2012). “Tuning the climate of a global model.” In:
Journal of Advances in Modeling Earth Systems 4.3, n/a–n/a. doi: 10 . 1029 /

2012MS000154.
McKim, Brett A., Nadir Jeevanjee, and Geoffrey K. Vallis (2021). “Joint Dependence

of Longwave Feedback on Surface Temperature and Relative Humidity.” In:
Geophysical Research Letters 48.18. doi: 10.1029/2021GL094074.

Medeiros, Brian, Bjorn Stevens, and Sandrine Bony (2014). “Using aquaplanets to
understand the robust responses of comprehensive climate models to forcing.”
In: Climate Dynamics 44.7-8, pp. 1957–1977. doi: 10.1007/s00382-014-2138-0.

Nakajima, Shinichi, Yoshi-Yuki Hayashi, and Yutaka Abe (1992). “A Study on the
“Runaway Greenhouse Effect” with a One-Dimensional Radiative–Convective
Equilibrium Model.” In: Journal of the Atmospheric Sciences 49.23, pp. 2256–2266.
doi: 10.1175/1520-0469(1992)049<2256:ASOTGE>2.0.CO;2.

O’Gorman, P. A. and C. J. Muller (2010). “How closely do changes in surface and
column water vapor follow Clausius–Clapeyron scaling in climate change sim-
ulations?” In: Environmental Research Letters 5.2, p. 025207. doi: 10.1088/1748-
9326/5/2/025207.

Petty, G. W. (2006). A First Course in Atmospheric Radiation. Sundog Pub. isbn:
0972903313.

Pierce, D. W. et al. (2006). “Three-dimensional tropospheric water vapor in coupled
climatemodels compared with observations from the AIRS satellite system.” In:
Geophysical Research Letters 33.21, p. L21701. doi: 10.1029/2006GL027060.

Pierrehumbert, R. T. (1995). “Thermostats, Radiator Fins, and the Local Runaway
Greenhouse.” In: Journal of the Atmospheric Sciences 52.10, pp. 1784–1806. doi:
10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

Pierrehumbert, R. T., H. Brogniez, and R. Roca (2007). “The Global Circulation of
the Atmosphere.” In: ed. by T. Schneider and A. Sobel. Princeton University
Press. Chap. On the relative humidity of the atmosphere, pp. 143–185.

Pierrehumbert, R. T. and R. Roca (1998). “Evidence for Control of Atlantic Subtrop-
ical Humidity by Large Scale Advection.” In: Geophysical Research Letters 25.24,
pp. 4537–4540. doi: 10.1029/1998GL900203.

Pierrehumbert, Raymond T. (1999). “Subtropical water vapor as a mediator of rapid
global climate change.” In: pp. 339–361. doi: 10.1029/GM112p0339.

Pincus, R. et al. (2017). “The Representation of Tropospheric Water Vapor Over
Low-Latitude Oceans in (Re-)analysis: Errors, Impacts, and the Ability to Ex-
ploit Current and Prospective Observations.” In: Surveys in Geophysics 38.6,
pp. 1399–1423. doi: 10.1007/s10712-017-9437-z.

https://doi.org/10.1175/JCLI-D-18-0774.1
https://doi.org/10.1073/pnas.1809868115
https://doi.org/10.1007/978-3-642-30183-4_37
https://doi.org/10.1007/978-3-642-30183-4_37
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2021GL094074
https://doi.org/10.1007/s00382-014-2138-0
https://doi.org/10.1175/1520-0469(1992)049<2256:ASOTGE>2.0.CO;2
https://doi.org/10.1088/1748-9326/5/2/025207
https://doi.org/10.1088/1748-9326/5/2/025207
https://doi.org/10.1029/2006GL027060
https://doi.org/10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2
https://doi.org/10.1029/1998GL900203
https://doi.org/10.1029/GM112p0339
https://doi.org/10.1007/s10712-017-9437-z


42 Bibliography

Po-Chedley, Stephen et al. (2018). “Sources of Intermodel Spread in the Lapse Rate
and Water Vapor Feedbacks.” In: Journal of Climate 31.8, pp. 3187–3206. doi:
10.1175/JCLI-D-17-0674.1.

Po-Chedley, S. et al. (2019). “Climatology Explains Intermodel Spread in Tropical
Upper Tropospheric Cloud and Relative Humidity Response to Greenhouse
Warming.” In: Geophysical Research Letters 46.22, pp. 13399–13409. doi: 10.1029/
2019GL084786.

Risi, Camille et al. (2012). “Process-evaluation of tropospheric humidity simulated
by general circulation models using water vapor isotopic observations: 2. Us-
ing isotopic diagnostics to understand the mid and upper tropospheric moist
bias in the tropics and subtropics.” In: Journal of Geophysical Research: Atmo-
spheres 117.D5. doi: 10.1029/2011JD016623.

Roca, R. et al. (2012). “Tropical and Extra-Tropical Influences on the Distribution
of Free Tropospheric Humidity Over the Intertropical Belt.” In: Surveys in Geo-
physics 33, pp. 565–583. doi: 10.1007/s10712-011-9169-4.

Romps, D. M. (2014). “An Analytical Model for Tropical Relative Humidity.” In:
Journal of Climate 27.19, pp. 7432–7449. doi: 10.1175/JCLI-D-14-00255.1.

Satoh, M. et al. (2019). “Global Cloud-Resolving Models.” In: Current Climate
Change Reports 5.3, pp. 172–184. doi: 10.1007/s40641-019-00131-0.

Schulz, H. and B. Stevens (2018). “Observing the Tropical Atmosphere in Moisture
Space.” In: Journal of the Atmospheric Sciences 75.10, pp. 3313–3330. doi: 10 .

1175/JAS-D-17-0375.1.
Seeley, Jacob T. and Nadir Jeevanjee (2021). “H sub2/sub O Windows and CO

sub2/sub Radiator Fins: A Clear-Sky Explanation for the Peak in Equilib-
rium Climate Sensitivity.” In: Geophysical Research Letters 48.4. doi: 10.1029/
2020GL089609.

Sherwood, S. C. (1996). “Maintainance of the Free-Tropospheric Tropical Water
Vapor Distribution. Part II: Simulation by Large-Scale Advection.” In: Journal of
Climate 9.11, pp. 2919–2934. doi: 10.1175/1520-0442(1996)009<2919:MOTFTT>
2.0.CO;2.

Sherwood, S. C. et al. (2010). “Relative humidity changes in a warmer climate.” In:
Journal of Geophysical Research 115.D9, p. D09104. doi: 10.1029/2009JD012585.

Sherwood, Steven C., Sandrine Bony, and Jean-Louis Dufresne (2014). “Spread in
model climate sensitivity traced to atmospheric convective mixing.” In: Nature
505.7481, pp. 37–42. doi: 10.1038/nature12829.

Shi, Lei and John J. Bates (2011). “Three decades of intersatellite-calibrated High-
Resolution Infrared Radiation Sounder upper tropospheric water vapor.” In:
Journal of Geophysical Research 116.D4. doi: 10.1029/2010JD014847.

Shine, Keith P. and Ashok Sinha (1991). “Sensitivity of the Earth's climate to height-
dependent changes in the water vapour mixing ratio.” In: Nature 354.6352,
pp. 382–384. doi: 10.1038/354382a0.

Simpson, G. C. (1928). “Some studies in terrestrial radiation.” In: Memoirs of the
Royal Meteorological Society 2.16, pp. 69–95.

Soden, B. J. and I. M. Held (2006). “An Assessment of Climate Feedbacks in Cou-
pled Ocean–Atmosphere Models.” In: Journal of Climate 19.14, pp. 3354–3360.
doi: 10.1175/JCLI3799.1.

https://doi.org/10.1175/JCLI-D-17-0674.1
https://doi.org/10.1029/2019GL084786
https://doi.org/10.1029/2019GL084786
https://doi.org/10.1029/2011JD016623
https://doi.org/10.1007/s10712-011-9169-4
https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/10.1007/s40641-019-00131-0
https://doi.org/10.1175/JAS-D-17-0375.1
https://doi.org/10.1175/JAS-D-17-0375.1
https://doi.org/10.1029/2020GL089609
https://doi.org/10.1029/2020GL089609
https://doi.org/10.1175/1520-0442(1996)009<2919:MOTFTT>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<2919:MOTFTT>2.0.CO;2
https://doi.org/10.1029/2009JD012585
https://doi.org/10.1038/nature12829
https://doi.org/10.1029/2010JD014847
https://doi.org/10.1038/354382a0
https://doi.org/10.1175/JCLI3799.1


Bibliography 43

Soden, Brian J. and Francis P. Bretherton (1993). “Upper tropospheric relative hu-
midity from the GOES 6.7 µm channel: Method and climatology for July 1987.”
In: Journal of Geophysical Research 98.D9, p. 16669. doi: 10.1029/93JD01283.

Spencer, R. W. and W. D. Braswell (1997). “How Dry is the Tropical Free Tropo-
sphere? Implications for Global Warming Theory.” In: Bulletin of the Ameri-
can Meteorological Society 78.6, pp. 1097–1106. doi: 10.1175/1520-0477(1997)
078<1097:hdittf>2.0.co;2.

Stevens, B. and S. Bony (2013a). “What Are Climate Models Missing?” In: Science
340.6136, pp. 1053–1054. doi: 10.1126/science.1237554.

Stevens, Bjorn and Sandrine Bony (2013b). “Water in the atmosphere.” In: Physics
Today 66.6, pp. 29–34. doi: 10.1063/PT.3.2009.

Stevens, Bjorn et al. (2019). “DYAMOND: the DYnamics of the Atmospheric gen-
eral circulation Modeled On Non-hydrostatic Domains.” In: Progress in Earth
and Planetary Science 6.61. doi: 10.1186/s40645-019-0304-z.

Stevens, Björn and Axel Seifert (2008). “Understanding macrophysical outcomes
of microphysical choices in simulations of shallow cumulus convection.” In:
Journal of the Meteorological Society of Japan 86A, pp. 143–162. doi: 10.2151/
jmsj.86A.143.

Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl (2012). “An Overview of
CMIP5 and the Experiment Design.” In: Bulletin of the American Meteorological
Society 93.4, pp. 485–498. doi: 10.1175/BAMS-D-11-00094.1.

Tomita, H. and M. Satoh (2004). “A new dynamical framework of nonhydrostatic
global model using the icosahedral grid.” In: Fluid Dynamics Research 34.6,
pp. 357–400. doi: 10.1016/j.fluiddyn.2004.03.003.

Tsushima, Yoko et al. (2020). “Investigating physical constraints on climate feed-
backs using a perturbed parameter ensemble.” In: Climate Dynamics 55.5-6,
pp. 1159–1185. doi: 10.1007/s00382-020-05318-y.

Vial, J., J.-L. Dufresne, and S. Bony (2013). “On the interpretation of inter-model
spread in CMIP5 climate sensitivity estimates.” In: Climate Dynamics 41.11-12,
pp. 3339–3362. doi: 10.1007/s00382-013-1725-9.

Vial, Jessica et al. (2016). “Coupling between lower-tropospheric convective mixing
and low-level clouds: Physical mechanisms and dependence on convection
scheme.” In: Journal of Advances in Modeling Earth Systems 8.4, pp. 1892–1911.
doi: 10.1002/2016MS000740.

Xue, Y. et al. (2020). “Assessment of Upper Tropospheric Water Vapor Monthly
Variation in Reanalyses With Near-Global Homogenized 6.5-µm Radiances
From Geostationary Satellites.” In: Journal of Geophysical Research: Atmospheres
125.18. doi: 10.1029/2020JD032695.

Zängl, Günther et al. (2015). “The ICON (ICOsahedral Non-hydrostatic) modelling
framework of DWD and MPI-M: Description of the non-hydrostatic dynamical
core.” In: Quarterly Journal of the Royal Meteorological Society 141.687, pp. 563–
579. doi: 10.1002/qj.2378.

https://doi.org/10.1029/93JD01283
https://doi.org/10.1175/1520-0477(1997)078<1097:hdittf>2.0.co;2
https://doi.org/10.1175/1520-0477(1997)078<1097:hdittf>2.0.co;2
https://doi.org/10.1126/science.1237554
https://doi.org/10.1063/PT.3.2009
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.2151/jmsj.86A.143
https://doi.org/10.2151/jmsj.86A.143
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1016/j.fluiddyn.2004.03.003
https://doi.org/10.1007/s00382-020-05318-y
https://doi.org/10.1007/s00382-013-1725-9
https://doi.org/10.1002/2016MS000740
https://doi.org/10.1029/2020JD032695
https://doi.org/10.1002/qj.2378




Part II

A P P E N D I X





A
T R O P I C A L F R E E - T R O P O S P H E R I C H U M I D I T Y D I F F E R E N C E S
A N D T H E I R E F F E C T O N T H E C L E A R - S K Y R A D I AT I O N
B U D G E T I N G L O B A L S T O R M - R E S O LV I N G M O D E L S

The work in this appendix has been published as:

Lang, T., Naumann, A. K., Stevens, B., and Buehler, S. A. (2021). Tropical free-
tropospheric humidity differences and their effect on the clear-sky radiation
budget in global storm-resolving models. Journal of Advances in Modeling Earth
Systems, 13, e2021MS002514. https://doi.org/10.1029/2021MS002514

contributions Together with all co-authors I conceptualized the study. A. K.
Naumann and S. A. Buehler supervised the study. I conducted the analysis and
prepared the manuscript with contributions from all co-authors.

47

https://doi.org/10.1029/2021MS002514


48 tropical humidity differences and their effect on the radiation budget

Tropical free-tropospheric humidity
differences and their effect on the

clear-sky radiation budget in global
storm-resolving models

Theresa Lang1,2, Ann Kristin Naumann3,1, Bjorn Stevens3, Stefan A. Buehler1

1Meteorological Institute, Center for Earth System Research and Sustainability (CEN),
Universität Hamburg, Hamburg, Germany

2International Max Planck Research School on Earth System Modelling, Max Planck
Institute for Meteorology, Hamburg, Germany

3Max Planck Institute for Meteorology, Hamburg, Germany

key points

• A 40-day comparison of storm-resolving models indicates that free-tropo-
spheric relative humidity differs less than among conventional models

• The remaining relative humidity differences still cause a non-negligible (ap-
proximately 1.2 Wm−2) spread in tropical mean clear-sky OLR

• Reducing humidity biases is most beneficial in the lower and mid free tropo-
sphere of dry subsidence regimes and near deep convective regimes

abstract

Reducing the model spread in free-tropospheric relative humidity (RH) and its re-
sponse to warming is a crucial step towards reducing the uncertainty in clear-sky
climate sensitivity, a step that is hoped to be taken with recently developed global
storm-resolving models (GSRMs). In this study we quantify the inter-model dif-
ferences in tropical present-day RH across GSRMs, making use of DYAMOND, a
first 40-day intercomparison. We find that the inter-model spread in tropical mean
free-tropospheric RH is reduced compared to conventional atmospheric models,
except from the the tropopause region and the transition to the boundary layer.
We estimate the reduction to approximately 50-70% in the upper troposphere and
25-50% in the mid troposphere. However, the remaining RH differences still result
in a spread of 1.2 Wm−2 in tropical mean clear-sky outgoing longwave radiation
(OLR). This spread is mainly caused by RH differences in the lower and mid free
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troposphere, whereas RH differences in the upper troposphere have a minor im-
pact. By examining model differences in moisture space we identify two regimes
with a particularly large contribution to the spread in tropical mean clear-sky OLR:
rather moist regimes at the transition from deep convective to subsidence regimes
and very dry subsidence regimes. Particularly for these regimes a better under-
standing of the processes controlling the RH biases is needed.

plain language summary

Errors in the humidity and its change with global warming simulated by climate
models limit our ability to predict how the climate system responds to an increase
in greenhouse gas concentrations. In this study we investigate how large these hu-
midity errors are in recently developed high-resolution models. We focus on the
relative humidity, which measures the amount of moisture in the air compared
to what air can hold at a given temperature. We find that the disagreement in
the tropics is reduced compared to conventional climate models, but the relative
humidity errors still have a considerable effect on the radiation budget. We also
investigate in which regions of the tropics a further reduction of errors would be
most beneficial. In the vertical, it is the altitude region between about 1 km and
10 km. In the horizontal, we find two tropical regimes that are particularly impor-
tant: Dry regimes with very strong subsidence and moister regimes at the edge of
deep convective regimes. Particularly for those regimes a better understanding of
the processes that cause the model errors is needed.

a.1 introduction

Free-tropospheric water vapor strongly impacts the Earth's outgoing longwave
radiation (OLR) and therefore plays a key role in controlling the clear-sky re-
sponse of the climate system to an increase in greenhouse gases. It is now widely
accepted that this response is described by a warming and moistening of the
atmosphere that is implied if the relative humidity (RH) and lapse rate were to
depend on temperature alone, which corresponds to a warming at approximately
constant RH (e.g. Held and Soden, 2000; Po-Chedley et al., 2019; Romps, 2014).
This reduces the radiative response compared to a warming at constant absolute
humidity, and can be described as a positive water-vapor–lapse-rate feedback.
While general circulation models (GCMs) agree on this basic response (e.g. Bony
et al., 2006; Soden and Held, 2006), there is still an appreciable inter-model spread
in the magnitude of the water-vapor–lapse-rate feedback. This spread, which
primarily originates from the tropics, contributes a non-negligible (about 30%)
uncertainty to the climate sensitivity (Vial et al., 2013).

The RH is an important detail. Even small deviations from its assumed con-
stancy with warming have a strong impact on the radiative response. RH changes
alter the radiative compensation between water-vapor and lapse-rate feedback in
the saturated regions of the emission spectrum (Bony et al., 2006) and differences
in the RH response control the spread in tropical water-vapor–lapse-rate feedback



50 tropical humidity differences and their effect on the radiation budget

across GCMs (Po-Chedley et al., 2018; Vial et al., 2013). Even if RH does not
change with warming, the RH profile in the present climate may influence the
feedback. While a correlation between global mean present-day humidity and
water vapor feedback has not been found for GCMs (John and Soden, 2007),
Bourdin et al., 2021 have argued that especially at warmer, tropical temperatures
the rapid closing of the atmospheric window by water vapor continuum absorp-
tion makes the feedback dependent on the RH profile. There are other reasons
to care about present-day free-tropospheric RH (e.g. Derbyshire et al., 2004; Luo
and Rossow, 2004; Stevens et al., 2017), but independent of whether these (or the
proposed direct effect of present-day RH on the feedback) end up being important,
confidence in an ability of models to correctly represent the present-day RH is
essential for building trust in model-based estimates of the subtle changes in RH
under warming that influence the water vapor feedback.

Sherwood et al., 2010 found that certain aspects of the tropical RH distribution
show signs of convergence in GCMs once horizontal resolutions fall below about
100km. It is also known from previous studies that free-tropospheric RH is
primarily controlled by the circulation on scales resolved by typical GCMs, and
parameterized processes like convection only matter by influencing the circulation
(e.g. Dessler and Sherwood, 2000; Pierrehumbert and Roca, 1998; Sherwood, 1996).
On the one hand, the convergence of RH in GCMs with different convective
parameterizations might indicate that convective processes play a minor role in
affecting the circulation. On the other hand, for simulations on an aquaplanet
Retsch et al., 2019 found that allowing convection to be resolved explicitly has a
larger impact on free-tropospheric RH than increasing resolution in simulations
with parameterized convection. This suggests that the circulation changes more
significantly once convection is resolved explicitly and calls into question whether
the RH in GCMs converges for physical reasons.

A milestone in climate modelling has been made with the emergence of global
storm-resolving models (GSRMs; Satoh et al., 2019), also called global cloud-
resolving or convection-permitting models. While the development of the first
GSRM already goes back more than 15 years (Tomita et al., 2005), only recently
the increase in computational capacities has allowed several modelling groups
to follow, enabling first intercomparisons. GSRMs solve the non-hydrostatic
equations on global grids with kilometre-scale resolution. At such resolutions
the models begin to resolve precipitating convective systems and therefore forgo
the need to parameterize deep convection, which is hoped to eradicate some
long-standing biases (e.g. Miura et al., 2007; Stevens et al., 2020). Whether the
spread in free-tropospheric RH is reduced in GSRMs is, however, not obvious.
This depends on how strongly the behavior of convection depends on model
formulation. If this dependence is weak, RH differences should be small among
GSRMs. However, there are also reasons to expect the opposite. Bourdin et al., 2021

found that RH differences across cloud-resolving models in radiative-convective
equilibrium (RCE) are substantially larger than across GCMs. The large spread
in RCE models is likely related to different degrees of convective organization
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(Becker and Wing, 2020). Although these differences are expected to be smaller in
simulations with more realistic setups, in which large-scale circulations impose
constraints on convective organization (Wing et al., 2020), they likely still play a
role. Therefore, it cannot be ruled out that the RH spread across GSRMs is similar
or even larger than across GCMs.

In this study we quantify differences in tropical free-tropospheric RH across
GSRMs for the first time, making use of the model intercomparison DYnamics
of the Atmospheric general circulation Modeled On Nonhydrostatic Domains
(DYAMOND; Stevens et al., 2019). To assess how relevant the RH differences are
from a radiative point of view, we translate them into differences in clear-sky
outgoing longwave radiation (OLR) using a radiative transfer scheme. The latter
is also used to compute radiative kernels, which allow us to identify those regions
in the tropical atmosphere, in which a future reduction of RH differences would
be most effective in reducing differences in clear-sky OLR.

We perform the comparison of the DYAMOND models in moisture space,
i.e. we sort the atmospheric state from dry to moist. On the one hand, humidity
fields in moisture space are highly aggregated, which ensures robust statistics.
On the other hand, the moisture space representation allows us to distinguish
between different dynamic regimes of the tropics, which is useful for identifying
regions of large inter-model spread as well as for the OLR calculations. The
representation of the atmosphere in moisture space is inspired by Bretherton
et al., 2005, who used it to study the energy balance of convective self-aggregation
in radiative-convective equilibrium simulations. Later, the depiction in moisture
space has also proven useful for analysing observational data (Schulz and Stevens,
2018) and to bypass the issue of co-location when comparing observations and
model simulations (Naumann and Kiemle, 2020).

This paper is organized as follows: In Section A.2 we introduce the DYAMOND
simulations and describe our post-processing of the model output. In Section A.3
we quantify inter-model RH differences in the tropical mean and in moisture
space. The impact of the RH differences on the clear-sky radiation budget is
examined in Section A.4.

a.2 dyamond simulations

a.2.1 Models and experimental protocol

DYAMOND is the first intercomparison project for GSRMs, comparing 40-day
simulations of nine models (only acronyms are given here): ICON, NICAM,
ARPEGE-NH, FV3, GEOS, MPAS, UM, SAM and IFS. In the following we provide
a brief overview of the models and the experimental protocol of DYAMOND. A
more detailed description is given by Stevens et al., 2019.
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Most of the DYAMOND models solve the fully compressible non-hydrostatic
Navier-Stokes equations. Two exceptions are SAM, which uses the anelastic form
of the non-hydrostatic equations, and IFS, which solves the primitive equations
and is hence a hydrostatic model. The models solve their governing equations
on a variety of different numerical grids. The horizontal grid spacing is between
2.5 km and 5 km in eight of the nine models. The only exception is UM, which
uses a latitude-longitude grid with a somewhat coarser resolution at low latitudes
(7.8 km at the equator). The number of vertical levels and the vertical extent of
the model grid also vary among the models. The models were not specifically
calibrated for the DYAMOND simulations. Some models even ran for the first
time in this configuration and at storm-resolving resolutions.

The models also differ in the parameterizations used to represent unresolved
processes. In particular, there are different approaches to handle convection,
reflecting some disagreement about which motions are adequately resolved at
kilometre-resolution. While in some models convection is not parameterized at
all, in others shallow convection is parameterized. GEOS and MPAS even employ
scale-aware parameterizations for deep convection. There is also diversity in the
parameterizations for boundary layer turbulence and microphysics.

The DYAMOND simulations were run for 40 days from 1 August to 10 Septem-
ber 2016. They were initialized with common atmospheric fields from the ECMWF
global (9 km) meteorological analysis. Daily sea surface temperatures (SSTs) and
sea ice concentrations from the ECMWF analysis were used as boundary condi-
tions. The initialization of the land surface was left to the practices of the indi-
vidual modelling groups. After the initialization each simulation was allowed to
evolve freely without further forcing.

a.2.2 Post-processing and profile selection

We use the 3-hourly output of atmospheric pressure p, temperature T, specific
humidity q as well as vertical velocity W. Following Stevens et al., 2019 we exclude
the first ten days of the simulations and only use the last 30 days to minimize the
effects of biases from differences in the model spin-up as well as constraints from
the common initialization.

The size of the model output represents a challenge for the analysis. 30 days
of one 3-hourly 3D field (corresponding to 240 timesteps) on the native model
grid covering the tropics have a size on the order of 2 TB. For nine models and
four variables this adds up to more than 60 TB. Developing strategies for dealing
effectively with the massive amounts of data produced by GSRMs is one of the
purposes of DYAMOND. Our approach is the following: In a first step all fields
are horizontally interpolated from each model's native grid to a common regular
latitude-longitude grid covering the tropics (30

◦ S to 30
◦ N) with a resolution of

0.1◦. This is done using a conservative remapping via the remap function of the
Climate Data Operators (CDO) version 1.9.5 (Schulzweida, 2019). The remapping
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reduces the data volume by about a factor of ten without noticeable loss of
information in the region of interest. In a second step we perform a subsampling
of grid points. From each of the 240 output timesteps about 42,000 oceanic profiles
are selected randomly, resulting in a total of 10 million selected profiles for each
model. This reduces the amount of data by another factor of 100. We estimated
the sampling uncertainty by repeating the random sampling several times for the
same model. For tropical mean RH, the quantity we focus on, the sampling un-
certainty is about 0.01% RH and hence two magnitudes smaller than inter-model
differences, which are on the order of 1% RH (Section A.3.1). In the same manner
we estimated the sampling uncertainty for each block in moisture space (Section
A.3.2) to be at least one order of magnitude smaller than the inter-model spread
in the respective block. Hence, the random subsampling of profiles introduces
only a small error, but reduces the data volume to 0.1% of its original size. This
result shows that although GSRMs work with tremendous data volumes, most of
the information is necessary for predicting their dynamic evolution, and for many
analyses there exists considerable opportunities to compress their output with
relatively little loss of information.

We exclude land areas to avoid complications from topography and more
strongly varying boundary layer depths and hence to simplify the interpretation.
The inhomogeneity of land regions would also colour our analysis in moisture
space. Vertically integrated water vapor (IWV), which is used to span moisture
space (Section A.3.2), is strongly influenced by local surface characteristics over
land. It can be very low in regions with little soil moisture or in regions with high
elevation. Consequently, if moisture space was spanned from both oceanic and
continental grid points, profiles associated with very different regimes would be
mixed in the same IWV blocks. Therefore, we focus on the more homogeneous
ocean regions.

The fifth generation of the ECMWF atmospheric reanalysis (ERA5; Hersbach
et al., 2020) serves as an observationally constrained reference data set in our com-
parison. It should be pointed out that potential biases with respect to observations
exist in the ERA5 water vapor fields. Xue et al., 2020 found a wet bias with respect
to satellite observations in the free troposphere, which is most pronounced in
regions of large-scale subsidence. Nevertheless, the dataset provides a valuable
constraint of the humidity distribution and can be used to estimate its natural
variability. Gridded atmospheric variables are provided at a spatial resolution
of 31 km. We use 3-hourly output corresponding to the output times of the
DYAMOND models and post-process it in the same way as the model output.

a.3 rh differences in dyamond models

In this section we quantify the differences in free-tropospheric RH in the DYA-
MOND models, first in the tropical mean and subsequently in moisture space.
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a.3.1 Tropical mean

Since the focus of this study is on the radiative impact of humidity differences we
concentrate on relative humidity (RH) rather than absolute humidity (measured
by q). The atmospheric temperature and water vapor concentration are decisive
parameters for clear-sky radiative transfer. The RH is a valuable proxy that links
their competing effects on longwave emission. This will be discussed in more
detail in the second part of this paper. Another reason to look at RH is that it is
RH rather than q that is effectively constrained by model processes (in particular,
condensation and evaporation). Therefore, any model errors in temperature are
expected to alter q but not necessarily RH.

RH is calculated for each of the randomly selected profiles and their associated
values of q, p and T as RH = e

es(T)
, where e is the water vapor pressure and es(T)

is its saturation value at temperature T. For es(T) we take the value over water
for T above the triple point Tt and the value over ice for T below Tt − 23 K. For
intermediate T a a combination of both is used following the IFS documentation
(ECMWF, 2018). It should be noted here that the RH computed in this way can
deviate from the RH calculated internally in the microphysics schemes of the
models because they use different methods to compute RH above the freezing
level. The deviations are relevant when the relation between RH and clouds
or precipitation is investigated. However, as explained above our focus is on
the radiative impact of the humidity differences. We regard RH primarily as a
quantity that links temperature and absolute humidity, which are the quantities
that ultimately enter the models'radiation schemes. Therefore, it is reasonable to
compare RH computed in a uniform way for all models.

Overall, the models all capture the typical C-shape of the tropical mean RH
profile with two maxima, one atop the boundary layer and one at the tropopause,
and a minimum in the mid troposphere (Figure A.9). The models'RH distributions
also agree remarkably well with the ERA5 distribution. In fact, the multi-model
mean RH (not shown) differs from ERA5 by less than 2% RH throughout the
troposphere, except from the altitude region above 15 km.

Nevertheless, there are considerable differences among the models. The inter-
model standard deviation σ(RH) (Figure A.9c) has a distinct maximum around the
top of the boundary layer (BL). The transition from the BL to the free troposphere
is marked by a steep gradient in RH. Therefore, differences in the depth of the
BL cause a large inter-model spread in RH. In IFS the RH gradient at the top of
the BL is particularly steep and the lower free troposphere is significantly dryer
than in other models. Generally, in most models the BL is deeper than in ERA5.
The inter-model spread is smallest in the mid troposphere between 4 and 10 km
altitude. In that region σ(RH) is 2–3% RH and approximately constant with height.
RH is lower than in ERA5 in the majority of models, except for ICON and NICAM.
Above 10 km σ(RH) increases with altitude and exceeds 8% RH at 100 hPa.
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Figure A.9: Tropical mean RH profiles and inter-model spread in the DYAMOND ensem-
ble. (a) Tropical mean vertical profiles of RH over ocean regions from all DYA-
MOND models (colours), the ERA5 reanalysis (black solid) and the CMIP5

AMIP 30-year multi-model mean (black dashed). (b) Vertical RH profiles for
the DYAMOND models shown as deviation from the ERA5 profile. (c) Inter-
model standard deviation of tropical mean RH in DYAMOND (solid line). For
comparison, the inter-annual RH spread in five years of ERA5 (2014-2019; dot-
ted line) as well as the inter-model spread of the 30-year mean RH in the
CMIP5 AMIP ensemble (dashed line) are shown. Grey shading indicates the
range of inter-model standard deviations in individual months of the AMIP
experiment.

To the extent one thinks of RH anomalies as linking q and T anomalies, it
is informative to consider q and T separately. In the DYAMOND models, T
anomalies are smallest in the lower troposphere, where they are constrained by
identical SSTs, and increase with height throughout the free troposphere, where
the temperature profile is set by convection and radiation (Figure A.10a,b). At
lower levels, where T anomalies are small, q and RH anomalies are correlated
(Figure A.9b, Figure A.10d). In the upper troposphere, where T anomalies are
large, T and q anomalies are correlated (Figure A.10b,d), consistent with the idea
that model errors in T cause errors in q. Although RH anomalies are also large
there (Figure A.9), they play a minor role in determining whether a model's q is
small or large as compared to another model's q.

That the DYAMOND simulations were run just over one month (August/
September 2016) represents a potential limitation for the intercomparison, espe-
cially for variables that are subject to high internal variability on longer time
scales. To estimate the internal variability of RH, we calculate the interannual
variability in the mean August/ September RH distribution based on five years
(2014-2019) of the ERA5 reanalysis, shown as the dotted line in Figure A.9c. Given
that interannual variations in free-tropospheric water vapor are primarily driven
by SST variations (Chuang et al., 2010) and the five years include a strong El
Niño event in 2015/2016, the interannual variability rather represents an upper
bound for the internal variability one could expect in the DYAMOND runs with
fixed SST. Despite this, the inter-model standard deviation is significantly larger
than the ERA5 interannual variability throughout the troposphere, suggesting
that the inter-model differences are mostly systematic model biases rather than
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Figure A.10: Tropical mean vertical profiles of temperature T and specific humidity q over
ocean regions from all DYAMOND models. Vertical profiles of T (a, b) and q
(c, d) are shown as absolute values together with the ERA5 profiles (a, c) and
as deviation from the ERA5 profiles (b, d). Deviations in q are in fractional
units, i.e. normalized by the ERA5 value (qERA5).

a result of poorly sampled internal variability. The region where the inter-model
differences are expected to be colored most strongly by internal variability is the
upper troposphere, where the inter-model spread is only two to three times larger
than the estimated internal variability.

Another potential limitation arises from the common initialization of the
models, which might constrain the RH profiles even after the first ten days of
the simulation that were excluded (Section A.2.2). To test this, we divided the
analyzed 30-day period into three consecutive 10-day periods and repeated the
spread analysis. We did not find a systematic increase of the inter-model spread
over time, except for the altitude region above 14 km. For a second analysis we
made use of a coupled atmosphere-ocean simulation performed with the ICON
model at storm-resolving resolution (5 km grid spacing). The simulation was
run for two years, starting on 20th January 2020. The length of the simulation
allows us to examine how the RH profile evolves after the first 40 days. In Figure
A.11 we compare tropical mean RH profiles for February 2020 and February
2021. February 2020 corresponds to days 13 to 40 after the initialization and is
hence comparable to the time period we analyze in the DYAMOND simulations.
If the RH profile was still in the transition from the initial conditions during
that month, we would expect it to be very different one year later. However, the
RH differences between February 2020 and February 2021 are small compared
to the inter-model differences (cf. Figure A.9). Throughout the lower and mid
troposphere, the difference is smaller than 1% RH. The largest differences of up
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to 3% RH occur in the upper troposphere above 12 km. It has to be kept in mind
that SST changes from February 2020 to February 2021 in the coupled simulation,
so the RH differences we find are most likely related to SST changes rather than
to constraints from initialization in February 2020. The size of the differences and
the increase in the upper troposphere are in accordance to what we found for the
inter-annual variations in ERA5 (Figure A.9c). It is very unlikely that the RH in
February 2020 was still in its transition from initialization, but SST and/or model
drift changed in a way to keep RH almost constant in February 2021. Hence, both
analyses indicate that the transition from the initial conditions is already largely
completed after the first ten days. The upper troposphere (above 12 km) might be
an exception, but as we will see in Section A.4 the RH differences in this region
do not significantly affect the clear-sky radiation budget.
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Figure A.11: Comparison of RH in two subsequent Februaries of a coupled atmosphere-
ocean simulation with the ICON model at storm-resolving resolution (5 km).
(a) Tropical mean (ocean only) RH in February 2020 (blue) and February
2021 (orange). February 2020 corresponds to days 13 to 40 after initialization,
which is comparable to the analyzed DYAMOND period. (b) RH difference
between February 2020 and February 2021.

To examine how the RH spread in DYAMOND compares to that in conventional,
coarser atmospheric GCMs, we compare the DYAMOND ensemble to 29 GCMs
that participated in the Atmospheric Model Intercomparison Project (AMIP) exper-
iments of the Coupled Model Intercomparison Project phase five (CMIP5; Taylor
et al., 2012). The AMIP simulations have a total length of 30 years (1979-2008) and
were run with prescribed (identical) SST. An exact quantitative comparison of
the RH spread in GSRMs and GCMs will not be possible until longer, multi-year
storm-resolving simulations are available. Nevertheless, a comparison to the
AMIP GCMs is valuable to put the DYAMOND spread into perspective. The
inter-model spread in AMIP is quantified both based on 30-year averages and
based on monthly averages of RH. This allows us to estimate how much the
inter-model spread in a single month can differ from the spread on climatological
timescales. The inter-model standard deviation of 30-year mean RH is denoted by
the black dashed line in Figure A.9c. It lies within the range of monthly standard
deviations, which is shown as gray shading. In most parts of the free troposphere,
the most extreme monthly standard deviations differ between 5-25% from the
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30-year value. Only in the tropopause region the deviations are larger (up to 40%).
Overall, the AMIP experiment confirms that the inter-model spread in a single
month provides a good first estimate of the inter-model spread on climatological
timescales. However, the variability in the monthly standard-deviation should
be kept in mind when the (monthly) DYAMOND spread is compared to the
(climatological) AMIP spread in the following.

The inter-model spread in DYAMOND is smaller than the spread in AMIP
throughout most of the free troposphere. The largest reduction is found between
8 km and 14 km altitude, where the RH spread in DYAMOND is reduced by
approximately 50-70% compared to AMIP. At lower altitudes, between 3 km and
8 km altitude, the DYAMOND spread is smaller by approximately 25-50%. The
lower free troposphere is an exception: the peak in σ(RH) at the top of the BL is
less pronounced in CMIP5 AMIP than in DYAMOND, indicating that variations in
the depth of the BL are smaller in the AMIP models. However, part of the smaller
spread in the AMIP models can be explained by the fact that the hydrolapse in
these models is generally less steep, which is evident from the AMIP multi-model
mean RH profile (Figure A.9a). RH differences caused by a shift in the height of
the hydrolapse are therefore smaller, but dispersed over a broader layer.

As mentioned in Section A.1, Sherwood et al., 2010 found that certain aspects
of the RH distribution converge in GCMs once horizontal grid spacings fall
below a certain scale. A question arising from this is whether the agreement
across GSRMs is better than across the CMIP5 AMIP models with rather high
resolutions. To test this we repeated the spread analysis for only those nine AMIP
models with grid resolutions exceeding T85 (128x256 grid points), corresponding
to the scale suggested by Sherwood et al., 2010. While the RH spread across these
high-resolution GCMs is somewhat reduced in the upper and lower troposphere,
the spread in the mid troposphere seems to be unaffected (not shown). As we
will show in Section A.4.4, it is particularly the spread in the mid troposphere
that matters for the outgoing longwave radiation. Hence, there is still a valuable
improvement in GSRMs compared to the high-resolution GCMs.

An additional series of DYAMOND runs with the ICON model allowed us to
investigate how RH changes with increasing horizontal resolution beyond the
convergence scale suggested by Sherwood et al., 2010. We compared tropical
mean (ocean only) RH from runs at 80 km, 40 km and 20 km grid spacing with
parameterized convection as well as runs at 20 km, 10 km, 5 km and 2.5 km grid
spacing with explicit convection (not shown). In the parameterized runs RH
hardly changes with increasing horizontal resolution. RH strongly depends on
resolution for the explicit runs at 20 km and 10 km, for which using explicit con-
vection might not be adequate. At 5 km grid spacing RH has converged. In some
altitude regions, particularly in the mid troposphere, the RH difference between
the converged explicit runs and the parameterized runs is significantly larger than
the differences between the parameterized runs at different resolutions. These
findings suggest that resolving convection impacts RH although it seemed to have
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already converged at coarser resolutions when convection was parameterized.

In summary, despite the shortness of the DYAMOND simulations we can say
with a high degree of certainty that the spread in free-tropospheric RH in the
DYAMOND GSRMs is reduced compared to the AMIP GCMs throughout most
of the free troposphere, except from the region at the transition to the BL and
the tropopause region. We estimate the reduction to approximately 50-70% in
the upper troposphere (8-14 km) and 25-50% in the mid troposphere (3-8 km).
For an exact quantification longer storm-resolving simulations are required. The
reduction in the spread is even more remarkable considering that the DYAMOND
models were not specifically calibrated for this experiment. Many of them were
even run in the storm-resolving configuration for the first time. However, as we
will show in Section A.4, the remaining RH differences still have a non-negligible
impact on the clear-sky radiation budget.

a.3.2 Moisture space

To distinguish between different dynamic regimes of the tropics, namely sub-
sidence and deep convective regimes, which are not necessarily co-located in
different models, we compare RH statistics in moisture space (Bretherton et al.,
2005; Naumann and Kiemle, 2020; Schulz and Stevens, 2018). To span the moisture
space, the randomly selected atmospheric profiles (Section A.2.2) are ranked by
their vertically integrated water vapor (IWV). The integration is performed from
the surface to an altitude of 20 km for all models.

Inter-model differences in the distribution of IWV are most pronounced at high
IWV values (Figure A.12). This is apparent when comparing different percentiles
of IWV. While the 25th percentiles of all models lie within a range of 2.2 kg m−2,
the 75th percentiles differ by more than 10 kg m−2 between the two most extreme
models IFS and NICAM. The overall shape of the IWV distribution differs among
models. For IFS and NICAM, distributions are approximately uniform over a large
range of IWV values, whereas the distribution of ARPEGE-NH has a pronounced
peak at IWV values of about 50 kg m−2. For the remaining models (including
ERA5), distributions are more bimodal with a first peak at 25–30 kg m−2 and
a second peak at 50-55 kg m−2. The exact position and the relative strengths of
the two peaks differ among the models. In SAM the first peak is particularly
pronounced, whereas in ICON the second peak is comparably strong. Bimodality
is a known feature of the IWV distribution over tropical oceans, which is not
reliably reproduced by GCMs (Mapes et al., 2018). Our results indicate that this
problem is similarly pronounced in GSRMs.

To display quantities in moisture space, IWV-ranked profiles from each model
are split into 50 blocks, each containing an equal amount of profiles corresponding
to two percentiles of IWV. Quantities are then averaged over each block. This
block-averaging results in an x-axis that is linear in the percentile of IWV. Note
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Figure A.12: Probability density function of integrated water vapor (IWV) over tropical
ocean regions in the DYAMOND models and ERA5. Percentiles of each
model's IWV distribution are shown below the curves: Coloured circles in-
dicate the median, horizontal bars range from the 25th to the 75th percentile.

that this also means that the comparison of different models in moisture space
is made at a certain IWV percentile rather than a certain IWV value. IWV itself
increases rather linearly with the percentile (black line in Figure A.13d), but
deviations in the upper- and lowermost percentiles are indicative of long tails in
the IWV distribution (Figure A.12), and hence unusually potent moist and dry
extremes.

SST increases from about 292 K in low IWV percentiles to about 302 K in high
percentiles (Figure A.13d). The SST gradient weakens from dry to moist regimes,
similar to how the meridional SST gradient weakens from the subtropics towards
the inner tropics. The inter-model standard deviation in block-averaged SSTs is
around 0.15 K, implying that the the distribution of SST in moisture space is very
similar among models. The underlying PDF of SSTs is identical in all models,
which, compared to other quantities like IWV, puts an additional constraint on
the SST distribution in moisture space.

Block-averaged vertical velocities (Figure A.13c) indicate that the large-scale
circulation is directed upward in the highest 5–10 IWV percentiles and downward
in drier regions. The blocks with positive vertical velocities correspond to the
regions of intense rainfall in the Indo-Pacific Warm Pool and the Intertropical
Convergenze Zone (ITCZ), where deep convection is concentrated. Note that
block-averaged vertical velocities take on values up to 13 cm s−1 in the deep
convective regimes, but the color map in Figure A.13c is truncated at 1.2 cm s−1.
The drier blocks correspond to trade wind regimes. There, the free troposphere
is characterized by large-scale subsidence, which increases in strength with
decreasing IWV. At the transition from deep convective to subsidence regimes
near the 90th IWV percentile vertical velocities are negative in the lower free
troposphere and positive aloft. These blocks represent an advanced state in the
life cycle of deep convection associated with upper-level anvil clouds. This state
is characterized by ascent above the freezing level (which is located around 5 km)
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Figure A.13: Distributions of different block-averaged quantities in moisture space: (a)
multi-model mean RH, (b) multi-model standard deviation of RH, (c) multi-
model mean vertical velocity and (d) multi-model mean IWV (black), SST
(blue) and all-sky OLR (red). Note that the color map for vertical velocity in
(c) is truncated at 1.2 cm s−1 and any larger values (up to 13 cm s−1 in the high-
est IWV block) are displayed in black. For the quantities in (d) the inter-model
standard deviation is denoted by shaded areas around the multi-model mean
values.

and descent below, driven by condensation and freezing above the freezing level,
and melting and evaporation of precipitation below (Betts, 1990). The increasing
amount of high-level clouds from dry to moist regimes is also reflected by a sharp
decrease in all-sky OLR in the moist blocks (Figure A.13d).

The largest RH values are found in the BL (Figure A.13a), where moisture is
provided by evaporation from the surface. The RH in the BL is relatively constant
throughout moisture space. Where air rises from the BL to the free troposphere in
deep convective plumes it cools and its RH increases until saturation is reached.
Therefore, the highest RH values in the free troposphere are found in deep
convective regions. Throughout the tropics, particularly in the subsidence regions,
the free-tropospheric RH profile takes on a typical C-shape, which is known
from observations (e.g. Jensen et al., 1999; Vömel, 2002) and GCMs (Sherwood
et al., 2010). With a simple analytical model Romps, 2014 showed that this shape
of the RH profile can be understood from the balance between moistening by
detrainment of saturated air from convective regions and drying by subsidence. As
the temperature lapse rate increases with height, the reduction in RH for a given
amount of subsidence also increases with height. This increase in subsidence
drying, together with a decrease in convective moistening, explains why RH
decreases with height in the lower free troposphere. In the upper troposphere,
however, convective moistening dominates and causes RH to maximize at the
tropopause. A plateau in RH is apparent near the freezing level at around 5 km
particularly in the high IWV percentiles. Latent heat release from ice formation
enhances the stability at this level, which causes deep convection to preferably
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detrain there (Stevens et al., 2017).

Displaying inter-model differences in moisture space reveals how they are
distributed over the different regimes of the tropics. RH anomalies for individual
models are shown in Figure A.16 in A.6.1. Here we focus on the inter-model stan-
dard deviation σ(RH), shown in Figure A.13b. First, it is apparent that the large
inter-model spread in the upper troposphere (Figure A.9) prevails throughout
the entire tropics. In the tropopause region σ(RH) exceeds 10% RH everywhere
except from the driest part of the subsidence regions. Second, the local maximum
in σ(RH) at the top of the BL is most pronounced in the driest regimes, where
the RH gradient between the BL and the free troposphere is steepest (Figure
A.13a). In moister regions, where the RH gradient is less steep, the maximum
in σ(RH) is weaker but broader. Third, in the mid troposphere σ(RH) increases
from less than 1% RH in the lowest IWV percentiles to more than 5% RH near the
90th percentile. The largest part of the spread in tropical mean mid-tropospheric
RH stems from the region representing the transition from subsidence to deep
convective regimes (cf. Figure A.13c). The large spread in this regime might be
related to model differences in convective behavior. In the moistest 5 percentiles
of IWV the inter-model spread decreases again. In these regimes deep convection
keeps the RH close to 100% in all models.

a.4 impact of rh anomalies on clear-sky olr

To quantify the effect of the inter-model differences on the radiation balance, we
translate them into differences in clear-sky OLR (OLRc) using a radiative transfer
model. The differences are analyzed in moisture space to determine how much
different tropical moisture regimes contribute to the inter-model spread in tropical
mean OLRc. Furthermore, we use radiative kernels to examine in which altitude
regions RH differences have the strongest impact on OLRc. This allows us to
identify the regions of the tropical troposphere in which a further reduction of RH
differences would be most beneficial.

Fundamentally, clear-sky OLR is determined by surface temperature as well
as atmospheric temperature and greenhouse gas concentrations. For the OLRc

anomalies in the DYAMOND models we expect that anomalies in the surface tem-
perature play a minor role, since SST is prescribed and its distributions in moisture
space is very similar among models (Figure A.13d). Furthermore, compared to
model differences in water vapor we expect differences in other greenhouse gasses
to have a small effect on OLRc. Therefore, we fix the concentrations of other
greenhouse gasses in our radiative transfer simulations. Thus, we assume that
OLRc anomalies in the DYAMOND models are primarily caused by anomalies in
atmospheric temperature and absolute humidity.
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a.4.1 Radiative transfer simulations

The radiative transfer simulations to obtain clear-sky OLR are performed with the
Rapid Radiative Transfer Model for GCMs (RRTMG; Mlawer et al., 1997). RRTMG
is a well validated fast radiative transfer code used in various weather and climate
models. For this study we use RRTMG through the Python package konrad
(DOI: 10.5281/zenodo.3899702), which in turn uses the CliMT Python interface
for RRTMG (Monteiro et al., 2018). Note that not all of the DYAMOND models
employ RRTMG as their native radiation scheme. Differences in the radiation
codes can cause errors on the order of 2 Wm−2 in the models'internally calculated
clear-sky OLR (Pincus et al., 2015). By using the same radiation scheme for each
model for our offline calculations we neglect this error source, but instead focus
solely on the effect of RH differences on clear-sky OLR.

OLRc is calculated based on the block-averaged profiles of pressure, temper-
ature, and specific humidity in moisture space (Section A.3.2). We found that
calculating OLRc from block-averaged profiles generally introduces a small
negative error compared to OLRc calculated based on individual profiles. OLR
is often thought to increase linearly with temperature, and does, increasingly so,
as temperatures are reduced below their tropical mean (e.g. Koll and Cronin,
2018). Within the tropics, where temperature fluctuations are small, variability in
clear-sky OLR is dominated by RH changes (e.g. John et al., 2006). Due to the
approximately logarithmic dependence of OLRc on RH, averaging decreases OLRc

(Pierrehumbert et al., 2007). However, the resulting bias is very similar for all
models, so that the effect on inter-model differences in OLRc is negligible.

To characterize the surface we use model output of surface pressure and the
prescribed SST fields and select the same points as for the 3D data (Section A.2.2).
The surface emissivity is assumed to be 1. For other gasses than water vapor we
use fixed vertical profiles in accordance with those in Wing et al., 2017: The ozone
volume mixing ratio follows a gamma distribution in pressure and vertically
constant volume mixing ratios are assumed for O2, CO2, CH4 and N2O.

For the radiative transfer simulations we interpolate profiles from all models
on a uniform vertical grid ranging from the surface to an altitude of 20 km with
a resolution of 100 m. The top at 20 km corresponds to the maximum altitude for
which output is available from all models. For our purpose OLRc is defined as the
longwave upward clear-sky radiative flux at this level. Due to this definition the
inter-model differences in OLRc only reflect T and q differences in the troposphere,
potential differences in the stratosphere are ignored. Note that due to the missing
stratosphere the absolute value of the OLRc defined at 20 km has a positive offset
compared to the "true" OLRc defined at a higher TOA. However, this is not
relevant for our results since we are only interested in the effect of differences in
the troposphere.
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We focus only on the clear-sky case here, so any cloud condensate contained in
the profiles is ignored. Clouds, particularly those at high altitudes, have a strong
impact on OLR. Hence, model differences in cloud properties can cause significant
differences in all-sky OLR, which are not considered here.

a.4.2 Model differences in clear-sky OLR

Tropical mean OLRc differs by more than 4 Wm−2 between the two most extreme
models IFS and ICON (Figure A.14a). The multi-model standard deviation
σ(OLRc) in tropical mean clear-sky OLR is 1.2 Wm−2. This is small compared to
cloud radiative effects, but still a third of the estimated radiative forcing due to a
doubling of CO2 (Collins et al., 2013). In some models, e.g. UM and ARPEGE-NH,
both positive and negative anomalies occur across moisture space, which partly
cancel in the tropical mean.

Two moisture regimes stand out due to a particularly large spread in clear-sky
OLR (Figure A.14b): One local maximum in σ(OLRc) occurs in rather moist
regimes around the 80th percentile of IWV. This corresponds to the region at the
transition from deep convective to subsidence regimes, where the inter-model
RH spread in the mid troposphere maximizes (Figure A.13b). A second, slightly
weaker maximum in σ(OLRc) is located at the dry end of moisture space. In the
next section we aim to better understand why the spread in OLRc maximizes in
these two regimes and which altitude regions in the troposphere contribute most.
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Figure A.14: Inter-model differences in clear-sky OLR in moisture space. (a) Anomalies in
clear-sky OLR for each model, defined as the deviation from the ERA5 value
and (b) inter-model standard deviation of clear-sky OLR.
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a.4.3 Radiative kernels

To examine how different altitude regions in moisture space contribute to the
spread in tropical mean OLRc, for each of the 50 blocks in moisture space we
decompose each model's OLRc anomaly into contributions from individual
atmospheric layers using the radiative kernel method (Soden et al., 2008).

The atmosphere is divided into N vertical layers and it is assumed that a model's
clear-sky OLR anomaly ∆OLRc can be expanded in a linear form as:

∆OLRc ≈
N

∑
i=1

(
Ke

i ∆ei + KT
i ∆Ti

)
≈

N

∑
i=1

KRH
i ∆RHi, (6)

where the index i denotes the vertical layer. Kx
i is the i-th component of the the

vector Kx, called radiative kernel. It describes the sensitivity of OLRc to changes in
a variable x in each layer i:

Kx
i =

∂OLRc

∂xi
. (7)

The first approximation in Equation 6 assumes that anomalies in OLRc are
primarily caused by anomalies in atmospheric e and T, the effect of anomalies
in surface temperature is assumed to be negligible. Moreover, it is assumed that
contributions from each layer to the OLR response are independent, neglecting
potential masking effects from perturbations above. Despite these assumptions
the kernels Ke and KT can be used to approximate the OLRc anomalies of the
DYAMOND models with good accuracy, which is shown in Figure A.17 in A.6.2.
The computation of the kernels is also described in A.6.2.

Perturbations in e and T have opposite effects on OLRc, which is evident from
the different signs of the respective kernels (Figure A.17). At constant RH pertur-
bations in e and T are positively correlated, so their effects on OLRc compensate
to some degree. It is well known that in the water vapor bands, the spectral
regions at which the water vapor optical depth is larger than 1, modulo foreign
broadening, the emission from a layer to space depends only on RH (Ingram,
2010; Nakajima et al., 1992). This behavior is often referred to as "Simpsonian",
as it has been recognized since the early work of Simpson, 1928. Therefore, it
can be assumed that anomalies in OLRc in the DYAMOND models are primarily
determined by RH anomalies. This corresponds to the second approximation in
Equation 6.

A perturbation in RH can be produced isothermally, i.e. by varying e and keep-
ing T constant, or isobarically, i.e. by varying T and keeping e constant. Therefore,
there are two ways to define a RH kernel, which we refer to as KRH,e and KRH,T,
respectively:
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KRH,e
i = ∂OLRc

∂RHi

∣∣∣
T=const.

= es Ke
i

KRH,T
i = ∂OLRc

∂RHi

∣∣∣
e=const.

= − es

RH
(

des

dT
)−1 KT

i . (8)

To translate Ke and KT into RH kernels they have to be weighted by a factor
describing the change of RH for a change in e or T, respectively. For KRH,e this
factor is equal to the saturation water vapor pressure es. For KRH,T the dependence
of es on T given by the Clausius Clapeyron relation has to be taken into account.
KRH,e and KRH,T are identical to the extent that the OLRc response to a given
change in RH is independent of whether this change is produced by a change in e
or in T.

OLRc anomalies approximated using KRH,e (Figure A.15c) are more accurate
than those approximated using KRH,T (Figure A.18c). Therefore, for the further
analysis we concentrate on KRH,e. Overall, OLRc anomalies approximated from
RH anomalies agree well with true (directly calculated) OLRc anomalies (Figure
A.15c) and the inter-model standard deviation σ(OLRc) is well reproduced (Figure
A.15d). In A.6.2 we elaborate more on the accuracy of the approximation for
individual models as well as on the differences between KRH,e and KRH,T.

a.4.4 Relative importance of different altitude regions

The impact of RH anomalies for the radiation budget is determined by the mag-
nitude of the RH anomalies and the sensitivity of OLRc to a given perturbation
in RH. The latter is described by the radiative kernel KRH,e (Equation 6). KRH,e

is negative throughout the tropical troposphere (Figure A.15a), indicating that an
increase in RH leads to a decrease in OLRc. Its absolute value is largest in the mid
troposphere in the dry subsidence regimes.

The overall distribution of the kernel can be understood based on the concept
of an effective emission height for each wavenumber ν, corresponding to the
level at which the optical depth τν reaches unity (e.g. Petty, 2006). A water vapor
perturbation will generally have a strong impact on OLR if it is applied near
or above a level for which τν ≈ 1 in a large portion of the water vapor bands.
Ultimately, the vertical distribution of KRH,e is determined by the distribution of
effective emission heights. The distribution of effective emission heights depends
on the distribution of spectral absorption coefficients and is generally broad
(e.g. Clough et al., 1992; Jeevanjee and Fueglistaler, 2020), which is why KRH,e is
significant throughout the troposphere. However, above a certain level (around
200 hPa) the emission from water vapor rapidly declines, which is well known
from studies of radiative cooling (e.g. Hartmann and Larson, 2002). Due to
the strong dependence of water vapor concentrations on temperature through
Clausius-Clapeyron, the amount of water vapor at these upper levels is so small
that even at the line centers τν barely reaches unity. The emission to space also
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Figure A.15: Impact of RH differences on clear-sky OLR in moisture space. (a) RH re-
sponse kernel KRH,e showing the sensitivity of clear-sky OLR to a 1% RH
change in a 1 km layer under constant temperature for 50 blocks in mois-
ture space, (b) inter-model standard deviation σ(RH) weighted with KRH,e, (c)
Clear-sky OLR anomalies approximated from KRH,e and the RH anomalies of
each model and (d) inter-model standard deviation in the approximated clear-
sky OLR. Thin dashed lines in (c) and (d) correspond to "true" clear-sky OLR
calculated directly from temperature and specific humidity profiles (same as
in Figure A.14). The vertical integral of (b) is shown as the grey line in (c).

declines at the lowest levels, although water vapor is abundant, because there is
only a limited part of the spectrum (on the wings of lines and very weak lines),
where radiation can escape to space without being re-absorbed at upper levels.
This "masking" by the optically thick atmosphere above increases with increasing
IWV, which is why for a given altitude level the absolute value of KRH,e decreases
towards moist regimes.

Note that in general the distribution of a water vapor kernel is very sensitive
to how water vapor is perturbed (Held and Soden, 2000). We perturb RH by a
constant value, similar to Spencer and Braswell, 1997 or Allan et al., 1999. In this
case the perturbation in e is proportional to es (Equation 8). Hence, it decreases
with altitude, but is approximately constant throughout moisture space. Other
studies apply equal fractional perturbations in e (Shine and Sinha, 1991) or keep
RH constant under a uniform temperature perturbation (Held and Soden, 2000;
Soden et al., 2008). In both cases the perturbation in e is proportional to e itself,
resulting in a stronger weighting of moist compared to dry regimes.

In low IWV percentiles KRH,e peaks at an altitude of around 6 km. The peak
weakens from dry to moist regimes for the reasons named above. A very similar
behavior was found by Spencer and Braswell, 1997 for base states with RH
values roughly corresponding to those in the dry half of moisture space. For the
moist half of moisture space, however, we find that lower atmospheric layers
(below 5 km) become relatively more important. A possible explanation for this
could be the continuum absorption in the major atmospheric window region
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(approximately 800 to 1200 cm−1), which acts to decrease the surface component
of OLRc as RH increases in the lower troposphere. In contrast to absorption
in the water vapor bands, continuum absorption scales with the square of the
water vapor pressure and therefore becomes relatively more important for high
humidity base states.

The product of the RH response kernel KRH,e and the RH inter-model standard
deviation σ(RH) (Figure A.15b) indicates where the actual inter-model differences
have the strongest effect on clear-sky OLR. First, the top of the BL stands out
as a narrow region of strong impact. OLRc is not particularly sensitive to RH
perturbations there (Figure A.15a), but the inter-model differences in RH are large
(Figure A.13b) because the models differ in the depth of the BL. RH differences
in a broad layer in the mid troposphere also significantly affect OLRc. Integrated
over its full width, the contribution from this layer is larger than that from the
BL top. The mid troposphere is characterized by an increasing RH spread from
dry to moist regimes with a pronounced maximum near the 80th IWV percentile
(Figure A.13b) and a decreasing sensitivity of OLRc from dry to moist regimes
(Figure A.15a). The combination of both results in a relatively uniform importance
of RH differences across moisture space, with two local maxima occurring near
the 30th and near the 80th IWV percentile. The layer over which RH differences
have a considerable impact on OLRc generally extends to higher altitudes in
the dry regimes than in the moist regimes, which is again a consequence of the
stronger masking effect in moist regimes. Due to the low sensitivity of OLRc

to RH perturbations in the upper troposphere (above about 10–12 km) the large
inter-model RH differences there (Figure A.13b) have virtually no effect on OLRc.

Not considering clouds has an effect on the response kernels. Particularly high
clouds are important, because they mask some of the effect of T and q in lower
atmospheric levels (Soden et al., 2008). They are mainly present in moist regimes,
starting around the 60th IWV percentile in most models (not shown). In these
regimes we would expect the sensitivity of OLRc to RH perturbations to decrease,
particularly in levels below the clouds, which are most abundant at around
8-12 km height. This would dampen some of the effect of the large RH differences
in the lower and mid free troposphere in the moist regimes.

An important point to note is that the vertical integration of the product of KRH,e

and σ(RH), shown as the grey line in Figure A.15d, does not yield the inter-model
standard deviation in OLRc, but a higher value, which is more uniform throughout
moisture space. In many models RH anomalies have different signs in different
altitude regions (Figure A.9 and Figure A.16). This information is not contained
in σ(RH). The effects of such opposite RH anomalies on OLRc compensate to
some degree. Interestingly, such compensating errors play a bigger role in the dry
regimes, as indicated by the larger difference between the grey and the black line
in Figure A.15d and evident from Figure A.16. In fact, it is only due to these
compensating effects that dry regimes contribute less to tropical mean differences
in clear-sky OLR than moist regimes.
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a.5 summary and conclusions

In this study we quantified inter-model differences in tropical free-tropospheric
humidity in an ensemble of nine different GSRMs, which took part in DYAMOND,
a first 40-day intercomparison for models of this type. We focused on the effect
of the humidity differences on the radiation budget and therefore concentrated
on differences in RH rather than absolute humidity. The RH is most informative
because in a large part of the spectrum the emission from a layer to space depends
primarily on RH (Ingram, 2010; Nakajima et al., 1992).

A justified question that arises is how much one can learn about climatological
RH biases from an intercomparison as short as 40 days. To address some major
concerns associated with the shortness of the DYAMOND simulations, we
performed additional analysis based on longer-term data sets. One potential
limitation is that the models'RH might still be constrained by the common initial
conditions. However, both a first two-year storm-resolving simulation with the
ICON model as well as the evolution of the inter-model RH spread within the
analyzed 30-day period suggest that the transition from the initial conditions is
largely completed after the excluded ten-day spinup period. Another concern
is that the RH biases identified in the analyzed 30-day period might result
mainly from a poor sampling of internal variability. However, the DYAMOND
inter-model spread in RH is significantly larger than what would be expected
from internal variability, which was estimated from five years of ERA5 reanalysis
data. This suggests that the inter-model differences we find in DYAMOND mostly
represent systematic model biases. This applies least to the upper troposphere
(above 12 km), where natural variability is comparably large. In accordance with
that, the inter-model RH spread in each individual month of the CMIP5 AMIP
intercomparison is within a 25% range of the spread in 30-year mean RH, only
in the upper troposphere deviations are larger. We conclude from these results
that in a large part of the free-troposphere one month of intercomparison already
provides a good first estimate for climatological RH biases.

The comparison to the CMIP5 AMIP ensemble also shows that the inter-model
spread in tropical mean RH in DYAMOND is reduced throughout the free
troposphere, except for the transition to the boundary layer and the tropopause
region. This indicates that free-tropospheric RH and hence clear-sky OLR are
better constrained in GSRMs than in GCMs. Based on this first month of inter-
comparison we estimate the reduction to approximately 50-70% in the upper
troposphere (8-14 km) and 25-50% in the mid troposphere (3-8 km). For an exact
quantification longer storm-resolving simulations will be needed.

A question that cannot be answered from the relatively short DYAMOND
simulations is whether the spread in the water-vapor–lapse-rate feedback is also
reduced in GSRMs. However, there are some reasons to be optimistic about
this. On the one hand, to the extent that the feedback depends on the base-state
RH as suggested by Bourdin et al., 2021, reducing the inter-model spread in
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present-day RH should also reduce the spread in the feedback. On the other hand,
the water-vapor–lapse-rate feedback depends on how much RH changes under
warming. Given that the present-day RH is better constrained in GSRMs, it seems
unlikely that the spread in the RH response is increased. This is to be verified
once model simulations at higher SSTs are available.

Although RH differences are reduced in the DYAMOND ensemble, they still
cause a spread of 1.2 Wm−2 in tropical mean clear-sky OLR. To better understand
how different tropical moisture regimes contribute to this spread, it has proven
useful to compare model fields in moisture space, i.e. sorted from low to high IWV.
Combining the inter-model standard deviation σ(RH) with radiative kernels (the
sensitivity of clear-sky OLR to RH perturbations) in moisture space allowed us to
examine the radiative impact of the RH differences in a given dynamic regime and
altitude region and hence to assess in which regions a further reduction would be
most beneficial. Based on the results we can split the tropical free troposphere into
four main regions:

1. The transition between the BL and the free troposphere. Throughout the
tropics this altitude region (around 2 to 3 km) is characterized by a local
maximum in the inter-model RH spread, with σ(RH) exceeding 6% RH.
These differences are associated with differences in the depth of the BL.
Due to their large magnitude they contribute considerably to the spread
in clear-sky OLR, although the sensitivity of clear-sky OLR to a given RH
perturbation is rather small in this altitude region.

2. The mid troposphere of moist regimes. This region ranges from about
3 km to 10 km in altitude and roughly covers the highest 50 percentiles of
IWV in moisture space. With σ(RH) up to 6% RH the inter-model spread
in these moist regimes is substantially larger than in the same altitude
region of dry regimes. The spread maximizes at the transition from deep
convective to subsidence regimes near the 90th percentile of IWV, which
might be indicative of model differences in convective behavior. The large
RH differences cause the inter-model spread in clear-sky OLR to maximize
in this region, although the sensitivity of clear-sky OLR to RH perturbations
is moderate.

3. The mid troposphere of dry regimes. In this region the model agreement
in RH is remarkably good. The inter-model standard deviation σ(RH)

is 1–3% RH and hence less than half of the standard deviation in moist
regimes. However, the sensitivity of clear-sky OLR to RH perturbations is
considerably larger. Therefore, the small RH differences in the dry regimes
have a comparable effect on clear-sky OLR as the larger differences in the
moist regimes. This is why the inter-model spread in clear-sky OLR has a
second local maximum in the dry regimes. This maximum is weaker than
the one in the moist regimes because compensating effects due to opposite
RH anomalies at different altitude regions occur more frequently in the dry



A.6 appendix 71

regimes. The reason for this is not obvious and needs further investigation.

4. The upper troposphere. In the altitude region above 10 km the inter-model
spread is generally large, with σ(RH) exceeding 8% near the tropopause.
However, the sensitivity of clear-sky OLR to RH perturbations is so small
that the impact of these differences on the clear-sky OLR is negligible.

Our results are limited to the clear-sky case. High clouds, which are most
abundant in the moist regimes, mask some of the clear-sky effect (e.g. Soden et al.,
2008) and hence reduce the radiative impact of the RH differences in the mid
troposphere. This highlights even more the importance of the dry regimes, where
high clouds are rare.

We conclude that to further constrain the radiation budget in GSRMs it is most
crucial to reduce the RH differences at the top of the BL and in the mid troposphere.
Reducing the former by adjusting the depth of the BL seems possible with the
current level of knowledge. Also, one would expect clear benefits from increased
vertical resolution when it comes to representing the BL depth. On the other hand,
observational reference data are sparse because satellite capacities to probe the BL
region are still limited. Reducing the differences in the mid troposphere seems
more challenging and requires a detailed understanding of the processes control-
ling RH in these regions remote from deeper convection. An advantage is that this
altitude region of the tropical atmosphere is extensively observed by satellites.

a.6 appendix

a.6.1 RH anomalies in individual models

In Section A.3.2 we focused on the inter-model spread in RH expressed by the
inter-model standard deviation σ(RH). Here we show how the RH deviates from
ERA5 in moisture space for individual models (Figure A.16). It is evident that for
many models, particularly for ICON, NICAM and IFS, the largest part of the RH
anomalies in the mid troposphere that are apparent in the tropical mean (Figure
A.9) stems from rather moist regimes. Furthermore, in all models RH anomalies
of opposite sign exist at different altitude regions and across moisture space. As
mentioned in Sections A.4.2 and A.4.4 their effects on tropical mean clear-sky OLR
partly compensate. For example, the GEOS5 model has both an anomalously moist
lower free troposphere (due to an anomalously deep BL) and an anomalously dry
mid free troposphere in regions of intermediate IWV (Figure A.16d). Due to the
compensation of these opposite effects the OLRc anomaly in these regions is rather
small (Figure A.14). In the UM model the lower and mid free troposphere are
anomalously moist in dry regimes and anomalously dry in moist regimes (Figure
A.16j). The resulting OLRc anomalies almost fully compensate in the tropical mean
(Figure A.14).
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Figure A.16: RH anomalies of DYAMOND models in moisture space. The upper left panel
shows the ERA5 RH distribution in moisture space, remaining panels show
the deviation from the ERA5 RH for each model.

a.6.2 Radiative kernels for water vapor pressure, temperature and relative humidity

To obtain the radiative kernels Ke and KT for a given block in moisture space,
OLRc is calculated for the averaged ERA5 profiles in this block using the setup
described in Section A.4.1. The calculation is repeated with a small perturbation
applied to e or T in one atmospheric layer, yielding the element of Ke of KT,
respectively, for that layer. This is done successively for all layers. We perturb e by
5% of its absolute value and T by 1 K. The chosen perturbation sizes lie within the
range for which the assumption of linearity around the base state is valid. Within
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this range the calculated kernels are independent of the exact perturbation size.

The kernels Ke and KT can be used together with anomalies in e and T to approx-
imate anomalies in clear-sky OLR (Equation 6) in the DYAMOND models with
good accuracy (Figure A.17e). The approximation is least accurate for the NICAM
model. NICAM is the model with the largest anomalies in absolute humidity (Fig-
ure A.10), so it is likely that the assumption of linearity around the reference state
starts to lose validity. In other models some smaller inaccuracies occur particularly
in the dry half of moisture space. Most of them can be explained by SST anomalies
that are not considered in Equation 6. Such SST anomalies have a stronger impact
in the dry regions because the surface component of OLRc is larger there than
in moist regions. The largest deviations between true and approximated OLRc

anomalies in dry regimes arise for SAM and ARPEGE-NH. These are only partly
explained by SST anomalies, so non-linearity or masking effects might play a role.
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Figure A.17: Clear-sky OLR anomalies in the DYAMOND models approximated with the
kernel method. (a) Water vapor response kernel Ke showing the sensitivity
of clear-sky OLR to a change of 1 Pa in water vapor pressure e in a 1 km
layer. Note the logarithmic colour scale. (b) Temperature response kernel KT

showing the sensitivity of clear-sky OLR to a temperature change of 1 K in a
1 km layer. Also shown are clear-sky OLR anomalies calculated (c) solely from
anomalies in e and the respective kernel Ke and (d) solely from anomalies in
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As explained in Section A.4.3, anomalies in OLRc can also be approximated
from RH anomalies and a RH kernel (Equation 6). There are two ways to define a
RH kernel by varying either e or T (Equation 8), which we refer to as KRH,e and



74 tropical humidity differences and their effect on the radiation budget

KRH,T, respectively. Our main analysis is based on KRH,e because it approximates
the anomalies in OLRc more accurately. The largest deviations from true (directly
calculated) OLRc anomalies occur for SAM in the lowest IWV percentiles, for
ARPEGE-NH in high percentiles and for ICON in all percentiles (Figure A.15c).
The inter-model standard deviation σ(OLR) is well reproduced with the approx-
imated OLRc (Figure A.15d), except from the lowest IWV percentiles, where it
is slightly underestimated. This is mainly caused by the deviations in SAM and
ICON. For most models the approximation from RH anomalies is slightly less
accurate than the one from e and T anomalies (cf. Figure A.17). An exception
is NICAM, for which OLRc approximated from RH anomalies matches the true
OLRc much better than the one approximated from e and T anomalies.

For completeness Figure A.18 shows KRH,T and the OLRc anomalies approxi-
mated using this version of the RH kernel. KRH,T takes on larger absolute values
than KRH,e (cf. Figure A.15a, note the different colour scales in Figures A.15 and
A.18), i.e. a 1% increase in RH causes a larger decrease in clear-sky OLR if it is pro-
duced by decreasing T rather than increasing e. Furthermore, the peak altitude in
KRH,T is lower than in KRH,e. These differences indicate that for OLRc it does mat-
ter to a certain degree whether a RH perturbation is caused by a perturbation in e
or in T. Nevertheless, considering that the physical mechanisms behind a change
in OLRc are very different for changes in e and T, the two kernels agree remark-
ably well, again demonstrating that the atmosphere behaves partly "Simpsonian"
(see Section A.4.3).
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key points

• Sensitivity experiments suggest that parameterizations are the major source
of relative humidity spread across global storm-resolving models

• Vertical mixing processes strongly impact the humidity of the moist tropics
by affecting last-saturation statistics within the tropics

• The humidity of the dry tropics is disproportionately sensitive to changes in
the pathways of exchange with the extra-tropics

abstract

We conduct a series of eight 45-day experiments with a global storm-resolving
model (GSRM) to test the sensitivity of relative humidity R in the tropics
to changes in model resolution and parameterizations. These changes include
changes in horizontal and vertical grid spacing as well as in the parameterizations
of microphysics and turbulence, and are chosen to capture currently existing dif-
ferences among GSRMs. To link the R distribution in the tropical free troposphere
with processes in the deep convective regions, we adopt a trajectory-based assess-
ment of the last-saturation paradigm. The perturbations we apply to the model
result in tropical mean R changes ranging from 0.5% to 8% (absolute) in the mid
troposphere. The generated R spread is similar to that in a multi-model ensem-
ble of GSRMs and smaller than the spread across conventional general circulation
models, supporting that an explicit representation of deep convection reduces the
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uncertainty in tropical R. The largest R changes result from changes in parame-
terizations, suggesting that model physics represent a major source of humidity
spread across GSRMs. The R in the moist tropical regions is disproportionately
sensitive to vertical mixing processes within the tropics, which impact R through
their effect on the last-saturation temperature rather than their effect on the evolu-
tion of the humidity since last-saturation. In our analysis the R of the dry tropical
regions strongly depends on the exchange with the extra-tropics. The interaction
between tropics and extratropics could change with warming and presage changes
in the radiatively sensitive dry regions.

plain language summary

Water vapor is the most important greenhouse gas in the atmosphere. Therefore,
for the prediction of future warming it is important that climate models capture
the distribution of atmospheric humidity and its change under warming. However,
climate models currently strongly disagree in their representation of humidity,
causing uncertainty in climate predictions. A recent study has shown that, while
there is better agreement among the newest generation of climate models, so called
global storm-resolving models, the remaining inter-model differences are still rel-
evant and therefore need to be better understood. To narrow down the causes of
these differences, in this study we examine how much the humidity in a storm-
resolving model changes in response to changes in different model components,
which are chosen to reflect the differences that currently exist between models. We
find the largest humidity changes in response to changes in the model's represen-
tation of sub-grid scale processes. In storm-resolving models these are turbulent
motions and cloud microphysics. Our results suggest that differences in the repre-
sentation of these processes cause a major part of the humidity differences between
storm-resolving models.

b.1 introduction

The aim of this study is to better understand sources of uncertainties in modelling
processes that drive the distribution of tropical free-tropospheric relative humidity.
Therefore, we examine how much and through which physical mechanisms the
relative humidity in a global storm-resolving model (GSRM) – the newest genera-
tion of climate models with high horizontal resolution and explicit simulation of
convection – is affected by changes in model resolution and paramtererizations.

Free-tropospheric relative humidity plays an important role in determining
Earth's climate sensitivity. The combined effect of the water vapor and lapse rate
feedbacks – the two most important feedbacks acting under clear-sky conditions –
largely depends on how relative humidity responds to warming (Held and Shell,
2012). While to first order relative humidity is expected to stay constant under
warming (Held and Soden, 2000), even small deviations from this constancy sig-
nificantly impact the clear-sky feedback by altering the cancellation between water
vapor and lapse rate feedbacks in the saturated parts of the emission spectrum
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(Bony et al., 2006). In line with that, model differences in the relative humidity
response control the prevailing spread in clear-sky feedback across general circula-
tion models (GCMs; Vial et al., 2013). Since the relative humidity change simulated
by GCMs is described by an upward shift following the rising isotherms, differ-
ences in the models'relative humidity response are closely related to differences
in their climatology (Po-Chedley et al., 2019). Even if relative humidity does not
change with warming, its present-day value might affect the clear-sky feedback.
While no systematic relationship between present-day state and feedbacks has
been found for GCMs (John and Soden, 2007), 1D radiative convective equilibrium
(RCE) studies suggest that particularly at high surface temperatures characteristic
of the tropics, the closing of the spectral window results in a strong dependence
of the clear-sky feedback on relative humidity (Bourdin et al., 2021; Kluft et al.,
2019; McKim et al., 2021). Thus, to develop a more fundamental understanding
of climate and climate change, we will need to understand what sets the distri-
bution of relative humidity, how it might change, and why it differs across models.

The sources of the relative humidity spread across models are poorly under-
stood. One reason for this is the number of processes that affect humidity, many of
which are poorly constrained in GCMs. In particular deep convection, the process
accounting for most of the vertical transport of water vapour in the tropical
atmosphere, is not resolved in these models and needs to be parameterized. An
important step has been made with the development of global storm-resolving
models (GSRMs; Satoh et al., 2019). With grid spacings of a few kilometers,
these models simulate deep convection explicitly and thereby forego the need for
convective parameterizations. At present, due to the high computational effort,
storm-resolving simulations are limited to time scales of days to months. A first
intercomparison of GSRMs, the DYnamics of the Atmospheric general circulation
Modeled On Non-hydrostatic Domains (DYAMOND; Stevens et al., 2019) project,
indicates that the inter-model spread in tropical free-tropospheric humidity is
indeed reduced compared to GCMs (Lang et al., 2021). While this is a promising
result and highlights the benefit of even approximately resolving deep convection,
the study also showed that the remaining differences in relative humidity are still
an important source of uncertainty for the clear-sky outgoing longwave radiation
(OLR).

In this study, we attempt to understand the reasons behind the remaining
relative humidity differences. To this end, we examine how the tropical humidity
simulated by a GSRM changes in response to modifications in model resolution
and model physics. These modifications are chosen to resemble currently existing
differences across GSRMs. A large ensemble of back-trajectories started from
the tropical mid troposphere allows us to examine the history of the air parcels
arriving in these regions and hence the physical mechanisms behind humidity
changes in the experiments.

To examine these mechanisms we make use of the last-saturation or advection-
condensation paradigm (Sherwood, 1996; Sherwood et al., 2010), which represents
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the simplest model of what determines the distribution of free-tropospheric
humidity. Assuming that water vapor behaves as a conservative tracer for which
condensation is a permanent sink term, the water vapor content of an air parcel is
determined by its temperature at the instant at which condensation last occurred.
Inside a cloud, an air parcel's specific humidity is at saturation. As the parcel
rises, it looses water vapor by condensation. Outside the cloud, the air parcel
subsides and warms adiabatically, while maintaining the specific humidity it
had when it was last saturated, so its relative humidity decreases. The regions
where last-condensation events typically occur are often referred to as the “source
regions" or “origins" of free-tropospheric air. The source regions of tropical
free-tropospheric air are mainly located in the tropical deep convective regions,
but a significant part of the air in the dry subtropical subsidence regions also
originates from the extra-tropics (e.g. Aemisegger et al., 2021; Cau et al., 2007;
Roca et al., 2012). According to the last-saturation model, the relative humidity in
a given target region only depends on the properties – mainly the temperature –
of the source region and the target region.

Numerical implementations of the last-saturation model, which used large-
scale wind and temperature fields from meteorological analyses to calculate
Lagrangian back-trajectories, have been successful in reproducing the observed
free-tropospheric relative humidity distribution (e.g. Dessler and Sherwood, 2000;
Pierrehumbert and Roca, 1998; Sherwood, 1996). This has lead to the conclusion
that the relative humidity distribution is determined by circulation and tempera-
ture structure, while any moisture sources or sinks changing the specific humidity
of an air parcel after the last-saturation event are of minor importance. These
sources and sinks include evaporation of cloud condensate or from precipitation,
as well as mixing due to motions on scales not resolved in the wind field used for
the trajectory calculation. This is not to say that these processes are unimportant,
rather to say that to the extent they are important, it is through their indirect
influence on the atmospheric circulation and the temperature structure, which
ultimately determine the location of last-saturation events.

While the moisture sources and sinks after last-saturation appear to play a
secondary role in determining spatial variations of relative humidity in the real
atmosphere or a given model, it is less clear whether they might be important
when it comes to explaining the more subtle humidity differences between
models, particularly when different parameterizations for the processes causing
the sources and sinks, i.e. microphysics and turbulence, are used. To test this, we
calculate back-trajectories to perform two types of Lagrangian relative humidity
reconstructions for our model experiments. The first one is an implementation
of the last-saturation model and therefore only takes into account the properties
of air parcels in the source and target regions. The second one additionally
accounts for parameterized moisture sources and sinks during the advection
of air parcels to the target region. Comparing the two types of reconstructions
allows us to quantify the importance of changes in moisture sources and sinks
in causing the relative humidity changes in our sensitivity experiments. To
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our knowledge, the last-saturation model has neither been used to understand
differences between models, nor has it been implemented based on wind fields of
simulations at storm-resolving resolution. This study therefore also represents a
test of how useful the last-saturation model is in explaining differences between
models as they begin to resolve the spectrum of vertical motions in the atmosphere.

This paper is organized as follows: Section B.2 describes the model setup and the
sensitivity experiments performed. In Section B.3 the humidity changes produced
in our sensitivity experiments are shown and discussed. The Lagrangian relative
humidity reconstructions based on back-trajectories are introduced in Section B.4.
Section B.5 presents insights on the mechanisms behind the humidity changes
from the last-saturation model.

b.2 model and experiments

To examine how changes in model parameterizations and model resolution affect
tropical relative humidity in a GSRM, we run a series of sensitivity experiments
with the ICOsahedral Nonhydrostatic model (ICON; Zängl et al., 2015) in its storm-
resolving “Sapphire" configuration (Hohenegger et al., 2022) with prescribed sea
surface temperature (SST).

b.2.1 Control experiment

The control experiment is run with a quasi-uniform horizontal grid spacing
of 5 km. For the analysis, the model output is interpolated from the native
icosahedral ICON grid to a regular 0.1◦ × 0.1◦ latitude-longitude grid. The
vertical grid consists of 110 hybrid sigma height levels between the surface and
a height of 75 km. Over a flat surface at sea level, the distance between model
levels in the free troposphere (between about 8 km to 19 km) is constant at 400m,
gradually decreasing towards the surface and increasing towards the model top.
The model time step is 40 seconds. For the treatment of microphysical processes,
a one-moment scheme with five hydrometeor categories as described by Baldauf
et al., 2011 is used. Turbulent mixing is represented by a classical 3D Smagorinksy
scheme (Smagorinsky, 1963) with the modification by Lilly, 1962 to account for
thermal stratification (Dipankar et al., 2015). Radiative transfer is calculated at
every grid point every 15 minutes using the RTE-RRTMGP scheme (Pincus et al.,
2019). The JSBACH land model (Raddatz et al., 2007) is used to represent the
physical properties of the land surface and land-atmosphere interactions.

The experimental protocol of our experiments closely follows that specified
by the DYAMOND inter-model comparison (Stevens et al., 2019), with initial
conditions taken from the global (9km) analysis by the European Centre of
Medium Range Weather Forecast (ECMWF). After initialization, the simulations
run freely without further forcing. ECMWF operational daily SST and sea-ice
concentration are used as boundary conditions. The simulations start at 0 UTC on
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27 June 2021 and span a time period of 45 days.

To test the extent to which humidity differences in our 45-day simulations might
reflect sampling error, we perform a second control experiment (Control 2) with
perturbed initial conditions. While the boundary conditions are kept identical to
those in the control run, the atmosphere is initialised from the ECMWF analysis
for 0 UTC on 28 June 2021, i.e. one day later than in the control experiment.

b.2.2 Sensitivity experiments

The changes we apply in our sensitivity experiments are chosen to resemble
differences in model configuration across the DYAMOND models (Stevens
et al., 2019), which reflect current differences in modeling approaches between
modeling groups. The DYAMOND models differ in various aspects of their
configuration. On the one hand, they differ in the design of their dynamical
core. While (with the exception of two models) they agree on the equations they
solve (fully-compressible Navier-Stokes equations), they differ in their numerical
grids and the numerical methods they use to solve the equations. This not only
influences their “effective" resolution, but also conditions the behavior of the
parameterizations which act on the grid scale. On the other hand, the models
differ in the parameterizations they use to represent the effects of subgrid-scale
processes. For the sensitivity experiments we have to concentrate on a subset of
these differences that can be tested with the ICON model. We attempt to cover the
different types of uncertainties by examining the sensitivity of relative humidity
to the model resolution as well as two different parameterizations. Our sensitivity
experiments are described in the following and summarized in Table 1.

Even if at 5 km most of the energy in the spectrum of vertical motions is
resolved, the updrafts of most deep convective systems remain poorly resolved or
aliased to larger scales. To test the extent to which relative humidity is affected
by changes in model resolution we perform three experiments. In the ∆x/2
experiment the horizontal grid spacing is halved relative to the control experiment
to 2.5 km. For the 2∆z and ∆z/2 experiments the number of vertical levels is
decreased to 55 and increased to 190, respectively. This results in a doubling and
halving of the vertical grid spacing in the free troposphere relative to the control
experiment to 800 m and 200 m, respectively. Note that by GSRM standards (if not
by GCM standards) a vertical grid spacing of 800 m is exceptionally coarse and
was not employed in any of the DYAMOND models.

In three further experiments we test the sensitivity of relative humidity to
changes in the parameterizations of turbulence and microphysics. These pa-
rameterizations contain a large number of tunable parameters and we do not
attempt to systematically test the sensitivity to all of them. Instead we focus
on contrasting models, which we see as a more extreme case than parameter
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sensitivities, although in one case we also explore a common parameter sensitivity.

Storm-resolving models typically use turbulence paramterizations that are not
well adapted to global simulations at kilometer-scales. On the one hand, regional
storm-resolving models have often used turbulence closures designed for LES
simulations (like the Smagorinsky-Lilly scheme used in our control simulation), al-
though the underlying assumption that the truncation scale lies within the inertial
range of three-dimensional homogeneous and isotropic turbulence (Lilly, 1967) is
not satisfied at storm-resolving scales (e.g. Bryan et al., 2003). On the other hand,
many of the global DYAMOND models employed turbulence schemes that were
inherited from their coarser-resolution predecessors. Similarly, the storm-resolving
version of the ICON model was run with a total turbulent energy (TTE) scheme
(Mauritsen et al., 2007) that was originally used at much coarser resolutions in the
early stages of its development (Mauritsen et al., 2022). To examine the impact
of different turbulence parameterizations on relative humidity, we exchange the
Smagorinsky scheme used in the control simulation with this TTE scheme. The
two schemes differ in several aspects. The Smagorinsky scheme calculates both
vertical and horizontal mixing of momentum and scalar variables (although
we find that horizontal mixing tendencies of specific humidity are negligible
compared to vertical mixing tendencies at 5 km horizontal resolution, see also
Section B.4.4). The exchange coefficients are specified using a mixing length scale
that depends on height and the model grid spacing, the 3D wind shear and static
stability. The TTE scheme, on the other hand, only represents vertical mixing. The
turbulent exchange coefficients are specified using a height-dependent mixing
length scale and a velocity scale. The latter is determined from a prognostic
equation for TTE that takes into account shear production, dissipation, third-order
flux divergence and buoyancy production, which allows for mixing in more stably
stratified situations than in the ICON implementation of the Smagorinsky-Lilly
model.

To test the sensitivity of relative humidity to the microphysics parameteri-
zation, in the 2-mom experiment we exchange the one-moment scheme with
the two-moment scheme by Seifert and Beheng, 2001. While the DYAMOND
models all use one-moment schemes, this mainly reflects the consensus that the
scheme should be computationally efficient. The degree of complexity required
in the cloud microphysics is an open question, and more complex two-moment
schemes have also been proposed for storm-resolving simulations (e.g. Morrison
et al., 2005; Phillips et al., 2007). The one-moment and two-moment microphysics
implemented in ICON differ in many of their parameters, so changes emerging in
the 2-mom experiment do not only result from the fact that two moments instead
of one moment of the particle size distributions are predicted.

In an additional microphysics experiment, the 2vice experiment, we perturb the
one-moment microphysics by increasing the terminal fall speed of ice particles vice,
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Table 1: Summary of simulations performed with the ICON model.

Name Description

Control Control simulation with 5 km horizontal grid spacing, 110 ver-
tical levels (400 m grid spacing in the free troposphere), three-
dimensional Smagorinsky turbulence and one-moment micro-
physics

Control 2 As Control, but with perturbed initial conditions to estimate inter-
nal variability

∆x/2 Horizontal grid spacing halved to 2.5 km

2∆z Number of vertical levels reduced to 55 (800 m grid spacing in the
free troposphere)

∆z/2 Number of vertical levels increased to 190 (200 m grid spacing in
the free troposphere)

TTE Turbulence scheme exchanged by a one-dimensional total turbu-
lent energy (TTE) scheme

2-mom Microphysics scheme exchanged by a two-moment scheme

2vice Increased (approximately doubled) fall speed of ice particles in
the one-moment microphysics

which represents a common tuning parameter. In the one-moment scheme it is
parameterized as a function of ice mass mixing ratio qice and air density ρ:

vice = a(ρqice)
b(ρ0/ρ)c (9)

with ρ0 = 1.225 kg m−2 is the air density at surface conditions. The parameters a,
b and c are set to 1.25, 0.16 and 0.33, respectively. For our sensitivity experiment
we increase a to 3.29, which corresponds to the value originally proposed by
Heymsfield and Donner, 1990, and c to 0.4, thereby moving it closer to the
value of 0.5 used in the two-moment scheme of ICON. Combined, these changes
approximately double the fall speed of ice particles for a given qi and ρ.

b.3 sensitivity of relative humidity to changes in model resolu-
tion and parameterizations

Figure B.19 shows how the tropical mean vertical profile of relative humidity
changes in our sensitivity experiments. Here, relative humidity R is calculated
as

R =
q

q∗(T, p)
(10)

with the specific humidity q and the saturation specific humidity

q∗ =
Mw
Md

e∗(T)

p−(1− Mw
Md

)e∗(T)
, where e∗ is the saturation water vapor pressure at tem-

perature T, p is the pressure and Mw and Md are the molar masses of water vapor
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and dry air, respectively. For e∗ we take the value with respect to water for T above
the triple point of water Tt and the value with respect to ice for T below Tt − 23 K.
For intermediate T a combination of both is used following the documentation
of the Integrated Forecast System (ECMWF, 2018). Note that a more common
definition of relative humidity uses saturation water vapor pressure instead of
specific humidity. We use equation 10 to make the definition of R consistent with
the one we use for the Lagrangian reconstructions in Section B.4. This definition
is typically used in last-saturation studies (e.g. Sherwood et al., 2010) since
specific humidity is the conserved quantity after last-saturation. Numerically, the
difference between the two definitions is typically within 1%.
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Figure B.19: Changes in tropical mean relative humidity (R) and temperature (T) result-
ing from changes in model resolution and parameterizations in the sensitivity
experiments. (a) Vertical profiles of R in control and sensitivity experiments,
(b) change in R compared to the control experiment and (c) standard devia-
tion of R across ICON experiments (solid) and the DYAMOND multi-model
ensemble (dashed). (d) Change in temperature T compared to the control ex-
periment. Horizontal dashed lines mark the altitude region between 4 km and
8 km, for which the mechanisms behind the R changes are investigated based
on back-trajectories.

First it is worth noting that the R spread produced by our experiments is
similar to the inter-model spread in the DYAMOND ensemble (Figure B.19c).
Based on the DYAMOND ensemble, Lang et al., 2021 showed that the R spread
across GSRMs is reduced compared to classical GCMs. This is possibly related
to the omission of convective parameterisations, which represent a major source
of uncertainty in GCMs. Our experiments support this by showing that even
strong perturbations in GSRMs do not reproduce the spread across models with
convective parameterizations.

Of the experiments with changed model resolution the largest changes in R are
seen in the 2∆z experiment with reduced vertical resolution (Figure B.19a,b). R
increases particularly in the upper troposphere, where the difference to the control
experiment exceeds 10%. In line with this, increasing the vertical resolution (∆z/2)
reduces R in the upper troposphere. However, the magnitude of the drying is
much smaller than the moistening in the 2∆z experiment, so the R profile shows
signs of convergence at vertical resolutions around the one used in the control
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experiment. Increasing the horizontal resolution (∆x/2) also only leads to a minor
increase of R in the lower and mid troposphere. Given that the 2∆z experiment
represents a rather extreme case, in the sense that GSRMs are not commonly
run at such coarse vertical resolution, these results suggest that changing model
resolution within the general scale of GSRM resolution does not represent a major
uncertainty for R, unless it is chosen exceptionally coarse. Note that this does not
exclude the possibility that increasing resolution to even finer scales (on the order
of 200 m) could make a significant difference, which cannot be tested with the
chosen setup and available computational resources.

Comparably large R changes occur in the TTE and 2-mom experiments, in
which the parameterizations of turbulence and microphysics were changed. The
largest changes occur in the lower and mid troposphere, where they have a larger
impact on the clear-sky OLR than those in the upper troposphere (Lang et al.,
2021). Changing to the TTE turbulence scheme results in a strong increase in R of
up to 8% over a broad altitude layer between 2 km to 6 km. This change will be
examined in more detail in the following sections as part of our last-saturation
analysis of the mid troposphere. Changing to the 2-mom microphysics scheme
leads to a strong (up to 10%) decrease in R that is concentrated in a rather shallow
layer between 1 km and 3 km in the lower free troposphere. Dividing the tropics
into different moisture regimes also shows that this drying is concentrated in
the dry subsidence regimes of the tropics, where shallow clouds prevail (not
shown). This might indicate that the details in the formulation of the microphysics
matter particularly in the shallow cloud regime, where humidity is not as strongly
constrained by the dynamics as in deep convective regimes. Increasing the fall
speed of ice particles in the 1-mom scheme (2vice) has a smaller effect on R
than changing to the two-moment scheme. R slightly decreases in the mid to
upper troposphere, whereas lower-tropospheric R is hardly affected. This may
be expected, since ice particles mainly exist at higher altitudes with temperatures
below the melting point (located at a height of about 5 km in our experiments).
Changing between one- and two-moment microphysics, on the other hand,
potentially affects the characteristics of all types of hydrometeors.

R changes in most sensitivity experiments are larger than the difference
between the two control experiments (Control and Control 2) which serves as
an estimate of internal variability. Exceptions are the very subtle changes in
the 2vice and ∆z/2 experiments in the lower free troposphere and in the ∆x/2
experiment in the upper troposphere. We conclude that the differences we find
in tropical mean R mostly represent systematic differences resulting from the
applied perturbations rather than internal variability.

Temperature profiles differ substantially between the experiments (Figure
B.19d). Temperature differences that exist in the lower troposphere intensify with
increasing height, as is to be expected from temperature profiles following moist
adiabats to first order. Warmest and coldest temperatures are produced by the
TTE and 2vice experiments, respectively. The 2-mom experiment stands out due to
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a positive temperature anomaly that is limited to the region between 1 km to 3 km,
where the largest negative R anomaly is found. This points to a shallower trade
inversion in the 2-mom experiment. This could be indicative of an earlier onset
of precipitation in the 2-mom experiment, resulting in clouds growing less deep
(Stevens and Seifert, 2008).

Based on a simple analytical model Romps, 2014 showed that in radiative-
convective equilibrium R should be an invariant function of temperature as
the atmosphere warms. An obvious question is therefore if the changes in our
sensitivity experiments are explained by an upward or downward shift of the
R profile following an increase or decrease in temperature, respectively. This
would mean that in experiments with a warmer troposphere R should increase
in the lower and mid troposphere, where R decreases with height, and R should
decrease in the upper troposphere, where R increases with height. While the
TTE and 2-mom runs show a corresponding pattern in their R changes, the
temperature differences between the experiments is by far not large enough to
explain the R differences. This is evident when R is plotted as a function of
temperature (not shown). We therefore conclude that the differences in R are not
explained by a vertical shift following isotherms.

In summary, our experiments suggest that a large part of the R spread across
today's GSRMs is can be explained by different formulations of small-scale mixing
and cloud microphysical processes. At least in the limited number of experiments
we performed, microphysical choices particularly impact R in a rather narrow
altitude region associated with shallow convection, whereas the choice of the
turbulence scheme affects R in a broader mid-tropospheric layer.

In the following we focus on R differences in the mid troposphere (4 km to
8 km, indicated by the gray lines in Figure B.19). Although mid-tropospheric R
differences are, similar as in the DYAMOND ensemble, not particularly large,
Lang et al., 2021 showed that R differences in this region are particularly impor-
tant for differences in OLR.

b.4 lagrangian reconstructions of relative humidity

b.4.1 Reconstructions based on the last-saturation model

To obtain a better understanding of the physical mechanisms behind the humidity
changes produced in our experiments we use a last-saturation framework based
on back-trajectories. For this analysis we focus on the altitude region between
4 km and 8 km, where R differences in the DYAMOND ensemble were shown
to have a comparably large effect on the clear-sky radiation budget (Lang et al.,
2021). A main goal is to understand to what extent the changes in R are explained
by changes in the properties of the source regions of air parcels, i.e. the points
of last-saturation/condensation, and by changes in moisture sources and sinks
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during subsequent advection.

To investigate this we perform Lagrangian reconstructions of R for the ICON
experiments described in Section B.2. The reconstruction for each experiment is
performed in two different ways. The first one is an implementation of the last-
saturation paradigm similar to earlier studies (e.g. Dessler and Sherwood, 2000;
Pierrehumbert and Roca, 1998; Sherwood, 1996), although the latter were based
on much coarser wind fields from GCMs or reanalysis data. The underlying as-
sumption is that specific humidity q is conserved after the last-condensation event.
Hence, the specific humidity at a given target point qt equals the specific humidity
the respective parcel had when it last experienced condensation qlc. R at the target
point is then equal to

Rlc =
qlc

q∗t
, (11)

where q∗t denotes the saturation specific humidity at the target point. qlc should
generally equal its saturation value q∗ls (though supersaturation can occur with
respect to ice), so that Equation 11 can be written as

Rlc ≈
q∗ls
q∗t

=
e∗(Tlc)

e∗(Tt)

pt

plc
, (12)

where e∗ is the saturation water vapour pressure, Tlc and Tt are the temperatures
of the last-condensation point and the target point, respectively, and plc and pt

are the corresponding air pressures. Thus, if the last-saturation reconstruction
captures the humidity changes in the ICON experiments, this means that they are
explained by temperature and pressure changes between the source and target
regions.

For the reconstructions we use the actual qlc rather than q∗ls, i.e. Equation 11

rather than Equation 12, since R is not always exactly 100% at the instant of
last-condensation (see Section B.4.3). This slightly improves our reconstructions,
but our main conclusions do not depend on whether or not qlc = q∗ls is assumed
for the last-saturation events. The terms last-condensation and last-saturation are
used interchangeably in the following.

For the second reconstruction of R moisture sources and sinks s, which
can change a parcel's water vapour content during its advection after the last-
condensation event, are added:

Rlc+s =
qlc + s

q∗t
. (13)

s includes evaporation of hydrometeors that are transported with or sediment
through an air parcel, as well as turbulent mixing. These processes are represented
by the parameterizations of microphysics and turbulence in the ICON model. As
we will show in Section B.4.6, the inclusion of these sources and sinks brings
the reconstructed R closer to the ICON-simulated R (subsequently denoted by
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RICON).

Using the reconstructions, the change in R between a sensitivity experiment and
the control experiment can be decomposed into three contributions:

∆RICON = ∆Rlc + ∆(Rlc+s −Rlc) + ∆r. (14)

The first term on the right hand side represents changes in source and/or target
region pressure and temperature. The second term denotes the effect of changes
in parameterized moisture sources and sinks acting during advection to the target
region. The residual r is the difference RICON −Rlc+s. It results from shortcomings
in the reconstruction method (Sections B.4.2 to B.4.6), but also from the fact that
the Lagrangian reconstruction does not include any numerical diffusion, as
opposed to the Eulerian advection scheme in ICON. Hence, the ∆r term includes
changes in numerical diffusion, which might be important in the experiments with
changed model resolution but is not captured by the Lagrangian reconstruction.

The methods used to determine the points of last-condensation and the moisture
sources and sinks along back-trajectories are described in the following.

b.4.2 Back-trajectories

Back-trajectories are calculated offline using the ICON version of the trajectory
tool LAGRANTO version 2.0 (Sprenger and Wernli, 2015; Wernli and Davies,
1997). An ensemble of 150,000 back-trajectories is released once per day at 12 UTC
from randomly selected points in the tropics (30◦S to 30◦N) between 4 km and
8 km height. In the following we will refer to this region as the target region.

Comparing the R distribution of the 150,000 trajectory starting points to the
one obtained from the full field showed that the sampling error is small compared
to the R differences between the model experiments. By starting the trajectories
at 12 UTC only, depending on longitude we sample at different local times and
thus capture different phases of the diurnal cycle of free-tropospheric humidity. A
comparison showed that when sampling at 0 UTC, the moistest tropical regions
appear moister by about 2% than when sampling at 12 UTC. This is likely a
signature of the diurnal cycle of global precipitation, which was highlighted
by Stevens et al., 2019. The effect of the sampling on the humidity differences
between two experiments is small because the effect of the diurnal cycle is similar
in each experiment. As our main interest is in the differences between experiments
we conclude that starting trajectories once per day is sufficient.

Trajectories are integrated backwards in time for 15 days based on 1-hourly
instantaneous 3D model wind fields. Out of a total of 45 simulated days, due to
the 15-day lead time for the back-trajectories and the omission of the first five
simulated days due to model spinup, a 25-day period remains for the Lagrangian
reconstructions.
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Given that the trajectory calculations are based on hourly model wind fields,
and that the transport algorithms we use neither share the same numerical
methods used by the ICON model nor are performed on the same grid, indi-
vidual trajectories are not accurate, in the sense that they do not necessarily
follow the exact paths they would follow if they were calculated online during
model integration (Miltenberger et al., 2013). However, from a large ensemble of
back-trajectories it is possible to infer the statistical properties of the points of last
condensation and subsequent moisture sources and sinks, as we will show in the
following.

b.4.3 Last-condensation events

We define the point of last condensation to be the first point along a back-trajectory,
for which the local moisture tendency from the microphysics parameterization
(dq

dt )mic takes on a negative value, i.e. as the point at which condensation last
occurred. We decided for this definition rather than using a threshold value
on relative humidity, because the critical relative humidity for condensation in
ICON can exceed 100% with respect to ice. As a result of the spatial interpolation
of the model fields, both the interpolation from the native ICON grid to a
latitude-longitude grid and the interpolation from the latitude-longitude grid
onto the trajectory positions performed by LAGRANTO, there are points where
(dq

dt )mic < 0 (and are therefore detected as condensation points), but the local
relative humidity is significantly smaller than 100%. We therefore introduce the
additional condition that the local relative humidity must be higher than 80%. If
this condition is not met, the search for a last-condensation event is continued
backwards along the trajectory.

Last-condensation events identified by this method are subject to different
uncertainties. Condensation events will be missed if they occur in between the
1-hourly model output time step, which our trajectories are calculated on. We
expect this to introduce a dry bias in the reconstructed R, since on average the
identified last-condensation events occur too far in the past and therefore at too
cold temperatures, assuming that most air parcels undergo subsidence on their
way to the target region. Furthermore, the last-condensation events we determine
are restricted to the 15-day period covered by the back-trajectories, so events
occurring further in the past are not detected. We do not find a last-condensation
event within 15 days for 7% of the trajectories. This is expected to introduce a
moist bias in the reconstructed R, assuming that the condensation events further
back in time would occur at higher altitudes and therefore colder temperatures
than the trajectory end points.
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b.4.4 Moisture sources and sinks from parameterized processes

To estimate the magnitude of moisture sources and sinks S (Equation 13), along
each trajectory we sum up the local tendencies of q from the microphysics and
turbulence parameterizations (dq

dt )mic and (dq
dt )turb, respectively, between the time

of last condensation tlc and the target point (t = 0):

s =
tlc

∑
t=0

((
dq
dt

)mic,t + (
dq
dt

)turb,t)∆t, (15)

where ∆t = 1 h is the model output interval. The moisture tendency from the
turbulence scheme (dq

dt )turb output by ICON only includes the contribution from
vertical mixing, although the Smagorinsky turbulence scheme also performs
horizontal mixing. Including the contribution from horizontal mixing for one of
the ICON experiments showed it to be negligible compared to the effect of vertical
mixing.

b.4.5 Spatial averaging

Figures B.20a and B.20b show the (randomly chosen) start positions of back-trajec-
tories for an exemplary simulation time step on a map. Each dot corresponds to
one start position, colored by the ICON-simulated relative humidity (RICON) and
reconstructed relative humidity (Rlc+s), respectively, for the respective position.
Target regions for which RICON takes on intermediate values show up as a mixture
of very high and very low values in Rlc+s. This is likely due to the fact that gra-
dients and extremes in RICON are smoothed out due to the limited resolution of
the ICON model. While each value of RICON in Figure B.20a represents a grid-cell
average, values of Rlc+s in Figure B.20b represent structures (or “filaments") on
smaller scales, which are not resolved on the ICON grid. To smooth the recon-
structed fields the sampling would need to be improved by increasing the number
of trajectories per ICON grid cell and averaging over them. Another source of
noise in the reconstructed R are inaccuracies in the trajectories, which result from
the coarse (1-hourly) temporal resolution and spatial interpolation of the input
data (see Section B.4.2). These inaccuracies can result in last-condensation points
being spatially displaced from their true position.

To minimize sampling biases and to make our analysis framework more com-
mensurate with the information content in the input data we coarsen our analysis
region by averaging all results within boxes that span an area of 2◦ × 2◦ in the
horizontal and the complete altitude range between 4 km and 8 km in the vertical.
These boxes will be referred to as target boxes in the following. We predict the
horizontally and vertically averaged relative humidity in each target box as the
mean of Rlc, respectively Rlc+s, of all back-trajectories released from within the
box. As shown in Figure B.20c and B.20d, there is good agreement between the spa-
tially averaged RICON and Rlc+s, though the reconstructed field is still a bit noisier.
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For some trajectories, the Lagrangian reconstruction yields extreme, unphys-
ically high values of R. In these cases the last-condensation event occurred at
higher temperatures than that of the target point, so the air parcels have ascended
after the last-condensation event. The ascent and associated cooling would not
be possible without further condensation, which would keep the air parcel's
relative humidity at around 100%. However, due to the shortcomings in our
method described in Sections B.4.2 and B.4.3, these further condensation events
are missed and an extremely high value of R is predicted. We remove these cases
prior to the spatial averaging by discarding trajectories for which Rlc+s is more
than 10% higher than the maximum of RICON, which is about 130% in the control
experiment. This is the case for 5% of all trajectories for which a last-condensation
event was determined.
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Figure B.20: Illustration of spatial averaging performed to reduce noise in the recon-
structed relative humidity field for an exemplary time step (17 July 2021, 12Z).
Scatterplots of (a) ICON-simulated relative humidity (RICON) and (b) recon-
structed relative humidity Rlc+s at the start positions of back-trajectories. Spa-
tially averaged (c) RICON and (d) Rlc+s over 2◦ × 2◦ boxes.
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b.4.6 Reconstructed relative humidity

To evaluate the methods described above, we examine how well RICON is re-
produced by Equations 11 and 13 in our control experiment. The distribution
of RICON is bimodal with a prominent peak at values below 20% (Figure B.21).
Such a bimodal distribution is well known from observations (e.g. Ryoo et al.,
2009; Zhang et al., 2003) and has been attributed to the rapid drying by radiative
subsidence; after being moistened by upward transport, air parcels dry out rapidly
and spend a short time at intermediate humidity (Mapes, 2001).

Both kinds of Lagrangian reconstructions reproduce the ICON-simulated
RICON well (Figure B.21). While the distribution of Rlc is shifted to lower values
compared to RICON, the distribution of Rlc+s is closer to, but shifted to slightly
higher values than RICON. The improvement of the reconstruction by including
moisture sources and sinks is encouraging, as this would be expected if the
approach was working as intended. The fact that the inclusion of moisture sources
and sinks from the parameterizations increases the predicted relative humidity
is not surprising. Per definition, microphysical processes can only increase an
air parcel's q after the point of last condensation. Turbulent mixing can generally
either increase or decrease q. However, vertical mixing, which dominates along our
trajectories (see Section B.4.4), primarily moistens air parcels that subside through
the free troposphere due to a down gradient moisture flux and the exponential
decrease of q with height. Why Rlc+s tends to overestimate RICON is less clear
and likely reflects uncertainties in our method and/or the fact that the Lagrangian
reconstruction does not incorporate numerical diffusion. However, the aim of the
Lagrangian reconstruction in this study is not to obtain a perfect reproduction
of RICON, but rather to explain humidity differences between different ICON
experiments. As we will show in Section B.5.2, this is possible despite some small
deviations of the Rlc+s distribution to the RICON distribution.

b.4.7 R-space

To distinguish between different tropical humidity regimes, we divide the target
boxes and the corresponding back-trajectories into ten equal-sized bins of RICON.
The driest bins in this "R-space" correspond to the (sub-)tropical subsidence
regions, whereas the moistest bins correspond to deep convective regions in the
Intertropical Convergence Zone (ITCZ) and the Indo-Pacific Warm Pool. In our
experiments, which are performed for a period in northern-hemisphere summer,
the regions of highest R are centered around about 10◦ N and the driest regions
are concentrated south of the equator, where the subsiding branch of the strong
cross-equatorial Hadley cell is located (Figure B.22a). Regions of intermediate R
are more widely distributed across the tropics, with a larger proportion located
north of the equator.
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Figure B.21: ICON-simulated and reconstructed relative humidity distributions in the con-
trol experiment. Probability density of tropical relative humidity simulated by
the ICON model (RICON, black) as well as from Lagrangian reconstructions
based on the plain last-saturation model (Rlc, red) and taking into account
moisture sources and sinks from parameterized processes (Rlc+s, blue). His-
tograms are based on 2◦ × 2◦ spatially averaged relative humidity (see text for
details).

The back-trajectories demonstrate how the origins of air parcels differ between
regions of low and high R. For the driest target regions south of the equator, last
condensation occurs in two different regions remote from the target region: on
the southern edge of the tropical deep convective regimes close to the equator,
and in the sub- and extra-tropics (Figure B.22b). Towards regions of higher R, the
fraction of air parcels originating from within the tropics increases (Figure B.22c).
Air parcels arriving in the driest regimes have on average travelled for about one
week since last condensation (Figure B.22c), which is consistent with the time
periods found by Cau et al., 2007 based on reanalysis fields. These air parcels have
subsided from high altitudes, as evident from low last-condensation temperatures
of about 220 K. The large difference between source and target temperature causes
the extremely low target R of these parcels (Equation 12). In summary, regions
of low R are characterized by source regions that are cold and remote. Towards
regions of higher R, last-condensation events occur closer to the target regions
and at temperatures more similar to that of the target region (Figure B.22b,c). Air
parcels arriving in the moistest target regions have travelled for less than a day
since last condensation.

Figure B.23a shows mean and standard deviation of the reconstructed Rlc and
Rlc+s, respectively, plotted against mean RICON for each bin in R-space for the
control experiment. The spread in the reconstructed R in each bin is comparable
to the difference in RICON between neighbouring bins, demonstrating that the
Lagrangian reconstruction succeeds in predicting the R of a given target box.
Again, it is evident that the plain last-saturation reconstruction underestimates R,
particularly in moist regimes, while the reconstruction with moisture sources and
sinks slightly overestimates R, particularly in dry regimes.

The difference between Rlc+s and Rlc provides an estimate of the effect of
parameterized moisture sources on relative humidity. It increases from about 0.5%
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Figure B.22: Characteristics of target and source regions in the control experiment in R-
space. Histograms showing meridional distributions of (a) target regions and
(b) last-condensation points for ten decile-bins of RICON. (c) Bin-averages of
last-condensation temperature (Tlc, black solid) and time passed since last
condensation (tlc, blue), as well as fraction of last-condensation points located
within the tropics, defined as 30◦ S to 30◦ N ( f , gray). The temperature of the
target region is denoted by the black dashed line.
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Figure B.23: ICON-simulated and reconstructed relative humidity R for the control ex-
periment in R-space. (a) Reconstructed R (Rrec) versus ICON-simulated R
(RICON) for ten decile-bins of RICON. Points correspond to bin-mean values,
the shading indicates ± one standard deviation of Rrec. Colours distinguish
reconstructions based on the plain last-saturation model (Rlc, red) and taking
into account moisture sources and sinks from parameterized processes (Rlc+s,
blue). (b) The difference Rlc+s−Rlc (∆Rs) in absolute units (black, left x-axis)
and relative to Rlc+s (gray, right x-axis).

in the driest decile to about 6% in the moistest decile (Figure B.23b). Although
parcels that end up with low R also originate from moist regions, where mi-
crophysical processes and turbulent mixing are potentially active, they passed
these regions at much colder temperatures (cf. Figure B.22c), at which water
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vapor concentrations (and hence also sources) are small. Therefore, the effect from
parameterized moisture sources on R increases from dry to moist regions when it
is measured in absolute units. When the change in R from parameterized sources
is measured relative to the final (reconstructed) value of R it decreases from about
15% in the driest decile to about 5% in the moistest decile. This reflects that the
probability to encounter moisture sources is enhanced for parcels that end up
with low R, because they have been transported over a longer time since last
condensation (cf. Figure B.22c). In general, the difference between Rlc+s and Rlc
is small compared to the range of R values occurring throughout the tropics. This
is in line with many earlier studies, which concluded that moisture sources and
sinks are not relevant for explaining spatial variations of tropical R (e.g. Dessler
and Sherwood, 2000; Sherwood, 1996), corroborating the general validity of the
last-saturation paradigm. Nevertheless, they might be relevant for explaining
more subtle R differences between model experiments. This will be examined in
the course of this study.

b.5 mechanisms controlling mid-tropospheric relative humidity

differences

b.5.1 Changes in mid-tropospheric relative humidity

The representation of mid-tropospheric R differences in R-space (Figure B.24a)
shows that for most experiments changes in R are larger in moist than in
dry regions. Therefore, differences in tropical mean R (Figure B.19) mainly
reflect differences in the moist regions. A similar behaviour was also found for
mid-tropospheric humidity differences among the DYAMOND models (Lang
et al., 2021). The robustness of R in dry regions is related to their cold source
temperatures, which will be discussed in more detail in Section B.5.3.

As already evident from the tropical mean R profiles, mid-trospheric R changes
are largest in the experiment with the TTE turbulence scheme. The representation
in R-space shows that R increases throughout the tropics, but the strongest
increase (about 10%) occurs in rather moist regimes around the 80th percentile
of R. In comparison, the sensitivity of mid-tropospheric R to changes in the
microphysics (2-mom and 2vice) is weaker and limited to regions of intermediate
and high R. The experiment with halved vertical resolution (2∆z) is the only one
in which changes in R are larger in dry than in moist regimes. The increase in
mid-tropospheric R in the experiment with doubled horizontal resolution (∆x/2)
is concentrated in moist regimes.

Internal variability, which we estimate from the difference between the two
control experiments, is larger in dry than in moist regions. This may be expected
given that the source regions of dry air are remote (Figure B.22) and therefore
strongly influenced by the large-scale circulation, which varies on timescales that
are longer than our simulation period. While in the moist regions (and therefore
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also in the tropical mean) changes in R are larger than the estimated internal
variability in all sensitivity experiments, in the dry regions this is only the case
for the TTE and 2∆z experiments. Thus, the R differences we find in dry regions
are strongly coloured by internal variability and systematic differences could only
be quantified based on longer experiments. This should be kept in mind for the
discussions in the following.
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Figure B.24: ICON-simulated and reconstructed changes in mid-tropospheric R in the sen-
sitivity experiments displayed in R-space. (a) Changes in ICON-simulated
R compared to the control experiment (∆RICON). (b) Changes in R recon-
structed by a plain last-saturation model (∆Rlc) and (c) changes in the ef-
fect of moisture sources and sinks after last condensation (∆(Rlc+s−Rlc)). (d)
Changes in the residual (∆r), i.e. in the difference between ICON-simulated
and reconstructed R. The sum of the terms shown in (b) to (d) yields the
ICON-simulated R changes shown in (a). Lagrangian reconstructions were
not performed for the ∆x/2 experiment (see text for explanation).

b.5.2 Changes in source and target regions vs. changes during advection

The two types of Lagrangian reconstructions (Equations 11 and 13) are used
to shed light on the physical processes behind the R changes in the sensitivity
experiments. The reconstructions were performed for all experiments except
the ∆x/2 experiment for reasons of limited resources as the doubled horizontal
resolution increases the model output by a factor of four. Additionally, to obtain
the same accuracy of trajectories as for the control experiment the timestep for
the trajectory calculation would need to be halved. In total, the required model
output for the ∆x/2 experiment would increase by a factor of 8 and the trajectory
calculations would get correspondingly expensive.

For most experiments the R differences that were reconstructed based on
the plain last-saturation model (∆Rlc, Figure B.24b) explain a large part of the
actual differences (∆RICON, Figure B.24a), whereas the effect from changes in
parameterized processes given by ∆Rlc+s − ∆Rlc is small (Figure B.24c). This
means that the R changes must be mainly caused by changes in the source
and/or target temperature (see also Section B.5.3), whereas changes in moisture
sources and sinks that affect an air parcel's water vapor content on its way to
the target region are of minor importance. Most importantly, different from what
one might expect, the strong mid-tropospheric moistening in the TTE experiment
is not a direct consequence of enhanced vertical turbulent mixing that moistens
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air parcels as they are transported from source to target regions. Instead, it
must be explained by changes in the properties of source and/or target regions
themselves, which we will investigate further in later sections. Similarly, one
might expect that the moistening in the 2∆z experiment with coarser vertical
resolution results from enhanced numerical diffusion during vertical advection
after last condensation. However, the moistening is at least partly reproduced by
the Lagrangian reconstructions, which do not account for changes in numerical
diffusion after last condensation. Having said this, the reconstructions do not
fully capture the strong moistening of dry regions, which is also evident from the
positive residual term (Figure B.24d). Hence, a part of the moistening might well
be explained by enhanced numerical diffusion on the pathway from the source to
the target point.

From the fact that the last-saturation model successfully reproduces the R
changes between experiments, one could also conclude that they are caused
by changes in the resolved circulation and the temperature structure. This is
true under the assumption that the location (and hence temperature) of last-
condensation points only depends on the resolved circulation and temperature
structure. However, as we will explain in Section B.5.5, this assumption does not
always hold.

There are exceptions, where changes in parameterized moisture sources and
sinks after last condensation do play a role in changing R. As one would expect,
this mainly concerns the experiments with changes in the parameterizations of
turbulence and microphysics. In the TTE experiment, turbulent moistening during
advection is enhanced for dry and intermediate regimes and reduced for moist
regimes. Overall, the contribution from the changing moisture sources to the total
R change is small. The (rather weak) drying of the mid troposphere in the 2-mom
experiment is mainly due to a reduction in moisture sources (Figure B.24c), while
the plain last-saturation reconstruction predicts almost no change (Figure B.24b).
Hence, the drying is caused by reduced evaporation of cloud condensate or
precipitation. However, additional trajectory calculations showed that the stronger
reduction in R in the layer between 1 km and 3 km in the 2-mom experiment
(Figure B.19) is to a large extent captured by the plain last-saturation model. The
ratio of air parcels that have subsided from the free troposphere since last conden-
sation to air parcels that have very recently experienced saturation during ascent
increases in the 2-mom experiment, indicating that the microphysical perturbation
also affects the resolved transport associated with shallow convection. This would
be consistent with the microphysics limiting the depth of shallow convection as
mentioned in Section B.3.

The ∆r term includes any changes in RICON that are not explained by either of
the two Lagrangian reconstructions (with or without moisture sources along the
trajectory). As explained above, the positive ∆r in the 2∆z experiment might result
from an increase in numerical diffusion, which is not captured by the Lagrangian
reconstruction. However, there are also a positive, albeit smaller ∆r for the TTE,
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2-mom and 2vice experiments, for which we do not expect changes in numerical
diffusion.

In summary, the R changes in our experiments are largely explained by the
last-saturation model, and only slightly modulated by changes in moisture
sources after last condensation. In the 2∆z experiment the part of the R change
that cannot be explained by either of the two mechanisms is likely related to
changes in numerical diffusion.

b.5.3 Changes in source temperature vs. changes in target temperature

The fact that R differences are largely explained by the last-saturation model leaves
changes in the saturation specific humidity in the source regions and in the target
region as possible causes (Equation 12). With a linear expansion the relative humid-
ity change predicted by the last-saturation model can be approximated as follows:

∆Rlc ≈
Lv

Rv

Rlc

T2
lc

∆Tlc −
Lv

Rv

Rlc

T2
t

∆Tt = ∆Rs + ∆Rt, (16)

where Rv is the gas constant of water vapor and Lv is the specific heat of vaporiza-
tion of water. The first term ∆Rs corresponds to the change in Rlc due to changes
in source temperature, the second term ∆Rt is the change in Rlc due to changes
in target temperature. From Equation 12 there should be a third term representing
changes in source pressure, which we found to be negligible compared to the
temperature terms. Changes in target pressure do also not play a role since our
target region is a fixed altitude region in all experiments.

∆Rs and ∆Rt are shown in Figure B.25. Their sum is a good approximation
of ∆Rlc (not shown). The two terms tend to have opposite signs, indicating that
an increase in last-condensation temperature, which increases Rlc, is typically
accompanied by an increase in the target temperature, which decreases Rlc.
However, ∆Rs overcompensates ∆Rt for all experiments. This is likely related
to the fact that the source regions are generally located above the target regions
(Figure B.22c) and temperature differences between experiments increase with
height (Figure B.19d).

The overcompensation described above is also evident from the fact that changes
in R (Figure B.24a) follow a similar pattern as changes in last-condensation tem-
perature ∆Tlc (Figure B.26a). The 2-mom experiment is an exception, because its
R change is controlled by a change in parameterized moisture sources after last
condensation (Section B.5.2). As noted already in Section B.5.2, the magnitudes
of R changes are damped towards dry regimes, although the magnitudes of ∆Tlc
hardly change throughout R-space. This is because the absolute temperature of
the source regions Tlc increases from dry to moist regimes (Figure B.22c). Due
to the non-linear dependence of e∗ on T the same temperature change results in
a smaller change in e∗lc at lower temperatures than at higher temperatures, and
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Figure B.25: Contributions from source and target temperature changes to changes in mid-
tropospheric R in the sensitivity experiments shown in R-space. (a) Contribu-
tion from change in last-condensation temperature (∆Rs) and (b) contribution
from change in target temperature (∆Rt). The sum of two terms approximates
the R changes that were reconstructed based on the last-saturation model (Rlc
in Figure B.24b). Note the different in y-axis ranges in this figure and Figure
B.24.

hence in a smaller change in R. Thus, the robustness of R in dry regions is a
consequence of the low water vapor concentrations in the cold source regions.

b.5.4 Changes in tropical source regions vs. changes in extra-tropical source regions

The source regions of tropical mid-tropospheric air lie both within the tropics (here
defined as 30◦S to 30◦N) and in the extra-tropics (Figure B.22). Hence, changes in
Tlc could result from changes in tropical last-condensation temperatures Tlc,trop,
extra-tropical last-condensation temperatures Tlc,extra or the share of tropical last-
condensation points f :

∆Tlc ≈ f ∆Tlc,trop + (1 − f )∆Tlc,extra + ∆ f (Tlc,trop − Tlc,extra) (17)

In moist regimes, the changes in Tlc are dominated by changes in Tlc,trop (Figure
B.26b), whereas in the driest 40 percentiles changes in Tlc,trop and Tlc,extra are
commensurately important (Figure B.26c). Note that the fraction of tropical last-
condensation events f shapes the lines in Figure B.26 b and c. While the absolute
changes in Tlc are similar for tropics and extra-tropics (not shown), extra-tropical
changes do not affect the moist regions because f is close to 1 there (Figure B.22).
Changes in f between experiments play a minor role in changing Tlc (Figure B.26d).

Internal variability (as measured by the Control 2 simulation) increases towards
dry regions both for tropical and extra-tropical source regions (Figure B.26b,c).
For the extra-tropics, changes in most sensitivity experiments are similar in
magnitude and go in the same direction as in the Control 2 experiment, which
may indicate that the control climate was an outlier with colder extra-tropical
source temperatures. This explains why in the control experiment the driest
regions have a lower R than in all the sensitivity experiments (Figure B.24). Thus,
to a large extent, changes in Tlc,extra in our sensitivity experiments can be explained
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by, or at least not differentiated from, internal variability. This variability is likely
caused by changes in the dynamic mechanisms that bring air to saturation in the
extratropics and transport it to the tropics. The fact that the relative humidity of
the dry regions is disproportionately affected by these changes emphasizes the
important role of the exchange between extra-tropics and tropics in controlling the
humidity of the dry regions, which has been highlighted in several studies (e.g.
Cau et al., 2007; Roca et al., 2012; Villiger et al., 2022; Waugh, 2005). In particular,
a change in these exchange mechanisms under warming represents a possible
pathway for changing the relative humidity of the dry regions.

A change in Tlc,trop can generally result from a change in the tropical tempera-
ture profile and/or a change in the height distribution of last-condensation points.
Additional analysis showed that both mechanisms are of similar importance in
our experiments. Depending on the experiment they either counteract or reinforce
each other. In the TTE experiment, for example, tropical temperature increases
(see Figure B.19d) and last condensation occurs at lower altitudes on average. Both
effects increase Tlc,trop. In the 2vice experiment, on the other hand, the two effects
counteract; tropical temperature decreases, but last-saturation takes place at lower
altitudes on average. This explains why the R change in the 2vice experiment is
relatively small despite the large temperature change (Figure B.19).
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Figure B.26: Changes in last-condensation temperature Tlc in sensitivity experiments
shown in R-space. (a) Total change of Tlc compared to the control experi-
ment, (b) contribution from changes in tropical last-condensation tempera-
tures Tlc,trop, (c) contribution from changes in extra-tropical last-condensation
temperatures Tlc,extratrop and (d) contribution from changes in f , the share of
tropical last-condensation events.

b.5.5 Mechanisms behind the moistening in the TTE experiment

Mid-tropospheric R increases most strongly in the experiment with the TTE
turbulence parameterization. The analysis above has shown that this moistening
is largely explained by an increase in the average temperature at last condensation.
The full distribution of tropical last-condensation temperature Tlc,trop for the
control and the TTE experiment are shown in Figure B.27. It is apparent that the
distribution is bimodal in both experiments, implying that there are two distinct
source regions for tropical mid-tropospheric air. The warm mode at around 265 K
corresponds to “young" air parcels with high R that either experienced last



B.5 mechanisms controlling mid-tropospheric humidity differences 107

condensation very recently and have since subsided over only a short distance
or are even saturated at the time considered. The cold mode at around 220 K
represents “old" air parcels that have subsided from the upper troposphere, where
deep convection detrains preferentially, and hence end up with a low R in the mid
troposphere. In the TTE experiment the two modes stay at roughly the same tem-
perature as in the control experiment, but the share of young air parcels increases
at the expense of old air parcels. In line with that, snapshots of R and moisture ten-
dencies from microphysics reveal that condensation occurs over a broader area of
the tropical mid troposphere at any given time in the TTE experiment (not shown).
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Figure B.27: Probability density distribution of last-condensation temperature Tlc for tropi-
cal last-condensation points in the control (black) and TTE (red) experiments.

One possible explanation for the broadening of saturated mid-tropospheric
regions would be that convective updrafts cover a larger area. However, a corre-
sponding analysis showed that this is not the case in the TTE experiment. The
reason rather appears to be a strong turbulent mixing between lower and mid
troposphere performed by the TTE scheme. Figure B.28a shows vertical profiles of
the specific humidity tendencies produced by the turbulence scheme in the control
and TTE experiments for an exemplary model output timestep. To distinguish
between different tropical large-scale circulation regimes, profiles were averaged
within five 20-percentile ranges of column-integrated water vapor. In the control
experiment the Smagorinsky turbulence scheme only acts within the boundary
layer throughout all circulation regimes; the air within the boundary layer is
moistened by mixing water vapor upward from the surface. The TTE scheme
behaves very differently. Most importantly, it performs a strong mixing between
the lower and mid troposphere, particularly in the moist tropics, which manifests
as a drying of the lower troposphere and a moistening of the mid troposphere.
In other words, the TTE scheme unintentionally acts similar to a convective
parameterization.

The mid-tropospheric moistening by turbulent mixing in the TTE experiment
is accompanied by increased condensation, as evident from the specific humidity
tendencies produced by the microphysics parameterization shown in Figure B.28b.
The strong vertical mixing creates a moist background that favours condensation
whenever air is displaced upward, such that condensation is not restricted to
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Figure B.28: Moisture tendencies from (a) turbulence and (b) microphysics parameteriza-
tions in the control (black) and TTE (red) experiment for an exemplary simu-
lation time step (17 July 2021, 12Z). Each panel in (a) and (b) shows a vertical
profile of specific humidity tendencies averaged over a 20-percentile range of
column-integrated water vapor, sorted from dry profiles on the left to moist
profiles on the right.

convective updrafts in the TTE experiment. This explains why the share of young
air parcels with last condensation within the mid troposphere is increased.

It is worth revisiting Figure B.24c, which shows how the effect of parameter-
ized moisture sources changed compared to the control simulation. Given that
the turbulent moistening of the free troposphere is more intense in the TTE
experiment, it may be surprising that for the moist percentiles the moistening
from parameterized processes decreased compared to the control run. However,
it can be understood as a consequence of the larger share of young air parcels
in the moist percentiles, for which the time period available for moistening is
reduced. This is also evident from Figure B.29, which shows the relative change
in time since last condensation (tlc) to the control experiment for all sensitivity
experiments. In the TTE experiment, parcels arriving in the moistest percentile
have on average been transported for a more than 40% shorter time since last
condensation. For the other experiments changes in tlc are within ± 10%.

While the last-saturation model technically explains the R increase in the TTE
experiment, it does not do so for the reasons we expected. The original idea
was that last-condensation points are determined by the resolved circulation and
temperature structure. Thus, if the change in R is explained by the last-saturation
model, it must be caused by changes in circulation and temperature, while
changes in parameterized processes can only play a role if they affect these re-
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solved properties. In the TTE experiment, however, condensation is not exclusively
driven by resolved upward motions, but also by the strong parameterized vertical
mixing of water vapor. Thus, in this case, parameterized moisture sources directly
influence the location of the last-condensation events. Nevertheless, the fact that
the last-saturation model succeeds in reproducing the R change still tells us that
the change is driven by changes within the tropical source regions, i.e. the ITCZ
and warm pool region, whereas changes in moisture sources during subsequent
advection play a minor role.

The behavior of the TTE scheme is certainly unexpected and indicates that the
scheme has not been sufficiently adapted to storm-resolving resolutions. Whether
this type of one-dimensional scheme is appropriate for use at storm-resolving
resolution is a question to be addressed in other studies. Having said that, the fact
that even this extreme perturbation did not change R far beyond the inter-model
spread in DYAMOND is promising. Many of the DYAMOND models used tur-
bulence parameterizations that were not specifically adapted to storm-resolving
resolution due to their early development stage. Hence, a better adaption of the
schemes in future model versions might further reduce the spread in tropical R.
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Figure B.29: Relative change in time since last condensation (tlc) to the control experiment
for all sensitivity experiments depicted in R-space.

b.6 summary and conclusions

In this study our aim was to narrow down the model uncertainties that cause
the remaining spread in tropical relative humidity R across GSRMs, as has been
quantified in a recent study based on DYAMOND, the first model intercomparison
initiative for GSRMs. To this end, we test the sensitivity of R to changes in model
resolution and parameterizations in a series of six 45-day experiments with the
ICON model in a storm-resolving configuration. The changes we apply to the
model are inspired by differences among the DYAMOND models. They include
changes in horizontal and vertical grid spacing, as well as in the parameterizations
of microphysics and turbulence. We use a last-saturation model based on 3D
backward trajectories to gain insight into the mechanisms behind the R changes
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in the sensitivity experiments. This analysis is restricted to the mid troposphere.

The rather strong perturbations applied in our sensitivity experiments result in
changes in tropical R that are of similar magnitude as the spread across the DYA-
MOND models. An earlier study had shown based on the DYAMOND ensemble
that the R spread across GSRMs is reduced compared to classical GCMs with
convective parameterizations. Our experiments support this finding by showing
that even strong perturbations in GSRMs cannot reproduce the spread in R seen
in models with convective parameterizations. Moreover, our experiments show
that tropical R is rather robust to changes in model resolution within the general
scale of GSRM resolutions. The three experiments with different vertical grid
spacing (800 m, 400 m and 200 m in the free troposphere) show that R changes
are modest as soon as a certain threshold vertical resolution is exceeded. The
experiments with 5 km and 2.5 km horizontal grid spacing produce a very similar
R distribution. While these results suggest that differences in model resolution
do not contribute significantly to the current R spread across GSRMs, it does not
exclude the possibility that reducing the horizontal grid spacing to much finer
scales (on the order of 200 m) could make a difference, which needs to be tested in
future experiments.

In our experiments, R changes more strongly in response to exchanging the
microphysics and turbulence schemes, indicating that the model physics rather
than resolution (at storm-resolving scales) are the major source of R spread across
GSRMs. While microphysical changes affect R most strongly in the altitude layer
associated with shallow clouds, exchanging the turbulence scheme changes R
over a broad altitude region in the lower to mid troposphere. We could not test
the extent to which the dynamical core, and choices it makes in how to solve the
transport equations, systematically influences the distribution of source regions.
However, the similarity of spread between our (parameterized) physics sensitivity
studies, and the relatively modest effect of grid spacing lead us to believe that
these effects are unlikely large.

Like the R differences between DYAMOND models, the R changes in our
experiments are smallest in the dry subsidence regimes of the tropics. This
is a consequence of the low water vapor concentrations in their cold source
regions. However, since the sensitivity of OLR to changes in relative humidity
is particularly high in dry background states (e.g. Spencer and Braswell, 1997),
small R differences in the dry zones are nevertheless important from a radiative
perspective (Lang et al., 2021). At the same time, this study highlights that
understanding humidity differences between models is particularly challenging
for the dry regions. The R of the dry regions is subject to larger internal variability
on timescales of days to months, which storm-resolving simulations are currently
limited to. This is because the source regions of dry air are located remotely
(mainly on the edges of the inner-tropical deep-convective regimes and in the
extra-tropics) and therefore depend on the large-scale circulation. Thus, while
one simulated month is sufficient to quantify systematic R differences in moist
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regions, longer simulations would increase our confidence in the sources of
variability in the dry regions. Because changes in both tropical and extra-tropical
origins need to be considered to understand R differences in dry regions (see
also Cau et al., 2007; Roca et al., 2012), changes in the mechanisms of exchange
between tropics and extra-tropics in a warmer climate represent an important
pathway for changing the relative humidity of the dry regions, which would have
important implications for the clear-sky climate feedback.

The mid-tropospheric R changes in our experiments, including the strong
moistening in the experiment with the exchanged turbulence scheme, are largely
captured by the last-saturation model. This means that most R changes are ex-
plained by changes in source temperature, i.e. the temperature at which air parcels
typically experience last condensation, whereas changes in the moistening or
drying by parameterized processes after last condensation play a minor role. This
is even true when the parameterized moisture sources are modified directly, like
in our microphysics and turbulence experiments. Overall, this study shows that
the last-saturation model is not only successful in explaining variations in tropical
R in the real atmosphere or a given model, as shown by many previous studies
(e.g. Dessler and Sherwood, 2000; Pierrehumbert and Roca, 1998; Sherwood, 1996),
but it can also be a helpful tool for explaining the causes of humidity differences
between models. However, it has also become clear that last-saturation statistics
can be directly affected by changes in parameterized moisture sources, e.g. by
enhanced turbulent moistening. Therefore, if the last-saturation model explains a
change in R, it does not necessarily mean that it is due to changes in the resolved
circulation or the temperature structure.

In our experiments the most substantial change in R was found in response
to changing the turbulence parameterization from a Smagorinsky-type scheme to
a total turbulent energy (TTE) scheme. The resulting increase in R was largest
in the mid troposphere of moist regions. The reason appears to be that the TTE
scheme produces a strong turbulent moistening of the mid troposphere in the
inner, moist tropics. This moistening favours condensation, which is why from
a last-saturation perspective the share of young air parcels with warm source
temperatures increases in the TTE experiment. Thus, the R of the moist tropical
regions, while less radiatively important than the dry regions, is disproportionally
sensitive to vertical mixing processes that structure the humidity through their
effect on the last-saturation temperatures, i.e. by increasing mid-level cloudiness,
rather than their effect on the evolution of humidity since its last-saturation.

While the behavior of the TTE scheme is certainly unexpected and indicates that
the scheme is poorly adapted to storm-resolving resolutions, the fact that even
this extreme perturbation does not change R beyond the differences in the DYA-
MOND ensemble is very promising. Due to their early development stage, many
of the DYAMOND models in fact used turbulence parameterizations that were
not specifically adjusted to storm-resolving resolution. This nourishes hopes that
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tropical relative humidity will become even more consistent across future model
versions with better adapted schemes.

open research

The ICON model code is available on
https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability.

The simulation runscripts and the code producing the plots from post-processed
model output and trajectories is available on Zenodo through https://doi.org/

10.5281/zenodo.7120534.
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