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Abstract

Earth’s radiation budget is defined by the equilibrium between incoming shortwave solar
radiation, reflected shortwave radiation on earth’s surface, and outgoing longwave radia-
tion (OLR). It is essential for climate stability because it determines earth’s equilibrium
temperature. Increasing greenhouse gases shift this equilibrium to higher temperatures.
Water vapor is known as a dominate greenhouse gas. Its concentration increases with in-
creasing temperatures which leads to positive radiative forcing, increasing the equilibrium
temperature, resulting in increased amount of water vapor in the atmosphere.
My thesis investigates this growing imbalance, by extending previous research. I analyze
the relationship between OLR and two-meter temperature (Ts) while considering the im-
pact of water vapor on OLR and the radiative feedback. OLR depends linearly on Ts

which is a consequence of complex interactions between the Stefan-Boltzmann law and
the spectral window of water vapor. Theory predicts, that for Ts higher than a certain
threshold, the "super greenhouse effect" occurs and causes OLR to decrease.
To validate this theory, I use data from the CERES satellite product and ERA5 reanalysis
and investigate the dependence of OLR, and thus, of the radiative feedback on the column
relative humidity (CRH). My analysis identifies regions with high moisture absorption and
shows a decrease of the radiative feedback in high CRH areas. Clouds further dampen
OLR but the radiative feedback remains humidity-dominated.
Furthermore, I analyze the sudden decrease of OLR around Ts = 300 K, based on previous
studies. The decrease is caused by the moist mid-atmosphere of the tropical warm pool.
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1 Introduction

Greenhouse gases play an important role in influencing earth’s radiation budget, and thus,
the two-meter temperature (Ts). The radiation budget describes the equilibrium between
incoming shortwave solar radiation, reflected shortwave radiation on earth’s surface, and
outgoing longwave radiation (OLR). Greenhouse gases absorb the radiation from the sur-
face and reemit at lower temperatures. An increase in greenhouse gases leads to positive
radiative forcing and increasing temperatures. A dominant greenhouse gas is water vapor,
amount of which is proportional to Ts. Thus, a sufficient amount of water vapor increases
the temperature which leads to even more water vapor in the atmosphere and decreasing
OLR. This effect is quantified by the longwave feedback parameter

λlw = dOLR
dTs

(1.1)

which represents the slope of the linear regression between OLR and Ts.
Several studies like Koll and Cronin [2018], McKim et al. [2021] and Feng [2023] proved
that OLR depends linearly on the near-surface temperature, thus, λlw is constant. In
this thesis, I extend these studies and take the effect of water vapor on the feedback into
account.
The linearity between OLR and Ts arises because of the counteraction between the non-
linear Stefan-Boltzmann law and the non-linear effect by the narrowing of the spectral
window of water vapor with increasing temperature. The warmer it is the more water
vapor can be hosted by the atmosphere. Above a certain threshold the spectral window
of water vapor closes, thus, the linearity between OLR and Ts has to break down. This
is known as the super greenhouse effect. It means that the absorption of radiation from
the surface due to greenhouse gases is larger than the reemission and the emission from
Earth’s surface. This leads to decreasing of OLR.
To perform my analysis, I utilize OLR measurements from the satellite data product
CERES and temperature and humidity data from ERA5 reanalysis. I extend the analysis
of Koll and Cronin [2018] and McKim et al. [2021] by examining the dependence of OLR
on the column relative humidity (CRH). CRH is defined after Rushley et al. [2018] as the
relation of, over pressure integrated, specific humidity, and the integrated saturated state
of specific humidity.
My main analysis is based on the research question of how CRH affects radiative feedback.
In Chapter 3.1 I analyze the positive feedback of water vapor (Formula 1.1) depending on
CRH. The higher the temperature the higher the water vapor content in the atmosphere
and the higher the absorption of OLR due to the narrowing of the spectral window. Thus,
decreasing λlw is expected as soon as the spectral window of water vapor closes.
To identify moist regions, I bin OLR data by CRH and analyze the effects of moisture on
λlw. Within these bins, I assume constant CRH which does not fit observations but makes
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1 Introduction

it comparable to models which will not be discussed further in this thesis.
Another aspect that impacts OLR is clouds (Chapter 3.2). I compare clear-sky and all-
sky data like McKim et al. [2021] and analyze how clouds affect OLR and the radiative
feedback.
Furthermore, based on a talk by Feng [2023], I investigate the sudden decrease of OLR
around Ts = 300 K in Chapter 3.3. The moist tropical warm pool causes the decrease of
OLR. Feng [2023] found, that this feature is dominated by the mid-tropospherical CRH.
I analyze the effect of mid-tropospheric CRH on the radiative feedback for the whole Ts

and for Ts > 290 K.
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2 Data and Methods

2.1 Used data

My analysis is based on OLR data from the satellite project "Clouds and the Earth’s Ra-
diant Energy System" CERES [2022] and temperature and humidity data from the fifth
generation of European Centre for Medium-Range Weather Forecasts reanalysis ERA5
[2022].
CERES is a project of NASA. It consists of seven instruments on five different satellites.
The project aims to produce a time series of Earth’s global radiation budget from March
2000 until today. From this product, I use monthly mean OLR measurements of a sun-
synchronous polar orbiting satellite with a spatial resolution of a 1°x1° latitude-longitude
grid.
ERA5 covers a time series from 1940 until today and uses a 0.25°x0.25° latitude-longitude
grid. I use monthly mean two-meter temperature data and specific humidity data on the
pressure levels 1000 hPa, 850 hPa, 700 hPa, 500 hPa, 400 hPa, and 300 hPa.
To combine both datasets I have to regrid the spatial resolution of ERA5 to a 1°x1°
latitude-longitude grid. I do that by only using data points with the same coordinates.
The time series starts on March 2000 until December 2022.

2.2 Data processing

The humidity variable I use for my analysis is CRH. I use this humidity variable as it
weighs the different atmospheric layers by taking pressure into account. CRH is similar
to relative humidity as it describes the relative humidity within a column by taking the
ratio of integrated water vapor (IWV) and saturated integrated water vapor (IWVS)

CRH = IWV
IWVS . (2.1)

For my calculation, I use the python package Typhon [2023] which is a toolbox with func-
tions for atmospheric radiative research developed by the working group of Stefan Bühler.
To calculate CRH, I need to calculate the integrated water vapor (IWV) using

IWV = −1
g

∫ pu

pl

q(p) dp, (2.2)

with the gravitational constant g = 9.81 m s−2, the lower pressure boundary pl, and the
upper pressure boundary pu. The function uses the volume mixing ratio (x) to calculate
the specific humidity
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2 Data and Methods

q = x
(1 − x) Md

Mw
+ x

, (2.3)

which is needed in Equation 2.2. As I initial need x as an input to use the existing Func-
tion 2.2 in Typhon [2023] I use

x = q

(1 − q)Mw
Md

+ q
, (2.4)

with the molar mass for dry air Md = 28.9647 g mol−1 and the molar mass for moist air
Mw = 18.01528 g mol−1 to convert the given q in the ERA5 data into x.
To get IWVS I convert the, in ERA5 given, temperature T into saturated water vapor
pressure es using a Formula by Murphy and Koop [2005] which is implemented in Typhon
[2023].
I then calculate the saturated specific humidity qs with saturated water vapor pressure es

and pressure p to derive saturated specific humidity

qs = 0.622 · es

p − 0.378 · es
. (2.5)

With qs I have the same starting point as for the derivation of IWV using q. I repeat
Formula 2.2, Formula 2.3 and Formula 2.4 to caluclate IWVS using qs. Lastly, I divide
IWV by IWVS to get CRH (Formula 2.1).
I use two different variants of CRH as I analyze the effects of the mid-troposphere in Chap-
ter 3.3. The first variant uses near-surface pressure (pl = 1000 hPa) and pu = 300 hPa as
integrating limits in Formula 2.2. Later, it will be referred to as CRH1000. The second
variant uses pressure from the middle troposphere (pl = 700 hPa) to pu = 300 hPa as
integrating limits. Later, it will be referred to as CRH700.
During my thesis, I implemented a new function in Typhon [2023] to simplify the deriva-
tion of CRH. I combined the previous equations into one function in Typhon [2023]. The
function will be in the next release of Typhon [2023].

To analyze the radiative feedback with emphasis on humidity, I bin OLR and Ts data
by CRH. The bin width is 10 percent points, starting from 10% to 100%, thus, dry and
oversaturated parts of the atmosphere are neglected as there are not many data points.
For a better comparison between CERES and ERA5, I calculate clear-sky humidity data
of ERA5 qcs. Because CERES data is available as clear-sky and all-sky and ERA5 data
does not distinguish between clear-sky and all-sky. Therefore, I use the cloud fraction fc

and assume that every grid cell (every value) consists of a cloud-free part and a cloudy
part. The actual value of a variable is determined by the sum of both values (Equation
2.6). Equation 2.7 provides the clear-sky part of q which is qcs

q = qs · fc + qcs · (1 − fc) (2.6)

qcs = q − qs · fc

1 − fc
. (2.7)

I use the definitions of CRH and the clear-sky calculations of ERA5 in the following
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2.2 Data processing

chapter to analyze their effects on the radiative feedback and compare my results of Koll
and Cronin [2018], McKim et al. [2021] and Feng [2023].
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3 Theory and Results

3.1 Linearity of OLR and its dependence on CRH

Multiple studies like McKim et al. [2021], Feng [2023], and Koll and Cronin [2018] found
that earth’s OLR depends linearly on the Ts for a temperature range between 220 K and
280 K. Thus, the radiative feedback parameter λlw (Equation 1.1) is to the first order
independent of temperature, and the radiative feedback remains the same across all tem-
peratures. The linearity arises due to the counteraction between the Stefan-Boltzmann
law

Eb = σT 4, (3.1)

using the Stefan-Boltzmann constant σ = 5.67 · 10−8 Wm−2K−4, the temperature T , and
the black body irradiance (Eb), and the absorption by water vapor. Both phenomena are
strongly nonlinear. The emitted Eb increases rapidly with temperature, hence, it leads
to greater OLR. The OLR increase is balanced by the narrowing of the spectral window
of water vapor due to rising temperature because water vapor acts as an absorber and
its concentration increases with temperature. Water vapor is a greenhouse gas because it
absorbs radiation from Earth’s surface and re-emits at colder temperatures. Thus, OLR
is damped by water vapor in the atmosphere as it weakens Earth’s radiation from the
surface Koll and Cronin [2018] state that there are two mechanisms, line absorption, and
self-continuum absorption, which cause water vapor to absorb infrared radiation. Absorp-
tion by water vapor is proportional to the power of four of its concentration which is highly
dependent on the temperature. Thus, the higher the temperature, the more absorption
by water vapor takes place and the smaller the spectral window of water vapor (Figure
3.1). The narrowing of water vapor’s spectral window leads to the assumption that the
linearity between OLR and Ts has to break down for temperatures above a certain thresh-
old because the spectral window of water vapor closes completely. Koll and Cronin [2018]
found, that at Ts > 320 K continuum absorption becomes optically thick and the spectral
window of water vapor closes. They used relative humidity (RH) = 100%. The closing of
the spectral window of water vapor is also found by McKim et al. [2021] (Figure 3.2), they
distinguished between temperatures at 275 K, and at 300 K and show that the spectral
window of water vapor closes more rapidly with increasing RH for high temperatures.
Hence, they stated that humidity plays an important role in earth’s radiative feedback
(Figure 3.3). It is clear to see that the radiative feedback decreases more significantly
with CRH for higher temperatures.
This motivated me to analyze the feedback not only regarding the temperature but re-
garding CRH bins.
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3 Theory and Results

Figure 3.1: Transmissivity of water vapor for the temperatures 320 K (yellow), 300 K (light
green), 280 K (turquoise), 260 K (blue) and 240 K (purple) and with RH =
100%. The figure is from Koll and Cronin [2018] with kind permission by
Proceedings of the National Academy of Sciences.

Figure 3.2: The left panel shows the transmissivity of water vapor at 275 K. The right panel
shows the transmissivity at 300 K. RH is indicated by the colors. The figure
is from McKim et al. [2021] with kind permission by Geophysical Research
Letters.

Figure 3.3: Dependence of the radiative feedback on CRH and Ts. The x-axis is CRH (RH
is a short form for CRH). The figure is from McKim et al. [2021] with kind
permission by Geophysical Research Letters.

I recreate a figure of Koll and Cronin [2018] which shows the linearity between OLR and Ts

(Figure 3.4). My results provide the radiative feedback parameter λlw = 2.194 W m−2 K−1

(Equation 1.1), while Koll and Cronin [2018] found λlw = 2.218 W m−2 K−1. The deviation
can be explained by the usage of different data sets. Koll and Cronin [2018] used National
Centers for Environmental Prediction (NCEP) reanalysis data and I use ERA5 data. Note
that in Figure 3.4 a few data points are higher than the black body radiation. This can
be explained by my usage of Ts. If Ts is lower than the actual surface temperature it
seems like the emission is stronger than the black body emission but this is only because
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3.1 Linearity of OLR and its dependence on CRH

the actual emission temperature is higher than Ts.

In this chapter and the next chapter, I write CRH instead of CRH1000 because the differ-
ence between CRH1000 and CRH700 is not discussed in these chapters.
I weigh the data with their latitude in order to reduce the impact of the poles as the data
point density increases with latitude. This weighting does not affect the feedback. In
order to take humidity into account, I bin the data by CRH as mentioned in Chapter 2.2
in bins with a width of 10 percent points and without CRH < 10% and CRH > 100%.

The results of my analysis fit the expectations, that the radiative feedback decreases
with increasing CRH. The OLR dependence on Ts for all-sky ERA5 data and clear-sky
CERES data binned with CRH can be seen in Figure 3.5. I mix all-sky ERA5 data with
clear-sky CERES data because it does not have a crucial impact on OLR and the feed-
back. I discuss this in Chapter 3.2. The black line visualizes the mean unbinned feedback
λlw = 2.194 W m−2 K−1, and the light blue lines visualize the feedback of every bin. The
dark blue line shows the mean OLR for every Ts bin.
The decrease of feedback with CRH and the comparison to the mean feedback can be
seen in Figure 3.6. Feedback for CRH < 40% is higher than the mean feedback because
there is less humidity that damps OLR at high temperatures. For CRH > 40% the fee-
back decreases almost linearly to a mimimum of 1.602 W m−2 K−1 for CRH > 90%. An
explanation that the decrease is not monotone might be that I use all-sky ERA5 data
which affects the CRH and thus the binning by CRH. Only the feedback with the highest
CRH deviates more than 10% from the mean feedback. Compared to McKim et al. [2021]
(Figure 3.3) all binned feedbacks are relatively close to the mean feedback. In Figure
3.6 the feedbacks with low CRH deviate only very little from the mean feedback while in
the results of McKim et al. [2021] (Figure 3.3) for both temperature ranges the feedback
with low CRH deviates up to more than 50%. For high CRH the deviation is only for
Ts = 275 K up to 50%, while in my results the deviation for the highest CRH bin is 27%.
The differences in the results can be caused by the usage of different datasets. McKim
et al. [2021] used a 1D model and I use ERA5 combined with satellite data from CERES.
Model data is idealized and provide much smoother results than measurements.
The striking difference in my results between the two feedbacks with the highest CRH
might represent the super greenhouse effect, which is a scenario with continuum absorp-
tion and thus a closed spectral window of water vapor. In Figure 3.5 this can be seen as
well by comparing the steepness of the light blue and the black line. However, it should
be kept in mind, that the temperature range for the bin with the highest CRH is a lot
smaller than for the other bins. This might bias the linear regression as well.
Another noticeable aspect is that the OLR is higher than the average in dry bins, as ex-
pected because there is less water vapor to dampen the radiation. Conversely, in moist
bins, the OLR is below the average, thus, λlw decreases. This effect is most visible at high
temperatures.
Furthermore, it can be seen in Figure 3.5 that the Ts range and the OLR range decrease
for higher CRH because there are no cold and no warm areas with very high CRH. The
warmest regions are deserts which have low CRH, thus, they are not visible in the moistest
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3 Theory and Results

bin. On the other hand, the coldest areas like Antarctica are also not visible in the moistest
bin because even though the temperatures are very low it is still arid. It can be also seen
that most histograms show a gap of data points for Ts and OLR which separates the
histogram in two patches. This gap moves from lower to warmer Ts for higher CRH but
I do not find an explanation for that effect.

Figure 3.4: This plot is a recreation of a plot by Koll and Cronin [2018]. Earth’s OLR
dependence on Ts is visible. The grey line is the Stefan-Boltzmann and rep-
resents the black body emission. The black line represents the mean feedback
and the dark blue line indicates the mean OLR value for every Ts bin.
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3.1 Linearity of OLR and its dependence on CRH

Figure 3.5: OLR (clear-sky CERES) dependence on Ts (all-sky ERA5) binned by CRH.
The grey line indicates the Stefan-Boltzmann law (Equation 3.1), the black
line indicates the mean radiative feedback (λlw = 2.194 W m−2 K−1), the light
blue line indicates the feedback of every bin and the dark blue line indicates
the mean OLR value for every Ts bin.

Figure 3.6: Radiative feedback parameter depending on CRH. The black line is the mean
unbinned feedback, which is the slope of the black line in Figure 3.4 and 3.5.
The light blue dots are the binned feedbacks which are the slopes of the light
blue lines in Figure 3.5.
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3 Theory and Results

3.2 All-sky vs. Clear-sky

As I already stated Ts is not the only parameter that controls λlw, I examine the impact of
clouds and compare all-sky data with clear-sky data. This discussion is based on McKim
et al. [2021] as they studied the impact of clouds on longwave emission and found that
clouds have a weakening impact on the radiative feedback. However, the feedback is still
impacted by CRH.
In Chapter 3.1 I use all-sky ERA5 data, and clear-sky CERES data. With the aim of
a better comparison, I use Formula 2.7 to calculate the clear-sky part of specific humid-
ity qcs. This allows me to compare the combinations of all-sky ERA5 data with all-sky
CERES data and clear-sky ERA5 data with clear-sky CERES data. My calculation for
clear-sky OLR (OLRcs) is similar to McKim et al. [2021]. The only difference is that they
only used high clouds for the impact on longwave emission and neglected the impact of
low clouds. McKim et al. [2021] also verified their calculation of all-sky OLR (OLRas) by
comparing it with all-sky reanalysis data, which gives me confidence that my calculations
are realistic enough because there are only slight underestimations in the tropics and slight
overestimations everywhere else compared to McKim et al. [2021].
Nevertheless, I verify my clear-sky calculation for ERA5 using Figure 3.7. The plot shows

Figure 3.7: CRHcs dependence on CRHas. The red line visualizes CRHcs=CRHas. The
color indicates the mean cloud fraction of a column.

that CRHcs is mostly lower than the CRHas because clouds have RH = 100%. Thus,
if CRHcs is smaller than CRHas there have to be clouds. However, there are a few ex-
ceptions, with CRHcs > CRHas for CRHas > 40%, that might be explained by the poor
vertical resolution. Low CRHcs have a wide range of related CRHas. The range gets
smaller for higher CRHcs because CRHas can not be higher than 100%. The fc is low if
CRHcs = CRHas because if there is no cloud then there is no difference between clear-sky
and all-sky. Moreover the higher the difference between CRHcs and CRHas, the higher
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3.2 All-sky vs. Clear-sky

the fc.
I start with comparing clear-sky ERA5 data with all-sky ERA5 data combined with clear-
sky CERES data (Figure 3.8 and Figure 3.9 (green and red)). Figure 3.8 is very similar
to Figure 3.5. The difference between clear-sky ERA5 data and all-sky ERA5 data can be
seen in Figure 3.9 (green and red). Less humidity slightly impacts the CRH, and thus the
feedback. The mean unbinned feedback λlw = 2.203 W m−2 K−1 of clear-sky ERA5 data
is higher than using all-sky ERA5 data (λlw = 2.194 W m−2 K−1). The binned clear-sky
ERA5 feedbacks are not necessarily higher than the all-sky ERA5 feedbacks even though
clouds in all-sky ERA5 data affect CRH (Figure 3.9). It is noticeable that the feedback
decreases more smoothly using clear-sky ERA5 data than for using all-sky ERA5 data.
The difference between all-sky and clear-sky ERA5 data is small because it only affects q

and not OLR since OLR is a satellite product from CERES.

Figure 3.8: OLR (clear-sky CERES) dependence on Ts (clear-sky ERA5) binned by CRH.
The grey line indicates the Stefan-Boltzmann law (Equation 3.1), the black line
indicates the mean radiative feedback (λlw = 2.203 W m−2 K−1), the light blue
line indicates the feedback of every bin and the thin dark blue line indicates
the mean OLR value for every Ts bin.

For the comparison between all-sky and clear-sky CERES data, I combine both data sets
with all-sky ERA5 data to isolate the differences in CERES data (red and blue in Figure
3.9). I also compare my results to McKim et al. [2021].
The all-sky radiative feedback (Figure 3.9 (light blue)) is generally lower than the clear-
sky feedback (red). This is the result of clouds as they dampen OLR by absorption
and by re-emission at lower temperatures. The mean unbinned all-sky feedback λlw =
1.746 W m−2 K−1 is 0.46 W m−2 K−1 lower than the mean unbinned clear-sky feedback.
λlw behaving like that not only fits my expectations, it is also seen by McKim et al. [2021].
The all-sky feedback is around 0.5 W m−2 K−1 lower than the clear-sky feedback. In my
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3 Theory and Results

Figure 3.9: Feedback of clear-sky CERES data and all-sky ERA5 data (red), clear-sky
CERES data and clear-sky ERA5 data (green), and all-sky CERES data and
all-sky ERA5 data (light blue). The solid lines represent the mean unbinned
feedback and the dots represent the binned feedback.

results, the difference for low CRH is not that striking but the all-sky feedback decreases
much faster with higher CRH than the clear-sky feedback because clouds are more likely
to be in areas with high CRH. It decreases to 0.84 W m−2 K−1 for the second to last CRH
bin and increases again in the last CRH bin. In the clear-sky feedback the second to last
bin is at 1.94 W m−2 K−1, and thus more than twice as high. The increase of λlw in the
last bin has to be caused by clouds because it does not happen for clear-sky CERES data.
This might be due to a smaller temperature difference between cloud top and surface
compared to regions with lower CRH.
Comparing Figure 3.10 and Figure 3.5 it is clear to see, that the lower boundary of the
all-sky OLR in general is lower than the lower boundary of clear-sky OLR because clouds
dampen OLR. The upper boundary does not change between all-sky and clear-sky. The
range of OLR increases for high Ts bins. In these Ts bins the lower parts of OLR represent
cloudy parts while the upper part of OLR is dominated by clear-sky OLR.
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3.2 All-sky vs. Clear-sky

Figure 3.10: OLR (all-sky CERES) dependence on Ts (all-sky ERA5) binned by CRH.
The grey line indicates the Stefan-Boltzmann law (Equation 3.1), the black
line indicates the mean radiative feedback (λlw = 1.746 W m−2 K−1), the light
blue line indicates the feedback of every bin and the dark blue line indicates
the mean OLR value for every Ts bin.
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3 Theory and Results

3.3 Impact of mid-tropospheric CRH on the feedback

Theory predicts that the overall linearity of λlw has to break down for Ts above a certain
threshold as the spectral window of water vapor closes. Figure 3.4 shows an increase of
OLR for Ts < 298 K and a sudden decrease of OLR for Ts > 298 K. This leads to the
assumption that there has to be another impacting factor on the feedback besides Ts and
cloud cover.
Feng [2023] found that the mid-tropospheric CRH in the subtropics and the tropics play
an important role in the sudden decrease of OLR around 300 K. A tropical circulation
causes this feature. Warm and moist air ascends above the tropical warm pool near the
equator and descends above the drier and colder subtropical ocean. Due to the moisture
above the equator, the emission temperature is lower compared to drier areas. The emis-
sion temperature is the temperature at which the atmosphere emits longwave radiation.
This is the point where the opacity equals one looking from space. Since the atmosphere
above the equator is very moist the emission happens at higher altitudes, thus, at lower
temperatures which decreases OLR. This can be seen in the sudden decrease of OLR for
Ts > 298 K in Figure 3.4. The emission temperature of water vapor above the drier sub-
tropical ocean is higher because there is less humidity. Thus, OLR increases which can be
seen in Figure 3.4 for 280 K < T s < 298 K.
Feng [2023] analyzed the contribution to OLR of the different layers in the atmosphere and
found that the bump around 300 K is mainly caused by layers between 750 hPa to 250 hPa.
In her analysis, this layer shows a low transmissivity for Ts < 302 K (near the equator)
because the mid-troposphere is very moist and contributes less than dry areas to OLR as
it gets damped. For Ts < 302 K, north and south of the equator, the mid-troposphere is
very dry, thus, all layers in the mid-troposphere contribute equally to OLR as the trans-
missivity is very high. This effect can be seen in my analysis around Ts = 298 K. The
dark blue line in Figure 3.4 indicates the feedback for every Ts bin. The decrease of OLR
for Ts > 298 K happens for moist areas in the mid-troposphere while the increase for Ts

< 298 K happens in areas with a dry mid-troposphere.
The global distribution of CRH can be seen in Figure 4.1 and Figure 4.2 in the Appendix.
I use the results of Feng [2023] as a starting point for my investigation of whether mid-
tropospheric CRH has an impact on the feedback or not.
To do so, I firstly analyze if the decrease of OLR is visible when I use CRH700 for the
binning (Figure 3.11) instead of CRH1000 (Figure 3.5).
I expected that the bump around 300 K in Figure 3.4 is more visible in warm and moist
areas of the mid-troposphere (Figure 3.11) than warm and moist parts of the whole tro-
posphere (Figure 3.5) due to the change of emission temperature which is dominated by
mid-tropospheric CHR. My results are not as clear as expected. In Figure 3.5 the bump is
weakly noticeable for all panels except the moistest because there are only very few data
points for Ts > 280 K. The sudden decrease of OLR around 300 K is more prominent in
Figure 3.11 and it strengthens with increasing CRH700. This might be explained by the
poor vertical resolution of the ERA5 data I have used.

Since Feng [2023] found that the mid-tropospheric CRH is responsible for the decrease of
OLR around 300 K it might have an effect on the feedback.
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3.3 Impact of mid-tropospheric CRH on the feedback

Figure 3.12 compares the radiative feedback binned by CRH1000 (red) with the radiative
feedback binned by CRH700 (blue). The feedback binned by CRH1000 decreases with CRH
while the feedback binned by CRH700 shows a decrease for dry bins. For CRH700 > 30%
it is nearly constant and fluctuates around λlw = 1.97 W m−2. Thus, even though, mid-
tropospheric CRH has an effect on the sudden decrease of OLR around 300 K, it does not
have an effect on the mean feedback. Note that the OLR and temperature ranges of the
CRH700 bins in Figure 3.11 differ from the ranges of the CRH1000 bins in Figure 3.5. The
Ts range determines the feedback. Thus, Figure 3.11 is hardly comparable to Figure 3.5
due to the change of the binning. Hence, it is convenient to compare the binning of the
different CRH definitions for the same Ts range which is approximately Ts > 290 K. I
use this temperature range because, as McKim et al. [2021] found, the spectral window of
water vapor closes for temperatures higher 300 K (Figure 3.2). Ts > 290 K already shows
the expected effect and Ts > 300 K does not have enough data points.
The effect of Ts > 290 K on the feedback is summarized in Figure 3.13, which is my main
finding of this chapter. It is clear to see, that rising mid-tropospheric CRH has a decreas-
ing impact on the radiative feedback. Note that Figure 3.12 and Figure 3.13 have different
x-axis scales. For Figure 3.12 CRH goes up to values higher than 90% while in Figure
3.13 CRH only goes up to values higher than 80%. This can be explained by the fact that
there are no areas with high Ts that are very moist in the mid-troposphere.
The feedback binned by CRH1000 fluctuates around λlw = 1.75 W m−2 until it starts to
decrease for CRH1000 > 50%. The feedback binned by CRH700 decreases nearly monoton-
ically which suits my expectations and clearly shows the impact of mid-tropospheric CRH
and the closing of the spectral window of water vapor on the radiative feedback.
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3 Theory and Results

Figure 3.11: OLR (clear-sky CERES) dependence on Ts (all-sky ERA5) binned by
CRH700. The grey line indicates the Stefan-Boltzmann law (Equation 3.1),
the black line indicates the mean radiative feedback (λlw = 2.175 W m−2 K−1),
the light blue line indicates the feedback of every bin and the dark blue line
indicates the mean OLR value for every Ts bin.

Figure 3.12: Feedback binned by CRH1000 (red) and by CRH700 (blue) for the whole Ts
range.
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3.3 Impact of mid-tropospheric CRH on the feedback

Figure 3.13: Feedback binned by CRH1000 (red) and by CRH700 (blue) for Ts > 290 K.
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4 Conclusion and Outlook

In this thesis, I investigated the impact of CRH on OLR. I focused on deviations from
the linear relation between OLR and Ts by binning with CRH to analyze the effect of
humidity. My results partly align with previous papers like Koll and Cronin [2018] and
McKim et al. [2021].
I show that increasing CRH, hence closing the spectral window of water vapor, disrupts
the linear relationship between OLR and Ts and causes the radiative feedback to decrease.
This happens because OLR decreases more with increasing CRH than it increases with
rising Ts. Thus, the atmosphere gets warmer because more radiation gets trapped by
water vapor. A warmer atmosphere can host even more water vapor which means even
less radiation gets through. This is when the super greenhouse effect has a striking impact
on Earth’s climate. My analysis shows that the linearity starts breaking down in tropical,
warm, and moist areas. Furthermore, I found, that the impact of cloud cover coincides
with McKim et al. [2021] as it shows an even stronger and smoother decrease of the feed-
back with CRH than for clear-sky data.
Nevertheless, some aspects do not meet my expectations. Even though the feedback de-
creases with increasing CRH, it decreases unmonotonically and less compared to McKim
et al. [2021]. The last part of my analysis revealed some unexpected results, too. The
influence of mid-tropospheric CRH on the sudden decrease of OLR around 300 K is less
than expected and shows only a slight increase of the bump around 300 K with increasing
moisture in the mid-troposphere. Feng [2023] found that influence to be bigger. However,
the analysis of mid-tropospheric CRH on the feedback shows that in the tropics the feed-
back is highly impacted by the mid-tropospheric CRH. It decreases monotonically with
increasing mid-tropospheric CRH.
Nonetheless, my analysis shows the impact of rising water vapor content on the radiative
feedback and the vicious circle as high water vapor content increases the temperature
which leads to even more water vapor in the atmosphere.
To further verify both, expected and unexpected results, additional investigations are
needed. Such as model-based analysis which would make my results more comparable
to Koll and Cronin [2018] and McKim et al. [2021] as their analysis is based on models.
Another way to improve my analysis might be to use data with higher vertical resolution
to get better insights into the effect of different atmospheric layers. It would be easier to
identify specific layers as the middle troposphere in Chapter 3.3.
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Appendix

The CRH1000 distribution can be seen in Figure 4.1. It differs from the CRH700 distribution
in Figure 4.2. It can be seen, that the areas north and south of the equator are drier in the
mid-troposphere compared to the whole troposphere. Another noticeable aspect is that
sand and ice desserts are not visible in the mid-tropospheric CRH but in the CRH of the
whole troposphere.

Figure 4.1: Yearly mean CRH1000 in 2022.
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4 Conclusion and Outlook

Figure 4.2: Yearly mean CRH700 of 2022.
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