
Master’s Thesis

Spectral Climate Feedback Parameter in
Models and Observations

Florian Römer

florian.roemer@studium.uni-hamburg.de

Course: M.Sc. Meteorology

Matr.-No. 6937660

Primary supervisor: Prof. Dr. Stefan Bühler

Secondary supervisor: Dr. Manfred Brath

Submission: 19 August 2021



Spectral Climate Feedback Parameter in Models and Observations



i

Abstract

The climate feedback parameter (λ) indicates how sensitive Earth’s radiation balance

responds to temperature changes. To investigate the mechanisms by which different

climate feedbacks operate, I extend the analysis from the broadband λ to the spectral

feedback parameter λν, which I infer from hyperspectral satellite observations of out-

going radiances provided by the Infrared Atmospheric Sounding Interferometer (IASI).

Similarly, I simulate observations for three different climate models participating in the

Coupled Model Intercomparison Project Phase 6 (CMIP6), additionally including the far-

infrared (FIR). For this approach, I regress interannual variations of the clear-sky spectral

outgoing longwave radiation over the tropical ocean against the atmospheric tempera-

ture at 500 hPa.

The broadband λ inferred are consistent with values from other studies. The resulting

λν differ substantially between the IASI observations and the models and also between

the models themselves. While the observations agree very well with most of the models

in the water vapour (H2O) absorption band in the mid-infrared (MIR), they show more

negative and hence more stable values for λν in the atmospheric window (AW).

A feedback decomposition using mean spectral radiative kernels reveals that this is largely

due to an enhanced surface temperature feedback (STF) which is caused by a drier atmo-

sphere and stronger surface warming compared to the CMIP6 models. The total feedback

parameter in the atmospheric window (λAW) is almost solely determined by the STF for

constant column relative humidity (CRH) under warming. However, most models anal-

ysed feature a decrease in CRH, which results in negative net atmospheric feedback con-

tributing significantly to λAW.

In the H2O absorption bands in the MIR and FIR, changes in upper tropospheric relative

humidity (RH) with temperature seem to be the determining factor for λν. Hereby, de-

creasing RH is associated with a more negative λν, while constant RH results in a close

to zero λν. This study demonstrates how the spectral decomposition of λ into λν can be

employed to infer details about how different climate feedbacks operate.
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1 Introduction

Constraining Earth’s equilibrium climate sensitivity (ECS) is one of the central challenges

in climate science. It defines how much the global mean near-surface temperature TS rises

if exposed to the forcing from doubling the atmospheric CO2 concentration F2×CO2 . It is

written as

ECS = −F2×CO2

λ
, (1.1)

where λ (in W m−2 K−1) is the climate feedback parameter. It is in turn defined as

λ =
dR
dTS

, (1.2)

where R is the (positive downwards) net radiative flux at top of the atmosphere (TOA)

(Gregory et al., 2004). A negative feedback parameter is thus needed for a stable climate.

Most of the uncertainty in ECS arises from uncertainties in λ, which is why constraining

λ is of such paramount importance.

A number of different approaches have been used to estimate both ECS and λ. Those

approaches include observational records (e. g., Roe and Armour, 2011), data from paleo-

proxies (e. g., Friedrich and Timmermann, 2020) and climate models of varying complex-

ity (e. g., Williams et al., 2008; Danabasoglu and Gent, 2009; Kluft et al., 2019). There have

also been investigations combining those different lines of evidence to derive a probabil-

ity density function for Earth’s ECS (e. g., Sherwood et al., 2020).

Nevertheless, most studies limit their investigation to the integrated λ, ignoring its sub-

stantial spectral variation. Huang et al. (2014) showed that investigating the spectral

feedback parameter

λν =
dRν

dTS
(1.3)

allows a more thorough analysis of the vertical distribution of climate feedbacks. This

is due to the absorption strength strongly varying with wavenumber ν, affecting the ef-

fective emission level and hence causing different parts of the spectrum to be sensitive

to different atmospheric layers. He also showed that the spectral decomposition can re-

veal compensating feedback processes, where climate models might have similar overall

λ even though their λν varies significantly in some spectral regions. Therefore, a better

understanding of λν helps in assessing uncertainties in the underlying feedback mecha-

nisms such as the water vapour feedback (WVF) and lapse rate feedback (LRF) and from

which atmospheric layer they originate.

Furthermore, most analyses infer λ from warming caused by external forcing. While this
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is a very straightforward approach, it has the downside of requiring relatively long time

periods for the warming signal to be significantly larger than the interannual variability.

A different approach uses those interannual variations of R and temperature directly to

infer the integrated λ, requiring only a few years of data (Dessler, 2013; Proistosescu et

al., 2018; Dessler and Forster, 2018).

Recently, it was suggested that the atmospheric temperature at 500 hPa TA is more suit-

able for calculating λ from interannual variability compared to using TS. One of the main

reasons is that the interannual variations of TS are dominated by the El Niño Southern

Oscillation (ENSO), which exhibits a much more heterogeneous spatial pattern compared

to the response of TS to forcing. Due to the much more homogeneous distribution of TA,

it correlates better with R (Dessler et al., 2018).

I combine the approaches by Huang et al. (2014) and Dessler et al. (2018), developing a

method for inferring λν for longwave clear-sky feedbacks over the tropical ocean from

interannual variability. I investigate, whether it is possible to derive λν by using hyper-

spectral satellite measurements of interannual variations in the spectral outgoing long-

wave radiation (OLRν) and TA. Therefore, I infer λν from those variations as observed

by the Infrared Atmospheric Sounding Interferometer (IASI). Unfortunately, its spec-

tral coverage does not include the FIR H2O band, where a significant part of the OLR is

emitted. This gap will be filled by the Far-infrared-Outgoing-Radiation Understanding

and Monitoring (FORUM) mission which will deliver hyperspectral observations of the

FIR (Blumstein et al., 2004; Domínguez et al., 2020). In order to be able to infer the full

longwave λν, I simulate observations for the IASI and FORUM spectral ranges, based

on temperature and humidity profiles of different CMIP6 models using the Radiative

Transfer for TOVs (RTTOV) fast code (Saunders et al., 2018), covering more than 10,000

channels between 100 and 2760 cm−1.

The so inferred λν are then analysed regarding their spectral signatures. A feedback de-

composition based on mean spectral radiative kernels is employed to assess the varying

importance of different feedback processes in different spectral bands. The spectral fin-

gerprints of the varying model response patterns (impacting the models’ representation

of different feedbacks) can be quantified to explain inter-model differences in λν. This

method also allows an evaluation how those patterns compare to the real world by also

applying it to the IASI observations, using the ECMWF Reanalysis v5 (ERA5).

Ch. 2 further discusses the theoretical background of spectral climate feedbacks and the

interannual variability method. Ch. 3 gives information on the data sets from models and

instruments used, while Ch. 4 describes the newly developed method as well as the anal-

ysis tools used in detail. The results are presented and discussed in Ch. 5 with a special

focus on three selected spectral bands of interest, namely the atmospheric window (AW)

as well as the H2O absorption bands in the mid-infrared (MIR) and far-infrared (FIR). I

conclude in Ch. 6.
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2 Spectral climate feedbacks from
interannual variability

In this chapter, the theoretical background of this thesis is discussed in more detail. This

involves a brief introduction into the most important clear-sky feedback processes and

their interactions (Sec. 2.1). It also includes a discussion about the spectrum of the

outgoing longwave radiation (OLR) OLR and how the radiative properties of the atmo-

sphere vary with wavenumber (Sec. 2.2). Finally, the upsides and challenges of using

interannual variability for inferring λ in general and λν in particular are explored (Sec.

2.3).

2.1 Climate feedbacks

Decomposing the radiative response of the climate system to forcing into feedbacks caus-

ed by different processes has been conducted in many different studies (e. g., Hansen et

al., 1984; Held and Soden, 2006; Soden et al., 2008; Feldl and Roe, 2013). Following

the sign convention in feedback analysis, negative values represent stabilising feedbacks,

whereas positive values represent amplifying feedbacks. This thesis focuses on longwave

clear-sky feedbacks, thus there are mainly three governing feedbacks impacting the over-

all feedback parameter.

The first and most basic one is the so-called Planck feedback (PF). It simply arises from

the strong temperature dependence of the Planck curve and states that a blackbody emits

more radiation if its temperature increases. Hence, it is a strongly stabilising feedback

(Feldl and Roe, 2013). In a idealised world, where the Earth uniformly warms and noth-

ing else changes with warming, the total feedback parameter would be given by the PF.

Obviously, this is not the case for the "real" Earth, most notably, due to the presence of

H2O in the atmosphere. Its saturation vapour pressure increases exponentially with tem-

perature, following the Clausius-Clapeyron relation. Due to its properties as a potent

greenhouse gas, it inhibits much of the additional radiation emitted due to the PF, caus-

ing the positive water vapour feedback (WVF) (Hansen et al., 1984).

Furthermore, the idealised assumption of uniform warming in all atmospheric layers is

not fulfilled in the real atmosphere. In particular in the tropics, where the actual lapse rate

closely follows the moist adiabatic lapse rate1, which in turn has a significant temperature

1Recently, substantial deviations from the moist adiabatic lapse rate in the upper tropical troposphere have
been found in climate models (Keil et al., 2020).
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dependence. For higher (near-surface) temperatures, it becomes flatter, corresponding to

stronger warming in the middle and upper troposphere compared to near-surface. Thus,

those layers emit additional radiation and hence stabilise the climate. This negative lapse

rate feedback (LRF) is in turn compensated by an additional WVF that goes along with

this upper tropospheric warming (Held and Shell, 2012).

While the feedback analysis is usually conducted for broadband fluxes only, a spectral

decomposition offers a number of advantages. Perhaps most notably, analysing λν inte-

grated over comparatively narrow spectral bands, which are sensitive to different parts

of the troposphere, allows inferences on how different processes act vertically. They can

also reveal compensation of feedbacks between spectral bands, where the overall λ might

be very similar, in spite of significant spectral differences (Huang et al., 2014, Pan and

Huang, 2018).

In this study, I mainly focus on three different spectral bands: the H2O absorption bands

in the far-infrared (FIR) and mid-infrared (MIR), respectively, as well as the MIR atmo-

spheric window (AW). The reasons behind this selection as well as the radiative proper-

ties of those bands are presented in the following section.

2.2 Spectral bands

The focus of this thesis lies on the radiation that is emitted by Earth’s surface, absorbed

and re-emitted by the atmosphere and finally reaches top of the atmosphere (TOA), the

so-called outgoing longwave radiation OLR. The spectral range and signature of the OLR

is theoretically given by Plancks law. However, it is reduced due to the aforementioned

absorption by different atmospheric species (so-called greenhouse gases), most notably

H2O and carbon dioxide (CO2) but also methane (CH4), nitrous oxide (N2O), ozone (O3)

and numerous chlorofluorocarbons, producing its characteristic spectral shape (see Fig.

2.1, bottom panel). The absorption in large parts of the spectrum is so strong, that the

effective emission level2 of the spectral outgoing longwave radiation OLRν is located in

the middle or upper troposphere, sometimes even in the stratosphere (Fig. 2.1, middle

panel). As the temperatures there are much lower compared to the surface, those layers

also emit much less radiation. Thus, greenhouse gas absorption significantly reduces the

OLR throughout most of the infrared (Liou, 2002).

Two very interesting spectral bands are the H2O absorption bands in the FIR and MIR,

respectively (Tab. 2.1), in the following simply referred to as H2O bands for brevity. Here,

the strong absorption causes the emission level to lie between 500 and 200 hPa, whereas

the surface and lower troposphere have no significant influence on OLRν, due to the the

high optical depth (τ >> 1) in those bands (Fig. 2.1, top panel). Even so, the FIR alone is

responsible for about one third of the total emitted OLR. The emission in these bands is

mainly controlled by H2O, a behaviour first described by Simpson (1928a,b), which has
2The emission level is the height of the maximum of the temperature kernel of all atmospheric layers (KTi )

and the surface (KSST) (for more information on kernels see Sec. 4.2).
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Table 2.1: Spectral bands used for analysis of spectral climate feedback parameter λν.
band spectral range ( cm−1)
far-infrared H2O absorption band (FIR) 100 – 550
mid-infrared atmospheric window (AW) 800 – 980, 1080 – 1200
mid-infrared H2O absorption band (MIR) 1300 – 1900

been explored again and expanded on by Ingram (2010). The most central aspects of this

framework are summarised in the following.

In both FIR and MIR, strong absorption by H2O can be assumed the only relevant quan-

tity determining the optical depth τ. Assuming that RH stays constant, the specific hu-

midity — and hence τ — is a fixed function of temperature. As a direct consequence, the

emission level, which is located where τ reaches approximately unity, stays at the same

temperature resulting in a constant OLR. For an increase (decrease) in RH, the emission

level would analogously move towards lower (higher) temperatures, decreasing (increas-

ing) the OLR. Applying this to the feedback framework, an increase (decrease) in RH

with temperature would thus lead to a net positive (negative) λν in the H2O bands.

In contrast, there are a few spectral bands, so-called atmospheric windows, where the

radiation originating at the surface can escape to space comparatively unattenuated, as

only weak absorption lines are located in those spectral bands. The most important win-

dow from an energetic standpoint is the mid-infrared atmospheric window (Tab. 2.1),

ranging from 800 to around 1200 cm−1, only interrupted by an ozone absorption band

between 980 and 1080 cm−1. It is responsible for roughly 25 % of the total OLR, high-

lighting its importance for Earth’s ability to get rid of excess energy.

The atmospheric window is optically thin with an optical depth of τ ≈ 1 (Fig. 2.1, top

panel), the emission level is situated close to or at the surface (middle panel). The OLRν

(bottom panel) closely follows the Planck curve of Earth’s surface temperature, but is

somewhat reduced due to the H2O continuum absorption (Liou, 2002). Hence, the emit-

ted radiation in the atmospheric window is controlled by surface temperature and the

amount of absorption aloft.

As the focus of this thesis is on tropospheric processes, spectral bands with emission lev-

els in the stratosphere are not included in the analysis. This includes most prominently

the CO2 absorption band at around 600–750 cm−1, as well as the ozone absorption band

at around 980–1080 cm−1. Absorption bands of other greenhouse gases (mainly CH4 and

N2O) are also not discussed. Finally, spectral regions above 2000 cm−1 are also not anal-

ysed further, as only very little terrestrial radiation is emitted there, causing negligible λν.



6 2 Spectral climate feedbacks from interannual variability

Figure 2.1: Radiative properties of the atmosphere (calculated using RTTOV): high spec-
tral resolution (grey) and the 10 cm−1 moving average (black). The spectral
bands of interest are labelled and shaded blue. The spectral coverage of the
IASI and FORUM instruments are also indicated. Optical depth τ (top panel),
emission level (middle panel) and outgoing longwave radiation (OLR), with
a reference Planck curve of the mean SST (300K) (bottom panel) are shown.
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2.3 Interannual variability

There have been many studies investigating the connection between the climate feedback

parameter λ inferred from forced warming and that derived from interannual variability

(e. g., Proistosescu et al., 2018; Dessler and Forster, 2018; Dessler et al., 2018; Sherwood

et al., 2020). The latter approach requires much less data, already ten years have been

shown to be sufficient (Dessler, 2013). Nevertheless, there are a couple of challenges that

arise.

As the interannual variations of the near-surface temperature TS are dominated by the

El Niño Southern Oscillation (ENSO), the observed patterns are very spatially hetero-

geneous, with greater warming in the eastern Pacific compared to the western Pacific.

This is not in principle dissimilar from near-surface warming caused by external forcing,

which exhibits an "ENSO-like" pattern (Meehl and Washington, 1996; Sherwood et al.,

2020). The interannual variations are, however, more heterogeneous compared to the

warming under greenhouse gas forcing. This in turn can, due to non-linearities in radia-

tive transfer, impact OLR even if the mean TS does not change. This causes the λ derived

from interannual variability (λiv) to be inherently different from that of a forced warming

(λforced) (Dessler and Forster, 2018; Dessler et al., 2018).

This is why it was suggested to use the more spatially homogeneous atmospheric tem-

perature at 500 hPa TA as regression variable. The reason is that, as most of the OLR is not

emitted at the surface but rather further up in the troposphere, TA is a more representa-

tive reference, causing a regression of R against TA to have a higher correlation coefficient

compared to TS. The above mentioned difference between λiv and λforced is also substan-

tially smaller for this approach (Dessler and Forster, 2018; Dessler et al., 2018).

For the spectral decomposition conducted in this thesis, the considerations are somewhat

more nuanced. TA seems to be the better quantity determining λν in spectral regions sub-

ject to strong greenhouse gas absorption (mainly the H2O bands). Yet, the picture looks

somewhat different in the atmospheric window, where a significant part of the total OLR

is emitted. The radiation there originates very close to the surface, making TS the more

representative reference temperature. However, as mentioned, the near-surface hetero-

geneity might also cause the regression against TS to be erroneous.

Overall, TA delivers the smaller regression errors, in particular in the H2O bands. Keep-

ing the already quite large uncertainty there as small as possible is therefore prioritised

over further reducing the already small uncertainty in the atmospheric window.

Using TA for the regression necessitates applying a scaling factor, because the equilib-

rium responses of TS and TA differ significantly due to the lapse rate feedback (LRF),

with TA featuring significantly stronger warming than TS. The corresponding λ (or λν)

derived from a regression against TA is hence inherently smaller compared to using the

traditional reference TS. To mitigate this, the calculated λ (or λν) must be scaled by a

factor accounting for those different equilibrium responses (Dessler et al., 2018). This is

further discussed in Sec. 4.1.
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3 Data and instruments

Data from several different sources are used in this thesis. This includes both output

from models of different complexities as well as satellite observations. This chapter gives

some context about the data sources as well as detailed information on the exact data sets

used.

CMIP6 models: The Coupled Model Intercomparison Project (CMIP) is organised by

the Working Group on Coupled Modelling (WGCM), which is part of the World Climate

Research Programme (WCRP). It serves to compare the performance of different cou-

pled climate models regarding different standardised experiment setups and is currently

in it’s sixth phase (CMIP6). To make experiment outcomes comparable throughout dif-

ferent CMIP phases, the Diagnostic, Evaluation and Characterization of Klima (DECK)

was introduced. It consists of four different experiments: an atmospheric simulation

with prescribed historical sea surface temperatures SST (amip), a pre-industrial control

simulation, where greenhouse gases are kept constant (piControl), a run where CO2 is

quadrupled abruptly (abrupt-4xCO2) and one where CO2 is increased exponentially by

1 % every year (1pctCO2). Additionally, CMIP organises historical simulations, which

try to reproduce the time from 1850 to present (Eyring et al., 2016).

Out of all the CMIP6 models delivering suitable output of the historical experiment, sim-

ulations for the years 2005–2014 (Eyring et al., 2016) from three different models are se-

lected, for which daily profiles of temperature and specific humidity with a vertical reso-

lution of at least 50 vertical levels are available. The latter is important to minimise errors

introduced by the internal interpolation in the radiative transfer simulations (Hocking

et al., 2019). The simulation setup is further described in Sec. 4.1.1.

The selected models and their horizontal resolutions are listed in Tab. 3.1. The analysis is

performed based on 200 profiles per day for every CMIP6 model (about 730,000 profiles

over the ten year period). The profiles are randomly selected out of all available profiles

over the tropical ocean (30◦S–30◦N).

Table 3.1: CMIP6 models selected for the analysis with their respective modelling centre
and horizontal resolution.

model modelling centre resolution
MPI-ESM1-2-HR Max Planck Institute for Meteorology ∼0.94◦× 0.94◦

CESM2-WACCM National Center for Atmospheric Research ∼0.94◦× 1.25◦

MRI-ESM2-0 Meteorological Research Institute 1.125◦× 1.125◦
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konrad: The 1-D model konrad was developed by Kluft et al. (2019) and Dacie et al.

(2019), providing an idealised representation of the tropical atmosphere under the as-

sumption of radiative-convective equilibrium (RCE). In this thesis, λν calculated from

konrad v0.8.1 (Kluft and Dacie, 2021) is used as a reference value for the analysis. It

is calculated using the line-by-line radiative transfer model ARTS (Eriksson et al., 2011;

Buehler et al., 2018) for a fixed, vertically constant relative humidity of 55 % (data pro-

vided by Lukas Kluft).

ERA5 reanalysis: The ECMWF Reanalysis v5 (ERA5), created by the European Centre

for Medium-Range Weather Forecasts (ECMWF), provides a detailed, global record of

the state of atmosphere, ocean and land surface from 1979 to present day. Compared

to its predecessor ERA-Interim it has a much higher horizontal resolution of 31 km. By

combining modelling and observations, it provides robust and consistent information on

a large number of atmospheric fields (Hersbach et al., 2020).

From ERA5, I use monthly mean values of sea surface temperature (SST) (for the years

2007–2020) and near-surface temperature TS (2010–2019) (Hersbach et al., 2019a) as well

as profiles of temperature and specific humidity for the years 2010–2019 (Hersbach et al.,

2019b). For all datasets mentioned, the tropical latitudes (30◦N – 30◦S) are selected.

Satellite observations: The meteorological operational satellites (Metop A, B and C),

launched in 2006, 2012 and 2018, respectively, are part of the EUMETSAT Polar Sys-

tem (EPS). They provide meteorological data in real time on the sun-synchronous morn-

ing orbit (09:30 local solar time, descending node).

One of the key instruments on board is the Infrared Atmospheric Sounding Interferom-

eter (IASI). It provides hyperspectral measurements of emitted spectral radiances in the

thermal infrared (645–2760 cm−1, 3.7-–15.5 µm) with a spectral sampling of 0.25 cm−1 and

a spectral resolution after apodisation of 0.5 cm−1 (Blumstein et al., 2004; August et al.,

2012; Righetti et al., 2020). The absolute brightness temperature radiometric accuracy

was found to be between 0.2 and 0.5 K, with an accuracy of up to 0.1 K for some wave-

lengths (Illingworth et al., 2009; Larar et al., 2010). IASI scans across-track with a field of

view of ±48.33◦ relative to nadir, corresponding to a swath width on ground of 2200 km,

which ensures global coverage twice a day. The highest horizontal resolution is reached

directly below the satellite, with an instantaneous field of view of 12 km (August et al.,

2012).

Another instrument onboard Metop is the Advanced Very High Resolution Radiome-

ter (AVHRR). It features six different channels in the visible and infrared and measures

with a horizontal resolution of 1.1 km. This way, it can provide binary masks on cloudi-

ness and surface type. Its results are averaged over the IASI footprint, resulting in the

AVHRR cloud fraction and land/sea mask products, respectively, which are included in

the IASI level 1c (L1C) data (Klaes et al., 2007; August et al., 2012; Bouillon et al., 2020).
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I use the IASI L1C data from the Metop A satellite, including the AVHRR land/sea mask

and cloud-fraction (EUMETSAT, 2018). The vast amount of IASI data available proved

challenging, as one month of data alone takes up almost 1 TB in disk space. Due to

limitations in available disk space and computing time for processing, and in particular

because of the necessity of data transfer, it was not possible to analyse the desirable full

ten years from 2010 to 2019.

Instead, based on the yearly tropical mean SST from ERA5 between 2007 and 2020, only

the years with the highest and lowest averages as well as the 33rd and 67th percentiles

were selected. This selection corresponds to the years 2011, 2013, 2017 and 2016, re-

spectively. This way, it was ensured to both optimise the signal to noise ratio, while

at the same time not solely relying on extremes. To further reduce the amount of data,

the yearly means were approximated by only using the odd numbered months (January,

March, May, July, September and November) of the selected years.



12 3 Data and instruments



13

4 Methods

The newly developed method for inferring λν from interannual variability is described in

this chapter. This involves first and foremost the formula used for the inference and the

domain in which it is applied. Additionally, the setup of the radiative transfer simulation

as well as the calculation of the spectral fluxes Fν from the available spectral radiances Lν

is described for both simulations and observations. Finally, the mean spectral radiative

kernel (MSRK) method is discussed as an analysis tool for feedback decomposition.

4.1 New method for inferring spectral feedback parameter

I develop a new method for inferring spectral climate feedback parameter λν from inter-

annual variability (iv). In this study, only the longwave (lw) part of λν is considered, thus

the spectral net radiative flux Rν at top of the atmosphere (TOA) in Equation (1.3) is re-

placed by the spectral outgoing longwave radiation (OLRν) between 100 and 2760 cm−1.

Annual averages of OLRν are regressed against the annual mean atmospheric tempera-

ture at 500 hPa TA. For simplicity, it is only applied to clear-skies (cs) over the tropical

ocean (troc) (30◦S–30◦N), yielding

λν, troc, lw, cs, iv = −dOLRν

dTA

∆TA

∆TS
, (4.1)

which in the following is simply written as λν for brevity.

The derivative of OLRν with respect to TA is calculated using a linear least-squares re-

gression based on annual means for each wavenumber ν. I account for the different equi-

librium warmings of TA and the near-surface temperature TS by applying a scaling factor
∆TA
∆TS

. It is derived from the ratios of the respective warmings within the first 150 years

of the 4xCO2 experiment of the three analysed CMIP6 models. Those warmings (∆TA

and ∆TS) are in turn calculated from the differences between the first and last decade in

that time period and then averaged over the three analysed CMIP6 models. This yields a

value for the scaling factor of ∆TA
∆TS

= 1.385 K K−1, which is equally applied to all models

as well as to the IASI observations1.

1For reference, Dessler et al. (2018) used the first and last decades of the 4xCO2 experiment and calculated
the ratio between the tropical TA and global TS, yielding ∆TA

∆TS
= 1.16 K K−1.
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4.1.1 Radiative transfer simulation

The simulations in this thesis are conducted using version 12.2 of the fast radiative trans-

fer model Radiative Transfer for TOVs (RTTOV). It allows simulations of outgoing spec-

tral radiances Lν as observed by satellite instruments and covers the the visible, infrared

and microwave spectral ranges (Saunders et al., 2018). This makes it a useful tool for

satellite retrievals (Meng et al., 2016) and data assimilation in numerical weather predic-

tion (Pavelin et al., 2008).

The simulations cover 10278 channels between 100 to 2760 cm−1. It includes both the 8461

channels of the Infrared Atmospheric Sounding Interferometer (IASI) (645–2760 cm−1,

with a spectral sampling of 0.25 cm−1, see Ch. 3), as well as the part of the spectral range

of the future Far-infrared-Outgoing-Radiation Understanding and Monitoring (FORUM)

mission, which is not covered by IASI (100–645 cm−1, with a spectral sampling of 0.3 cm−1)

(Blumstein et al., 2004; Domínguez et al., 2020).

Daily profiles of temperature T and specific humidity q as well as sea surface tempera-

tures SST from three different CMIP6 models performing the historical experiment serve

as input (see Ch. 3). Additionally, near-surface values of T, q, wind components u and

v and air pressure p are provided, as well as surface type (land/sea mask), surface ele-

vation and sea ice concentration (zero in the tropics). As I only perform clear-sky sim-

ulations, the cloud liquid content is set to zero. Not all CMIP6 models have interactive

chemistry, some get their concentrations for gases like ozone (O3) from databases (May-

cock, 2016). To ensure comparability between the models and since the focus of this thesis

lies on tropospheric processes, where O3 only plays a minor role, RTTOV’s internal O3

climatology is used for the simulations (Hocking et al., 2019).

The model output profiles provided represent the average value over the respective ver-

tical layer. RTTOV, however, requires values for the exact levels. Thus, the layer values

are interpolated (in log pressure) to the layer bounds. As the pressure in the lowest layer

is significantly lower than surface pressure for some models, the near-surface values of

p, T and q are used to calculate profiles starting at the surface.

CESM2-WACCM’s uppermost layers are located within the thermosphere, where tem-

peratures of more than 400 K are reached, beyond the upper limit RTTOV allows for its

simulations. Therefore, those levels are excluded, using the 1 Pa pressure level as a cut-

off for all models. This mainly affects CESM2-WACCM, but also the uppermost level of

MRI-ESM2-0, as shown in Table 4.1.

The models are kept at their respective vertical resolutions for the radiative transfer sim-

ulations using the forward model, although RTTOV performs internal interpolation to its

native grid. An exception is the calculation of the mean spectral radiative kernel (MSRK),

using RTTOV’s Jacobian model (Hocking et al., 2019). To allow level-wise intercompar-

ison between the models, the profiles are interpolated to MRI-ESM2-0’s vertical coordi-

nates, which feature the most levels in the troposphere.
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Table 4.1: Vertical resolution of analysed models: total number of vertical levels and num-
ber of used vertical levels.

total # of # of used
model vertical levels vertical levels
MPI-ESM1-2-HR 95 95
CESM2-WACCM 70 56
MRI-ESM2-0 81 80

4.1.2 Flux calculation

Both simulation and observations deliver spectral radiances Lν, which need to be con-

verted into spectral fluxes Fν for inferring λν. Both quantities are linked by the equation

Fν =
∫ π/2

θ=0

∫ 2π

φ=0
Lν(θ, φ) cos(θ) sin(θ) dθ dφ, (4.2)

where θ and φ represent the zenith and azimuth angles, respectively (Whitburn et al.,

2020). Assuming azimuthal symmetry, Equation (4.2) reads as

Fν = 2π
∫ π/2

θ=0
Lν(θ) cos(θ) sin(θ) dθ. (4.3)

Substituting µ = cos(θ), this can be rewritten as

Fν = 2π
∫ 1

0
Lν(µ) µ dµ. (4.4)

Radiative transfer simulations

A widely used technique for approximating radiative fluxes from radiances is the so-

called Gauss-Legendre Quadrature (GLQ) (Liang and Strahler, 1993; Li and Barker, 2018).

It is a powerful tool for approximating the integral of a function f (µ) with high accuracy.

For any (finite) interval [a, b], f is approximated using an optimised set of n sample

points µi with corresponding weights wi, reading

∫ b

a
f (µ) dµ ≈

n

∑
i=1

wi f (µi). (4.5)

The sample points µi and weights wi are calculated by

µi =
a + b + (b− a)ξi

2

wi =
b− a

(1− ξi)2[P′n(ξi)]2
.

(4.6)

The ξi are the Gauss points for the interval [-1, 1], corresponding to the zeros of the

Legendre Polynomials Pn of degree n in the same interval (Kythe and Puri, 2011).
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Table 4.2: The sample points µi with corresponding weights wi and zenith angles θi for
the applied two-angle GLQ.

i µi wi θi
1 0.78867513 0.5 37.93812743◦

2 0.21132487 0.5 77.79999596◦

Applying a two-angle GLQ to Equation (4.4), Fν can be approximated as

Fν ≈ 2π
2

∑
i=1

Lν(µi) µi wi. (4.7)

The used values2 for the µi and wi are listed in Tab. 4.2, together with the correspond-

ing zenith angles θi = arccos(µi). Because RTTOV only allows simulations for θ ≤ 75◦,

Lν(75◦) is simulated instead of Lν(θ2). The latter is then inferred from a linear interpola-

tion of Lν(θ) cos(θ), using the boundary condition Lν(90◦) cos(90◦) = 0.

Satelllite observations

Numerous studies have developed algorithms of varying complexity for estimating ra-

diative fluxes from radiances for different satellite instruments (e. g., Suttles et al., 1989;

Clerbaux et al., 2003; Loeb et al., 2005; Kato and Loeb, 2005). A very common approach

is to calculate empirical angular distributions models (ADMs), which are derived sepa-

rately for a number of different scene types.

A comprehensive spectral method for inferring Fν from IASI measurements is described

in Whitburn et al. (2020). They create a large set of different scene types that vary in their

concentration of different greenhouse gases, as well as their temperature profiles and sur-

face temperatures. They then use forward modelling to derive spectral ADMs for every

scene type, from which they infer Fν.

In this thesis, a simplified approach is chosen. The land/sea mask and cloud-fraction

products from AVHRR (see Ch. 3) are used to filter out clear-sky pixels over the tropi-

cal ocean. Instead of differentiating every filtered IASI pixel based on their atmospheric

conditions, all observed Lν within one IASI orbit (each corresponding to just under two

hours of observations) are used together to calculate one mean Fν.

To achieve this, the Lν of the filtered pixels are sorted into 5◦ bins with respect to θ. IASI’s

limited field of view (see Ch. 3) obviously limits the instruments maximum zenith angle

θ as seen from Earth, to a θmax, IASI of about 58.7◦. Therefore, the product Lν(θ) cos(θ)

is averaged over each bin and then linearly interpolated for θ greater than θmax, IASI. Fi-

nally, integration over all θ yields mean Fν for every IASI orbit, which are then averaged

annually.

2They were calcualted using the numpy.polynomial.legendre.leggauss function provided by the numpy
package (Harris et al., 2020) to calculate the respective values in the interval [-1, 1] and then converting
them to the interval [0, 1], following Equation (4.6).
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4.2 Mean spectral radiative kernel technique

The radiative kernel technique was introduced by Held and Soden (2006) and Soden et

al. (2008) and has since been widely used as an analysis tool in climate feedback analysis

(e. g., Shell et al., 2008; Sanderson et al., 2010; Pendergrass et al., 2018). The basic idea

is to evaluate the "climate-response patterns" and the corresponding broadband "radia-

tive kernels" with high temporal resolution to derive decomposed Planck feedback (PF),

water vapour feedback (WVF) and lapse rate feedback (LRF) by averaging and then mul-

tiplying them. A similar spectral radiative feedback kernel was developed by Huang et

al. (2014), replacing broadband with spectral radiative kernels, and was also used by Pan

and Huang (2018).

In this thesis, mean spectral radiative kernels (MSRKs) are constructed for decomposing

λν into its main feedbacks, to investigate which processes are responsible for differences

in λν between the different models. For computational efficiency, this is done by calcu-

lating the corresponding kernels Kx only for the respective model mean state variables

x (profiles of temperature T and specific humidity q, as well as sea surface temperature

SST). The simulations and flux computation are conducted as described in Secs. 4.1.1

and 4.1.2, respectively. The response patterns with changing atmospheric temperature at

500 hPa TA, ∂x
∂TA

(in the following simply ∂TA x), are calculated by performing linear least-

square regression of their yearly means. To analyse the IASI observations, the respective

quantities from ERA5 are used for the months from which IASI observations were se-

lected (see Ch. 3). Following the framework described above, λν for a model with N
vertical levels can be approximated as

λν ∝ −dOLRν

dTA
≈ −

KSST︷ ︸︸ ︷
∂OLRν

∂SST
∂SST
∂TA

−
N

∑
i=1

KTi︷ ︸︸ ︷
∂OLRν

∂Ti

∂Ti

∂TA
−

N

∑
i=1

Kqi︷ ︸︸ ︷
∂OLRν

∂qi

∂qi

∂TA

= −KSST ∂TASST︸ ︷︷ ︸
STF

−
N

∑
i=1

KTi ∂TA Ti︸ ︷︷ ︸
ATF

−
N

∑
i=1

Kqi ∂TA qi︸ ︷︷ ︸
WVF

(4.8)

This way, λν is decomposed into three main feedbacks: The first term (surface temper-

ature feedback, STF) represents the change in the spectral outgoing longwave radiation

(OLRν) due to changes of the Earth’s surface temperature3 with TA, corresponding to

the surface component of the stabilising PF. The second term (atmospheric temperature

feedback, ATF) is analogously the change in OLRν due to changes of the atmospheric

T profile, including the rest of the PF as well as the LRF. Finally, the third term (water

vapour feedback, WVF) encompasses the change in OLRν due to changing the atmo-

spheric q profile, as described in Sec. 2.1.

3As only spectra over the ocean are considered, the surface temperature is equivalent to the sea surface
temperature SST.
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5 Results and discussion

This chapter shows the results for the spectral feedback parameters λν inferred using

the newly developed method described in Sec. 4.1. Their broadband values are briefly

analysed and compared with results from a well-established method (Sec. 5.1). The main

focus lies on the spectral dependence of λν, which is analysed in detail with regard to both

integrated values of the spectral bands as well as their detailed spectral shape. The focus

of the investigation lies mainly on the three spectral bands described in Sec. 2.2, namely

the atmospheric window (AW) (Sec. 5.2.1) and the H2O bands in the mid-infrared (MIR)

and far-infrared (FIR) (Sec. 5.2.2). Nevertheless, the ozone absorption band is also briefly

discussed (Sec. 5.2.3).

5.1 Broadband analysis

The integrals of λν over the whole spectral range (λ) as well as over the range covered

by IASI (λIASI) are shown in Tab. 5.1 for the different considered data sets. They are

more negative than the estimate of the total global λ by Sherwood et al. (2020), which

also includes shortwave, extra-tropical and cloud feedbacks. Still, with the exception

of CESM2-WACCM, they all lie within the uncertainty interval given. The λ of MRI-

ESM2-0 is closest to that of konrad, whereas MPI-ESM1-2-HR has the least negative λ

and CESM2-WACCM has the most negative λ. Over the spectral range covered by IASI,

the CMIP6 models (as well as konrad) have much less negative values compared to IASI.

Table 5.1: Inferred λν integrated over the whole simulated spectral range (λ, 100–
2760 cm−1) and over the spectral range covered by IASI (λIASI, 645–2760 cm−1)
from all considered data sets. As reference, mean and standard deviation of the
total global λ as derived by Sherwood et al. (2020) are also shown.

λ λIASI
(W m−2 K−1) (W m−2 K−1)

MPI-ESM1-2-HR -1.43 -1.16
CESM2-WACCM -1.93 -1.23
MRI-ESM2-0 -1.62 -1.00
IASI – -1.59
konrad -1.64 -1.19
Sherwood et al. (2020) -1.30 ± 0.44 –
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It is instructive to compare the λ of the three used CMIP6 models derived from interan-

nual variability (λiv) to that for a forced warming (λforced) calculated for the same models

using a method introduced by Gregory et al. (2004)1.

For comparability, both methods are applied to the same domain (clear-sky outgoing

longwave spectra over the tropical ocean) and regressed against the atmospheric tem-

perature at 500 hPa TA. Instead of the net radiative flux R, I thus use the broadband

clear-sky outgoing longwave radiation OLR of the respective CMIP6 models from the

4xCO2 experiment.

Both methods produce quite similar results (Tab. 5.2), with λiv being slightly less negative

on average, even though it is more negative for CESM2-WACCM. For all three models,

the difference between the two methods is smaller than 0.2 W m−2 K−1, and even smaller

than 0.1 W m−2 K−1 for MPI-ESM1-2-HR and CESM2-WACCM. The order of the models

from smallest to largest λ is also retained between both methods. However, the λforced for

MRI-ESM2-0 and CESM2-WACCM are almost identical, while CESM2-WACCM features

a 0.3 W m−2 K−1 more negative λiv. All in all, the comparison shows hat the interannual

variability method accurately captures λ, delivering results rather similar to the well-

established method of Gregory et al. (2004).

Table 5.2: Climate feedback parameter derived from interannual variability (λiv) and
from forced warming (λforced).

λiv λforced
model (W m−2 K−1) (W m−2 K−1)
MPI-ESM1-2-HR -1.43 -1.53
CESM2-WACCM -1.93 -1.84
MRI-ESM2-0 -1.62 -1.80
mean -1.66 -1.72

5.2 Spectral analysis

The inferred λν for the three analysed CMIP6 models as well as the IASI observations

and konrad are shown spectrally resolved in Fig. 5.1. Contrary to the broadband λ, quite

significant differences between the CMIP6 models are revealed in the spectral decompo-

sition. IASI’s more negative integral over its range of spectral coverage (λIASI) compared

to the CMIP6 models (see Sec. 5.1) seems to mainly result from IASI’s more negative λν

in the atmospheric window (AW) between 800 and 1200 cm−1. The least negative λ of

MPI-ESM1-2-HR, on the other hand, appears to be due to its close to zero λν in the far-

infrared (FIR) from 100 to about 500 cm−1. Overall, there are many different aspects to

be discussed from the central results shown in Fig. 5.1. They are discussed separately for

the AW (Sec. 5.2.1) and the H2O bands (Sec. 5.2.2).

1They regress the annual mean net radiative flux at TOA R against the change in near-surface temperature
TS for the 2xCO2 and 4xCO2 experiments. The slope of the regression delivers an estimate of λforced.
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Figure 5.1: Spectral feedback parameter λν (50 cm−1 moving average) for the CMIP6
models MPI-ESM1-2-HR (orange), CESM2-WACCM (blue) and MRI-ESM2-
0 (green) as well as the RCE model konrad (grey) and based on observations
by the IASI instrument (purple). The shaded areas around the curves repre-
sent the regression errors. Additionally, the spectral ranges of the current IASI
and future FORUM instruments are indicated as thick black lines.

5.2.1 Atmospheric window

The values of λν integrated over the whole atmospheric window (AW) for the considered

data sets are shown in the first column of Tab. 5.3. They show substantial variation, with

the absolute value of IASI’s λAW more than twice as large as that of MRI-ESM2-0. λAW of

MPI-ESM1-2-HR and CESM2-WACCM lie in between, although closer to MRI-ESM2-0,

with MPI-ESM1-2-HR exhibiting the slightly more negative λAW.

The mean relative humidity of the used models, the so-called column relative humidity

CRH2, is shown in Tab. 5.4. Although all models have CRH between 54 % and 58 %, their

λAW differ substantially from that of konrad (55 %). MRI-ESM2-0’s λAW is very similar

to konrad’s, the other two CMIP6 models, however, feature substantially more negative

λAW. IASI’s λAW even features an absolute value more than twice that of konrad.

The most obvious difference between konrad and the other models concerns the verti-

cal RH distribution, which has been found to affect λ, with higher RH at lower altitudes

leading to more effective cooling and hence a more negative λ (Bourdin et al., 2021). RH

in the konrad setup used here is vertically constant, while it has a C-shape in CMIP6 and

ERA5 (Fig. 5.2). Thus, RH in CMIP6 and ERA5 is higher in the lower troposphere, partly

explaining the more negative λAW.

But other factors also contribute, such as the change in RH with TA, which has already

2CRH is defined as the ratio between the integrated water vapour IWV of an atmospheric column and the
IWV for the same temperature profile under saturated conditions (Rushley et al., 2017).
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Table 5.3: Inferred λν integrated over the atmospheric window (λAW, λAW, MSRK) using
both (simulated) observations and MSRK methods. The CMIP6 mean refers to
the mean over the three selected CMIP6 models.

λAW λAW, MSRK
model/instrument (W m−2 K−1) (W m−2 K−1)
MPI-ESM1-2-HR -0.60 -0.65
CESM2-WACCM -0.57 -0.62
MRI-ESM2-0 -0.43 -0.42
CMIP6 mean -0.53 -0.56
IASI -0.93 –
ERA5 (selected months) – -0.81
ERA5 (2010–2019) – -0.73
konrad -0.45 –

Table 5.4: Mean values of column relative humidity (CRH) and the change of CRH with
atmospheric temperature at 500 hPa TA (∂TACRH).

CRH ∂TACRH
(%) (% K−1)

MPI-ESM1-2-HR 54.5 -0.46
CESM2-WACCM 57.6 -0.95
MRI-ESM2-0 55.9 -0.13
ERA5 (selected months) 54.3 -0.58
ERA5 (2010–2019) 55.5 -0.70
konrad 55.0 ±0.00

been found by e. g., Soden et al. (2005) and Ingram (2010). For the data sets used here,

this is demonstrated in the following by decomposing λAW into its main feedbacks using

the mean spectral radiative kernel (MSRK) method, as described in Sec. 4.2. The sum of

all feedbacks derived this way (λAW, MSRK) is compared to λAW to evaluate the accuracy

of the decomposition (Tab. 5.3). For λAW inferred from IASI observations, the MSRK

method is calculated for the mean profiles from ERA5.

ERA5 features a much more negative λAW, MSRK compared to the CMIP6 models, al-

though not quite as negative as IASI’s λAW. MRI-ESM2-0, on the other hand, exhibits both

the least negative λAW, MSRK and λAW, with very similar absolute values. The λAW, MSRK

for MPI-ESM1-2-HR and CESM2-WACCM are also similar, although slightly more nega-

tive than their respective λAW.

The overall small difference between λAW and λAW, MSRK indicates that the main acting

processes are captured by the MSRK technique. Further analysis from the decomposed

feedbacks can thus, with some constraints, also be applied to λAW. The values for the

decomposed atmospheric feedbacks are shown in Tab. 5.5. The surface temperature

feedback (STF) is further decomposed into its radiative kernel (KSST) and model response

(∂TASST) in Tab. 5.6, as described in Sec. 4.2.

ERA5 has clearly the strongest STF, which mainly results from its strong ∂TASST and to
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Figure 5.2: Mean profiles of RH and the change of RH with atmospheric temperature at
500 hPa (TA) (∂TARH).

a lesser extent from its also strong KSST. On the flip side, CESM2-WACCM exhibits the

weakest STF, as it both has the weakest KSST and ∂TASST. MPI-ESM1-2-HR and MRI-

ESM2-0 show very similar behaviours in that regard, with MPI-ESM1-2-HR having the

slightly stronger STF, due to its slightly stronger ∂TASST.

KSST is a function of atmospheric transmission and thus in turn of the integrated water

vapour IWV (Koll and Cronin, 2018). Therefore, as KSST generally decreases with lower

transmission i. e., moister atmospheres, so should the magnitude of STF. This is con-

firmed comparing the values of KSST and IWV for the different models. CESM2-WACCM

having the highest IWV among the models appears to be responsible for its weak KSST

and in turn weak STF. Similarly, ERA5’s relatively large KSST (and thus large STF) seems

to be caused by its comparatively low IWV. MPI-ESM1-2-HR and MRI-ESM2-0, finally,

have very similar values of both IWV and KSST.

Even though the STF makes up a large part of the total λAW, atmospheric feedbacks also

contribute significantly. The net atmospheric feedback (AF) consists of contributions due

to changes in the atmospheric profiles of temperature T (atmospheric temperature feed-

back, ATF) and specific humidity q (water vapour feedback, WVF) with warming. ERA5

also features the strongest AF, closely followed by CESM2-WACCM and then MPI-ESM1-

2-HR, all having net negative AF between -0.24 and -0.31 W m−2 K−1. The AF of MRI-

ESM2-0, in contrast, is an order of magnitude smaller (-0.03 W m−2 K−1). This close to

zero AF results from the almost perfect cancellation of the significantly larger ATF and

WVF, as already found by Koll and Cronin (2018). While the AF is also significantly

smaller than both ATF and WVF for the other models, their ATF appears to clearly dom-
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Table 5.5: Column-integrated decomposed atmospheric feedbacks integrated over the at-
mospheric window.

ATF WVF AF
(W m−2 K−1) (W m−2 K−1) (W m−2 K−1)

MPI-ESM1-2-HR -0.88 0.64 -0.24
CESM2-WACCM -0.77 0.47 -0.29
MRI-ESM2-0 -0.72 0.69 -0.03
ERA5 (selected months) -0.87 0.56 -0.31
ERA5 (2010–2019) -0.83 0.52 -0.31

Table 5.6: Mean IWV, MSRKs integrated over AW (KSST), surface warming ∂TASST and
STF. The latter results from scaling the product of the preceding two column
with the derived scaling factor (see Sec. 2.3).

IWV KSST ∂TASST STF
(kg m−2) (W m−2 K−1) (K K−1) (W m−2 K−1)

MPI-ESM1-2-HR 39.2 -0.55 0.54 -0.41
CESM2-WACCM 41.4 -0.51 0.47 -0.33
MRI-ESM2-0 39.0 -0.55 0.51 -0.39
ERA5 (selected months) 37.3 -0.57 0.64 -0.50
ERA5 (2010–2019) 38.0 -0.56 0.54 -0.42

inate their respective WVF, causing the clearly negative AF described. This difference is

not due to MRI-ESM2-0 featuring an outlier in either one of ATF or WVF. Rather, it is the

result of the fact that MRI-ESM2-0 exhibits both the weakest ATF (although only slightly

weaker than that of CESM2-WACCM) and the strongest WVF (although only slightly

stronger than that of MPI-ESM1-2-HR).

This begs the question, why the behaviour of MRI-ESM2-0 seems to be consistent with

the findings of Koll and Cronin (2018) in the cancellation of ATF and WVF, but not that

of the other three models. Koll and Cronin (2018) conducted their analysis for an at-

mosphere saturated in all vertical levels (100 % RH). While the vertically constant RH

is a strong simplification (most models analysed feature a C-shape), the assumption of

constant RH under warming is broadly supported by global climate models simulations,

which show only small changes in RH with warming (Ingram, 2002; Allen and Ingram,

2002). However, even small changes in RH can have significant effects on radiative bal-

ance, in particular in the upper tropical troposphere (Soden et al., 2005).

To verify, whether the mean RH of the atmospheric column also stays constant in the

analysed data sets, the respective changes in column relative humidity CRHs with TA

(∂TACRH) are calculated. The only model where ∂TACRH is insignificantly different from

zero is MRI-ESM2-0, which also features a near-zero AF, as demonstrated. Even so, both

quantities are slightly negative. All the other models, which exhibit clearly negative AF,

actually feature a significant decrease of CRH with warming. This causes the WVF to be

too weak to balance the ATF in these models. This study does not attempt to evaluate,

whether this decrease in CRH is robust, but rather focuses on how a negative ∂TACRH,
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impacts λν.

This now answers the question posed at the beginning of this chapter, why the analysed

models (and the IASI observations) exhibit such a large spread in λAW. Even though their

mean CRH are all very similar to that of konrad their λAW are (with the notable excep-

tion of MRI-ESM2-0) much more negative. This appears to be the combined effect of both

different vertical distributions of RH and the decreasing CRH in the CMIP6 models and

ERA5 causing negative AF. Similar to MRI-ESM2-0, the AF in konrad can be assumed to

be near-zero due to its fixed RH.

The feedback decomposition also allows to pinpoint to atmospheric layers, where the

differences in ATF and WVF are the largest. The vertical profiles of the state variables

changes ∂TA x, the radiative kernels Kx, as well as the resulting feedbacks integrated over

the atmospheric window are shown in Fig. 5.3. Almost all of the atmospheric temper-

ature feedback (ATF) (upper right panel) occurs below 500 hPa, with the layer between

700 and 900 hPa having the largest impact (as it is scaled by the temperature kernel KT in

the upper left panel). MRI-ESM2-0’s relatively weak warming in the lower troposphere is

responsible for a significantly weaker ATF between roughly 950 and 650 hPa compared to

the other models. On the other hand, the comparatively strong warming of MPI-ESM1-

2-HR and ERA5 there causes them to have much stronger ATF.

A similar feature can be seen in the water vapour feedback (WVF) (centre right panel).

The strong increase in q in MRI-ESM2-0 between 600 and 800 hPa, due to the bigger q
kernel Kq, has a much stronger impact on the WVF compared to the strong increase in q
in MPI-ESM1-2-HR and ERA5 below 800 hPa.

Finally, the vertically resolved AF is considered (lower right panel). Analogously to the

integrated values, the RH profile is a very good indicator for the AF profile. With the

exception of MRI-ESM2-0, RH between about 900 and 600 hPa decreases (to different ex-

tents) for all analysed models. While RH in MRI-ESM2-0 does decrease between 600 and

700 hPa, it actually increases from 700 to 900 hPa. This is also reflected in the profile of

AF, which can essentially be separated into two regimes: On one hand, there is the lower

troposphere, where the dominating ATF leads to a net negative AF. On the other hand,

the WVF dominates in the middle and upper troposphere leading to mostly positive AF.

This separation is mainly due to the different peak heights of KT and Kq, respectively. For

MPI-ESM1-2-HR, CESM2-WACCM and ERA5, the transition between the two regimes

occurs at around 600 hPa, with the overall shape of the feedback profiles looking very

similar. For MRI-ESM2-0, however, the transition occurs much lower at around 800 hPa.

This difference is not explained by the relatively similar kernels. Rather, almost all of

the difference in AF between MRI-ESM2-0 and the other models originates in the lower

troposphere between around 900 and 700 hPa, where RH increases in MRI-ESM2-0 but

decreases in the other models.

In summary, the least negative λAW of MRI-ESM2-0 can be attributed to its close to zero

AF, where due to its constant CRH with warming, ATF and WVF almost perfectly can-
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Figure 5.3: Vertically resolved atmospheric feedback kernels Kx, model responses ∂TA x
and climate feedbacks integrated over the atmospheric window: MPI-ESM1-
2-HR (orange), CESM2-WACCM (blue), MRI-ESM2-0 (green) and ERA5
(dashed purple).
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cel, whereas the other models analysed exhibit clearly negative ATF due to their CRH

decreasing under warming. Most of the difference in RH change and therefore AF can

be attributed to the layer between 900 and 700 hPa, where MRI-ESM2-0’s RH is the only

one showing an increase. This means that, if CRH stays constant under warming, the

STF is the main factor determining λAW, as the atmospheric feedbacks cancel each other.

Otherwise, the AF also has a significant impact.

In the following, the discrepancy in λAW between the CMIP6 models and the IASI ob-

servations is further analysed. Some of that difference can be reproduced applying the

MSRK technique to ERA5. Its λAW, MSRK (-0.81 W m−2 K−1) is more negative than the

mean over the three CMIP6 models (-0.56 W m−2 K−1), but less negative than IASI’s λAW

(-0.93 W m−2 K−1) (Tab. 5.3). This difference in λAW, MSRK can in turn be traced back to

two different causes. The first (and most obvious) is the inherently different represen-

tations of different feedback processes in ERA5 (and the real atmosphere) compared to

CMIP6. This is mainly the case for the stronger STF caused by stronger surface warming

∂TASST and lower IWV in ERA5.

The second part is caused by biases due to the selection of analysed months (see Ch. 3). It

can be quantified by also applying the MSRK method to the ERA5’s mean quantities over

a full ten year period (2010–2019) and comparing the results to those derived previously

(where only the months, from which IASI observations are selected, are considered). The

resulting λAW, MSRK is also shown in Tab. 5.3. λAW, MSRK for the full ten years is less neg-

ative than for the selected months, with a bias produced by the sub-sample selection of

0.08 W m−2 K−1, overestimating the absolute value of λAW, MSRK.

The sub-sample selection has no effect on the net atmospheric feedback (AF) (Tab. 5.5),

as the absolute values of ATF and WVF are overestimated equally. In contrast, it sub-

stantially affects the surface temperature feedback (STF) (Tab. 5.6), mainly due to the

significant overestimation of ∂TASST. The latter is much closer to the values of the CMIP6

models when the full ten years are considered. This overestimation seems to be mainly

the result of only using data from four different years rather than using only six months

per year (not shown). The bias in KSST due to underestimating the IWV has only little

impact.

This means that the difference in λAW, MSRK between ERA5 and CMIP6 (0.25 W m−2 K−1)

explains more than half of the difference in λAW between IASI and the CMIP6 mean

(0.4 W m−2 K−1). This difference in λAW, MSRK in turn is caused by inherently different

atmospheric fields (0.17 W m−2 K−1) and a bias due to the sub-sample selection (0.08 W

m−2 K−1). Accounting for those effects, this still leaves another 0.15 W m−2 K−1 to fully

explain the different λAW of IASI and CMIP6. The remaining difference can be attributed

to several factors.

Firstly, IASI’s λν is calculated from clear-sky pixels only. This is in contrast to CMIP6,

where λν is calculated from simulations of clear-sky spectra, which is accomplished by

simply setting the cloud liquid water content to zero. All other variables are left un-
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changed, most notably the specific humidity q. Filtering out only clear-sky pixels, as

done for the IASI observations, however, also affects the mean humidity of the sampled

profiles, introducing a clear-sky sampling dry bias (Allan et al., 2003; John et al., 2011).

As demonstrated above, the strength of STF is enhanced for drier atmospheres.

Test runs, where the CMIP6 profiles are filtered based on their total cloud fraction (emu-

lating the filtering applied to IASI), confirm the direction of the effect qualitatively. The

λAW for the filtered profiles is more negative (due to the lower IWV), but the size of the ef-

fect strongly depends on the exact filtering methodology. Thus, the results are not robust

enough to reliably quantify the strength of the clear-sky sampling bias. Furthermore, the

different horizontal resolutions of the CMIP6 models (100 km or more) are an order of

magnitude larger than IASI’s minimal footprint of 12 km (see Ch. 3). This problem will

only be resolved by future climate models with significantly higher horizontal resolution

more comparable to that of IASI.

Lastly, even though it is strongly informed by observations, the T and q fields in ERA5

still differ from the actual atmospheric condition (Hersbach et al., 2020; Luo and Minnett,

2020). This means that while ERA5 profiles provide good approximations to the state of

the real atmosphere observed by IASI, any comparison is inherently (at least somewhat)

imprecise.

To conclude the analysis of λν in the atmospheric window, the spectral shape of λν is

analysed briefly in the following. As the emission level shows little variation within the

atmospheric window, being located mostly at or close to the surface (see Fig. 2.1), the fo-

cus in analysing λν there mainly lies on analysing its integral over the whole band (λAW).

Nevertheless, there are a few interesting features not captured by this approach. Note,

that this analysis explicitly excludes the O3 absorption band between 980 and 1080 cm−1,

which is separately discussed in Sec. 5.2.3. The analysis here (as the previous one con-

cerning the integrated values) only discusses the atmospheric window within the spectral

ranges defined in Tab. 2.1.

Apart from their different integrated values, the shapes of λν differ between konrad and

the other analysed models and instruments. λν is relatively constant for the three CMIP6

models and for ERA5 within the atmospheric window. In contrast, konrad’s λν has a

much "steeper" shape. Its absolute value reaches minima at the edges of the atmospheric

window and its maximum at around 980 cm−1 (Fig. 5.4, left panel)3. This shape resem-

bles that of the STF of the CMIP6 models (Fig. 5.4, right panel). As mentioned above, due

to konrad’s constant RH, its AF is zero in the atmospheric window. Not only is the band-

integrated AF different from zero for most of the analysed models (as discussed above),

it is especially negative at the edges of the atmospheric window at 1200 and at 800 cm−1

(Fig. 5.4, middle panel). This is even the case for MRI-ESM2-0, which exhibits all of its al-

most negligible AF in the atmospheric window towards the bands outer edges. This can

3The analysis is only shown for the λν as inferred by the MSRK method in order to perform the feedback
decomposition. Still, it applies analogously to the (very similar) λν in the atmospheric window from
(simulated) observations.
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Figure 5.4: Total spectral feedback parameter in atmospheric window from mean spectral
radiative kernel (λν, MSRK) (left panel) and decomposed into spectral atmo-
spheric temperature feedback (ATFν) (middle panel) and surface temperature
feedback (STFν) (right panel).

be explained by the higher optical depth of the atmosphere there compared to the centre

of the atmospheric window (Fig. 2.1). This leads to a smaller surface temperature kernel

KSST and stronger atmospheric kernels KT and Kq (not shown), amplifying the effect of

changes in the atmospheric T and q profiles, quantified by ∂TACRH (as described above).

This feature counteracts the described effect of the STF, causing a much less "steep" shape

of the overall λν for the CMIP6 models and ERA5 compared to that of konrad.

5.2.2 Water vapour absorption bands

The H2O bands in the mid-infrared (MIR) and far-infrared (FIR) are analysed together

due to their very similar radiative properties (see Sec. 2.2). The λν integrated over both

bands (λFIR and λMIR, respectively) are shown in the first two columns of Tab. 5.7. As

expected, they appear to be highly correlated, with λFIR being bigger by a factor of about

two for all models. Similar to Sec. 5.2.1, the mean spectral radiative kernel (MSRK) tech-

nique is also employed (see Sec. 4.2). The λν from that method integrated over both

bands (λFIR, MSRK and λMIR, MSRK) are shown for comparison in the last two columns of

Tab. 5.7.

The values for MPI-ESM1-2-HR are near-zero for both H2O bands, with the MSRK method

producing more negative values by less than 0.02 W m−2 K−1. On the other hand, CESM2-

WACCM and MRI-ESM2-0 feature clear negative values in both H2O bands, although

the MSRK method delivers less negative values by up to 0.16 W m−2 K−1. The λMIR

(λMIR, MSRK) inferred from IASI (ERA5), respectively, show very high agreement. They

are more negative than those of MPI-ESM1-2-HR but not as negative as those of CESM2-
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Table 5.7: Inferred λν integrated over FIR (λFIR, λFIR, MSRK) and MIR (λMIR, λMIR, MSRK)
using both (simulated) observations and MSRK methods. The CMIP6 mean
refers to the mean over the three selected CMIP6 models.

λFIR λMIR λFIR, MSRK λMIR, MSRK
(W m−2 K−1) (W m−2 K−1) (W m−2 K−1) (W m−2 K−1)

MPI-ESM1-2-HR -0.08 -0.04 -0.09 -0.06
CESM2-WACCM -0.49 -0.23 -0.33 -0.15
MRI-ESM2-0 -0.43 -0.19 -0.33 -0.14
CMIP6 mean -0.33 -0.15 -0.25 -0.12
IASI – -0.10 – –
ERA5 (selected months) – – -0.14 -0.10
ERA5 (2010–2019) – – -0.22 -0.12
konrad -0.24 -0.12 – –

WACCM and MRI-ESM2-0. This is also the case for ERA5’s λFIR, MSRK (due to its lim-

ited spectral coverage, there is no λFIR available for IASI). The mean over the analysed

CMIP6 models shows that the MSRK method delivers about 20–25 % less negative val-

ues for both MIR and FIR. Nevertheless, even though they are not as similar as for the

atmospheric window, both methods produce qualitatively similar results for both H2O

bands, allowing a feedback decomposition analogous to Sec. 5.2.1.

Analysing the decomposed feedbacks (Tab. 5.8 for the FIR and Tab. 5.9 for the MIR) con-

firms, as already discussed in Sec. 2.2, that the surface plays no role in determining λFIR

and λMIR (the STF, shown in the first columns of both tables, is negligible). Hence, the

total feedback is equal to the net atmospheric feedback (AF). It also reveals that the very

negative λMIR and λFIR of MRI-ESM2-0 are caused by its strong atmospheric temperature

feedback (ATF), compared to the other models. The very similar AF of CESM2-WACCM,

however, is due to its comparatively weak water vapour feedback (WVF). Furthermore,

the near-zero AF of MPI-ESM1-2-HR results from its very strong WVF almost balancing

its ATF, which is still the second strongest among the models. Finally, ERA5 features the

weakest ATF and second weakest WVF.

However, the data sub-sampling also seems to have an impact on the λFIR, MSRK and

λMIR, MSRK as derived from ERA5 (as already discussed extensively in Sec. 5.2.1). For the

full ten year period (2010–2019), ERA5’s λMIR, MSRK and especially λFIR, MSRK are much

more negative than when only 24 months are considered. The decomposition in Tab. 5.8

and Tab. 5.9 reveals that this discrepancy is largely due to the underestimation of ATF in

the FIR and roughly equally caused by an underestimation of ATF and overestimation of

WVF in the MIR.

The vertically resolved feedback kernels, model responses and feedbacks integrated over

the FIR and MIR are shown in Fig. 5.5 and Fig. 5.6, respectively. Similar to the column-

integrated values, the profiles also exhibit very similar behaviour. Apart from the larger

absolute values in the FIR, two main differences stand out. Firstly, the profiles of the

temperature kernels, and therefore also the ATF, span a greater vertical range in the FIR
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.

Table 5.8: Column-integrated decomposed atmospheric feedbacks integrated over the
FIR.

STF ATF WVF AF
(W m−2 K−1) (W m−2 K−1) (W m−2 K−1) (W m−2 K−1)

MPI-ESM1-2-HR -0.00 -1.51 1.41 -0.09
CESM2-WACCM -0.00 -1.37 1.04 -0.33
MRI-ESM2-0 -0.00 -1.55 1.22 -0.33
ERA5 (selected months) -0.00 -1.25 1.11 -0.14
ERA5 (2010–2019) -0.00 -1.30 1.09 -0.22

.

Table 5.9: Column-integrated decomposed atmospheric feedbacks integrated over MIR.
STF ATF WVF AF

(W m−2 K−1) (W m−2 K−1) (W m−2 K−1) (W m−2 K−1)
MPI-ESM1-2-HR -0.00 -0.56 0.50 -0.06
CESM2-WACCM -0.00 -0.52 0.37 -0.15
MRI-ESM2-0 -0.00 -0.58 0.43 -0.14
ERA5 (selected months) -0.00 -0.50 0.41 -0.10
ERA5 (2010–2019) -0.00 -0.52 0.39 -0.12

compared to the MIR. Secondly, the water vapour kernel assumes relatively higher val-

ues between 200 and 400 hPa in the MIR, which causes a higher part of the WVF to orig-

inate in that region. Those two effects combined also explain the different shapes of the

net atmospheric feedback (AF) profiles, with less pronounced negative AF below 500 hPa

and more pronounced positive AF above 300 hPa. However, in both spectral bands, both

ATF and WVF mainly originate between 600 and 200 hPa, which is unsurprising given

the high optical depth of both FIR and MIR, causing the emission level to lie in the mid-

dle to upper troposphere (Fig. 2.1). The following analysis (if not otherwise stated) is

therefore valid for both H2O bands.

The strong ATF of MPI-ESM1-2-HR and MRI-ESM2-0 result from their strong upper

tropospheric warming above 400 hPa. The much less negative λFIR (and λMIR) of MPI-

ESM1-2-HR compared to MRI-ESM2-0 mainly results from its stronger specific humidity

response between about 200 and 400 hPa, causing a strong WVF in that layer.

As already seen in the atmospheric window, the change of relative humidity RH with

the atmospheric temperature at 500 hPa TA in a given atmospheric layer is a very good

indicator for the AF originating from that layer (lower two panels). Most of the difference

between the models featuring clearly negative λFIR and λMIR (CESM2-WACCM and MRI-

ESM2-0) and those exhibiting less negative λFIR and λMIR (MPI-ESM1-2-HR and ERA5)

mainly originates between 400 and 200 hPa due to the varying dependence of RH on

TA in those atmospheric layers, respectively. While MRI-ESM2-0 and CESM2-WACCM

show quite strong decreases in RH, the decrease is much weaker for ERA5 and especially

MPI-ESM1-2-HR.

Furthermore, the decreasing RH of CESM2-WACCM between 300 and 600 hPa is respon-
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Figure 5.5: Vertically resolved atmospheric feedback kernels Kx, model responses ∂TA x
and climate feedbacks integrated over the FIR: MPI-ESM1-2-HR (orange),
CESM2-WACCM (blue), MRI-ESM2-0 (green) and ERA5 (dashed purple).
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Figure 5.6: Vertically resolved atmospheric feedback kernels Kx, model responses ∂TA x
and climate feedbacks integrated over the MIR: MPI-ESM1-2-HR (orange),
CESM2-WACCM (blue), MRI-ESM2-0 (green) and ERA5 (dashed purple).
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sible for the strongly negative AF originating at those layers. Similarly, the quite strong

positive AF of ERA5 above 200 hPa, is caused by its increase in RH in the tropopause

region. This effect can mainly be seen in the FIR as that atmospheric region has only little

impact in the MIR. Inversely, layers below 700 hPa (including the RH increase with TA of

MRI-ESM2-0, which strongly impacted λAW), have only minor impact on the overall λFIR

and λMIR.

Due to the fact that the emission level varies significantly within both H2O bands (see

Sec. 2.2), the analysis is conducted beyond the band integrals. Additionally, the spectral

shape of λν in those bands is analysed more thoroughly. Using the emission level and

emission range4 for each wavenumber (upper right panel of Fig. 5.7), I link λν to the

change in RH at the respective atmospheric layer. The emission level and emission range

rise from 500± 150 hPa for 550 cm−1 to 200± 50 hPa for 100 cm−1, covering the middle

and upper troposphere. To understand λν at a certain wavenumber ν, one can follow a

vertical line from the lower right to the upper right panel of Fig. 5.7 (as demonstrated by

the vertical dashed black line) and then read of the changes in RH within the correspond-

ing emission range shown in the upper left panel (dotted lines).

Several features in λν can be explained this way. MPI-ESM1-2-HR’s near-zero λν for

wavenumbers 100–450 cm−1 results from its almost constant RH with TA at 150–400 hPa.

In contrast, upper tropospheric RH decreases significantly in CESM2-WACCM and MRI-

ESM2-0. The λν reflect the spectral fingerprints of those changes of the RH profiles. For

wavenumbers 100–350 cm−1, which are mainly sensitive to RH changes at 150–400 hPa,

MRI-ESM2-0 has the more negative λν, consistent with its stronger RH decrease with TA

above 300 hPa. Analogously, CESM2-WACCM’s λν is more negative for wavenumbers

350–550 cm−1, mainly sensitive to RH changes at 250–700 hPa, caused by its stronger RH

decrease below 400 hPa. This behaviour is consistent with the theoretical framework of

Simpson (1928a,b) and Ingram (2010) as well as the findings of Pan and Huang (2018),

who already discussed the paramount importance of the change of RH under warming

for (spectral) climate feedbacks.

For wavenumbers of 450–550 cm−1, both MPI-ESM1-2-HR and CESM2-WACCM exhibit

a strongly decreasing λν with wavenumber, while λν only moderately decreases for MRI-

ESM2-0. Fig. 5.7 reveals that this spectral region (in contrast to smaller wavenumbers)

is also sensitive to RH changes around 600–700 hPa, where RH decreases substantially

for MPI-ESM1-2-HR and CESM2-WACCM but not for MRI-ESM2-0. This effect is addi-

tionally amplified by the increasing temperature dependence of the Planck curve at those

wavenumbers.

Similar to the FIR, the emission level and emission range in the MIR also depend strongly

on wavenumber. They rise from 600 ± 200 hPa at 1300 cm−1 to 300 ± 100 hPa at around

4The emission level is (as described above) determined as the height of the maximum of the temperature
kernel (KTi ), KTi ,max (due to the high optical depth, the contribution of the surface temperature kernel
(KSST) is negligible). The so-called emission range is here defined as the altitude range that substantially
contributes to OLRν. This is quantified as layers where KTi is at least 50 % of KTi ,max.
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Figure 5.7: Spectral feedback parameter λν in the FIR: MPI-ESM1-2-HR (orange), CESM2-
WACCM (blue), MRI-ESM2-0 (green) and konrad (grey). (upper left) ∂TARH
(upper right): emission level (black line) and emission range (grey shading)
(lower right): λν in FIR. Both spectral plots show 50 cm−1 running means.
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Figure 5.8: Spectral feedback parameter λν in the MIR: MPI-ESM1-2-HR (orange),
CESM2-WACCM (blue), MRI-ESM2-0 (green), IASI (solid purple), ERA5
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sion level (black line) and emission range (grey shading) (lower right): λν in
FIR. Both spectral plots show 50 cm−1 running means.
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1600 cm−1, before sinking again to 600 ± 200 hPa at 1900 cm−1. There are therefore many

parallels, where λν at certain wavenumbers in the FIR and MIR respectively are respon-

sive to the same atmospheric layers (as already demonstrated in Fig. 2.1). In contrast to

the FIR, the impact of the upper troposphere above 300 hPa is reduced in the MIR.

Despite those parallels between the two bands, a separate analysis of the MIR still has

its merits. In contrast to the FIR, the MIR lies within the spectral range covered by IASI,

allowing for comparison between observations and models. Fig. 5.8 is analogous to Fig.

5.7 but applied to the MIR spectral range, including λν as inferred from IASI observa-

tions in the lower right panel and the average RH profile change for ERA5 in the upper

left panel.

The change in ERA5’s RH profile with warming (∂TARH) explains large parts of the vari-

ations in IASI’s λν and how it compares to the λν of the CMIP6 models. The IASI’s λν

between around 1350 and 1850 cm−1 lies, for the most part, between that of MPI-ESM1-

2-HR and those of the other two CMIP6 models. This is similar to ∂TARH of ERA5 in the

atmospheric layer to which λν is mainly sensitive, namely between 600 and 200 hPa.

The emission level is the highest at around 1500 and 1700 cm−1, respectively, where the

H2O absorption is the strongest. Around those wavenumbers, IASI’s λν matches or even

slightly exceeds that of MPI-ESM1-2-HR, even reaching slightly positive values. This is

consistent with the increase in RH in ERA5 above 200 hPa, which has substantial impact

on λν in those bands. In contrast, the CMIP6 models only feature increasing RH at even

higher altitudes, which have an even smaller impact on their λν. The only exception is

CESM2-WACCM, which shows increasing RH above around 150 hPa and whose λν sur-

passes MRI-ESM2-0’s at around 1500 and 1700 cm−1, respectively.

At the upper edge of the band at around 1900 cm−1, IASI’s λν is closest to that of CESM2-

WACCM, consistent with both models showing a decrease in RH below 600 hPa. Even

though the emission level is similar at around 1300 cm−1, IASI exhibits the least negative

λν. This probably has to do with the absorption bands of NH4 and N2O nearby and is

not further discussed here.

Finally, λMIR as observed by IASI, combined with λFIR inferred from CMIP6 models can

be used for a rough estimate of the λFIR, which in the future can be observed by the

FORUM mission. For the three CMIP6 models analysed, λFIR is on average 2.13 times

larger than λMIR. For λMIR of IASI of 0.10 W m−2 K−1, this yields as an estimate of λFIR

as observed by FORUM in the future of 0.20 W m−2 K−1 (both rounded). This is higher

than ERA5’s λFIR, MSRK of 0.14 W m−2 K−1.

Spectrally resolved, λν as observed by FORUM would likely be, following the relative

magnitude of ERA5’s ∂TARH between 500 and 200 hPa, between that of MPI-ESM1-2-

HR’s and that of the other two models between 550 and roughly 250 cm−1. Due to ERA5’s

increase in RH above 200 hPa, FORUM’s λν would probably be very close to zero (or even

slightly positive) for smaller wavenumbers. This is somewhat similar to the spectral be-

haviour of λν inferred from ERA5 using the MSRK method in the FIR (not shown).
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All in all, λν reflects the spectral fingerprint of changes in the atmospheric RH profile.

The λν at each wavenumber encompasses the effects of RH changes in a layer around

the emission level. Similar to the atmospheric window, the sign of ∂TARH strongly im-

pacts that of the AF, underlying the paramount importance of understanding processes

affecting how the profile of RH changes in a warming climate.

5.2.3 Ozone absorption band

The scope of this thesis is limited to spectral bands sensitive to changes in the troposphere

(see Sec. 2.2). However, because of the striking difference in λν between IASI and CMIP6

(which can be seen in Fig. 5.1 and the left panel of Fig. 5.4), the ozone (O3) absorption

band at 980–1080 cm−1 is briefly discussed in the following.

While λν inferred from IASI is more negative in the O3 band compared to the neighbour-

ing atmospheric window, the opposite is the case for the λν derived from models (CMIP6,

ERA5 and konrad), whose absolute values of λν decrease sharply. This is likely due to the

fact that only climatological values of stratospheric O3 are used for the radiative transfer

simulations with RTTOV (see Sec. 4.1.1). Due to the high sensitivity of the results to the

chosen assumptions, konrad omits ozone altogether (Lukas Kluft, personal communica-

tion). The apparent agreement of the different models in the ozone band should therefore

be taken with a grain of salt.

Conversely, there are also a few factors possibly impacting IASI’s behaviour in the ozone

band. While it has the advantage of capturing the spectra produced by the actual O3 con-

centration in the analysed years, the fact that only 24 months from four different years

are selected reduces the robustness of the results (see Sec. 5.2.2). The regression standard

error in the O3 band is much larger compared to the atmospheric window, indicating that

four yearly means might not be enough to accurately capture λν there. On top of that,

by selecting only a few years, effects like the quasi-biennial-oscillation (QBO)5 might pro-

duce "artificial" correlations, which would not be encountered under forced warming. All

in all, the methods available for this study do not allow any reliable conclusions about λν

between 980 and 1080 cm−1.

5The QBO is a wave driven circulation with a period of around 30 months, dominating interannual varia-
tions in ozone concentration (Tung and Yang, 1994).
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6 Conclusions and outlook

In this thesis, I develop a new method for inferring the longwave spectral climate feed-

back parameter λν from interannual variations of the spectral outgoing longwave radia-

tion OLRνand the atmospheric temperature at 500 hPa TA for clear-skies over the tropical

ocean. The inferred broadband values for λ are consistent with results of other methods

when applied to the same domain (Gregory et al., 2004).

The feedbacks making up λν are linearly decomposed using mean spectral radiative ker-

nels (MSRKs), following the approaches of Held and Soden (2006), Soden et al. (2008)

and Huang et al. (2014). This decomposition into surface temperature feedback (STF),

atmospheric temperature feedback (ATF) and water vapour feedback (WVF) is found to

be in good agreement with the λν described above.

The STF makes up the largest part of the λν integrated over the atmospheric window

(λAW). It is proportional to the warming of sea surface temperature (SST) with TA (∂TASST).

Models with higher integrated water vapour IWV feature weaker STF, as parts of the sur-

face signal is masked by H2O continuum absorption. For near-constant column relative

humidity CRH with warming (∂TACRH≈ 0) (which is only the case for MRI-ESM2-0), the

contribution of the net atmospheric feedback (AF) is negligible, as ATF and WVF almost

perfectly cancel. Most models (MPI-ESM1-2-HR, CESM2-WACCM, ERA5), however, ex-

hibit negative ∂TACRH, causing a negative AF of similar magnitude as STF.

The λAW inferred from IASI observations is more negative compared to the CMIP6 mod-

els. This is found to be due to a combination of several effects. Calculating MSRKs for

ERA5, it is found that the average IWV is lower than in the CMIP6 models. ERA5 also

features a stronger surface warming, which is mainly due to a bias caused by the sub-

sampling of the data. Finally, a clear-sky sampling dry bias (Allan et al., 2003; John et al.,

2011) likely also contributes.

In the H2O bands in the mid-infrared (MIR) and far-infrared (FIR), λν is only impacted

by atmospheric feedbacks, as the surface plays no role due to the high optical depth τ.

The mean RH change in the layer around the emission level is found to be a very good

indicator for λν in those bands. Two of the models (MRI-ESM2-0 and CESM2-WACCM)

exhibit strong decreases in RH in the upper troposphere causing strongly negative λν in

both H2O bands. On the other hand, ERA5 and especially MPI-ESM1-2-HR have closer

to zero upper tropospheric ∂TARH and hence also less negative λν.

The importance of changes in RH with warming has been found for ECS (and therefore

λ) in general (Bourdin et al., 2021) and for the OLR in the H2O bands in particular (Simp-

son, 1928a; Ingram, 2010). This work highlights the importance of changes in RH for λν
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in the H2O bands, but also in the atmospheric window (AW).

The largest inter-model difference in λν in this study occurs in the FIR, with λFIR rang-

ing from near-zero to a substantial negative contribution. This uncertainty is magnified

due to the large temperature dependence of the Planck curve in the FIR between 400

and 550 cm−1. However, as previously mentioned, there are currently no hyperspectral

satellite observations for wavenumbers below 645 cm−1. This will be changed by the Far-

infrared-Outgoing-Radiation Understanding and Monitoring (FORUM) mission which is

currently in planning. Flying in tandem with IASI-NG, FORUM will for the first time pro-

vide hyperspectral observations of almost the whole spectral range of significant OLRν

(Domínguez et al., 2020). This will help to improve our understanding of the governing

feedback processes in this vital spectral region and enabling the inference of the full long-

wave λν based on satellite observations.

The fact that all CMIP6 models and ERA5 show at least some decrease in CRH with

warming is a somewhat unexpected result. While the decrease of RH in the upper trop-

ical troposphere found in this thesis is consistent with previous studies of global climate

models, this is not the case for the lower and middle tropical troposphere, where RH

is found to be constant or even increase (Sherwood et al., 2010). The majority of the

models analysed in this study (MPI-ESM1-2-HR, CESM2-WACCM and ERA5, but not

MRI-ESM2-0), however, feature a decrease in RH below 600 hPa, which is also the main

cause for their decreasing CRH with TA. This lower tropospheric RH decrease has also

been found by Bourdin et al. (2021), who investigated RH trends in the ERA5 and JRA-55

reanalyses over 40 years. But they also found increasing RH in the mid- and upper tropo-

sphere (above 600 hPa), contrary to the findings in this study, which only finds increasing

RH above 200 hPa in ERA5 for both the sub-sampled months and the full ten year period

from 2010 to 2019.

It would be interesting to investigate, whether the decrease in lower and middle tropo-

spheric RH (and therefore the CRH) found in this study is merely a feature of interannual

variability or the selected set of models, or if it can be reproduced under forced warming

for a larger model ensemble (e. g., using the 4xCO2 experiment). If that is the case, this

would be a significant result, possibly indicating an additional stabilising feedback de-

laying the closing of the atmospheric window, akin to the controversial iris-hypothesis

introduced by Lindzen et al. (2001).

The results from this thesis are also consistent with the findings of John and Soden (2007),

who found that the water vapour feedback (WVF) and lapse rate feedback (LRF) depend

relatively little on the model mean state but rather on their responses to surface warm-

ing. This has also been found in this thesis, where parameters like the mean IWV have

a smaller impact (even in the atmospheric window, AW) than the models responses like

the changes of SST and CRH with TA. Contrary to the findings of John and Soden (2007),

the model responses are found to vary substantially and in turn to be largely responsible

for inter-model differences in λν in this study. It would be intriguing to explore how these
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differences depend on the selection of models and experiments, but also on the analysed

domains and time periods as well as on which atmospheric temperature is used as a ref-

erence for the regression.

For future studies, it would make sense to extend the amount of IASI data used to

avoid biases that arise from only selecting a sub-sample (e. g., ten full years, as done

for the CMIP6 models). One could also increase the robustness of the regression by using

monthly deviations from the mean annual cycle of OLRν and TA instead of yearly means,

increasing the number of data points based on which the regression is performed. While

this is not expected to substantially change the outcome, it would relate to another possi-

ble adjustment of the inference method. Contrary to Dessler and Forster (2018), the time

series of OLRν and TA are not detrended in this study, as the spectral decomposition re-

lies much more on a maximised signal-to-noise ratio, which is reduced by the detrending.

But it might be suitable to apply to a more robust regression.

Further investigations could also rely more on the mean spectral radiative kernel (MSRK)

method, calculating the kernels with high temporal and spatial resolution, instead of only

calculating them for the mean state. This approach would be similar to that of Huang et

al. (2014), but for short-term variability instead of forced model runs, also allowing con-

clusions about how the results of those two approaches compare spectrally. The spectral

radiative kernel method could even be applied to IASI observations by using retrieved

temperature and humidity profiles (Carissimo et al., 2005).

This study demonstrates that it is possible to infer λν from hyperspectral satellite obser-

vations of interannual variability. The differences between the λν inferred from different

CMIP6 models as well as the IASI observations can be understood by decomposing λν

into its main feedbacks using MSRKs. Analysing different parts of the spectrum sepa-

rately gives valuable insights into inter-model differences in λν that compensate in the

total λ. For example, while MPI-ESM1-2-HR and MRI-ESM2-0 have rather similar over-

all λ (-1.43 and -1.62 W m−2 K−1, respectively), the former has a significantly more sta-

bilising feedbacks in the atmospheric window, while the latter features a much larger

contributions of the H2O bands. As those bands are mainly sensitive to the surface and

upper troposphere, respectively, the dominating feedbacks are driven by different pro-

cesses that might respond differently to future warming. Hence, a better understanding

of those processes and how they affect λν are of paramount value to climate research.
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