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Direct observation of Earth’s spectral 
long-wave feedback parameter

Florian E. Roemer    1,2 , Stefan A. Buehler    1, Manfred Brath    1, Lukas Kluft3  
& Viju O. John    4

The spectral long-wave feedback parameter represents how Earth’s 
outgoing long-wave radiation adjusts to temperature changes and directly 
impacts Earth’s climate sensitivity. Most research so far has focused on 
the spectral integral of the feedback parameter. Spectrally resolving the 
feedback parameter permits inferring information about the vertical 
distribution of long-wave feedbacks, thus gaining a better understanding 
of the underlying processes. However, investigations of the spectral 
long-wave feedback parameter have so far been limited mostly to model 
studies. Here we show that it is possible to directly observe the global mean 
all-sky spectral long-wave feedback parameter using satellite observations 
of seasonal and interannual variability. We find that spectral bands subject 
to strong water-vapour absorption exhibit a substantial stabilizing net 
feedback. We demonstrate that part of this stabilizing feedback is caused 
by the change of relative humidity with warming, the radiative fingerprints 
of which can be directly observed. Therefore, our findings emphasize 
the importance of better understanding processes affecting the present 
distribution and future trends in relative humidity. This observational 
constraint on the spectral long-wave feedback parameter can be used to 
evaluate the representation of long-wave feedbacks in global climate models 
and to better constrain Earth’s climate sensitivity.

The long-wave feedback parameter λ indicates how Earth’s outgoing 
long-wave radiation ℒ responds to changes in near-surface air tem-
perature Ts and thus directly affects Earth’s climate sensitivity. Despite 
extensive research on λ throughout the past decades, the bulk of that 
research has focused on its spectrally integrated value1–4. However, 
radiative feedbacks—and thus λ—fundamentally possess a spectral 
dimension. Therefore, we use satellite observations to directly infer 
Earth’s spectral long-wave feedback parameter

λν = −dℒν
dTs

(1)

where ℒν is the spectral outgoing long-wave radiation. In this framework, 
stabilizing feedbacks are negative and amplifying feedbacks are positive.

Spectrally resolving λν offers clear advantages compared with 
considering only the spectrally integrated λ. First, the absorption of 
long-wave radiation by different atmospheric species strongly varies 
with wavenumber ν, making it possible to directly attribute changes 
in ℒν  to the responsible absorbing species. Second, the spectrally 
varying absorption strength also causes strong variations in the emis-
sion level, the vertical layer ℒν is most sensitive to. This makes it pos-
sible to infer information about the vertical distribution of long-wave 
feedbacks. By considering only the integrated λ, this information can 
be lost due to cancelling effects in different spectral bands5–8.

The use of spectrally resolved satellite observations to study λν was 
already suggested by Madden and Ramanathan9. However, the lack of 
hyperspectral satellite instruments with a sufficiently long time series 
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Earth system model version 1.2 (MPI-ESM1-2-HR) (Methods, Fig. 2 
and Extended Data Table 3). This simulated λν includes only clear-sky 
feedbacks because the model’s horizontal resolution of about 100 km 
is too coarse to reliably assess the radiative impact of clouds.

In both observation and model, the largest contribution to the 
integrated λ comes from the atmospheric window. However, the 
water-vapour absorption bands in the mid-infrared (MIR) and FIR also 
contribute substantially. Due to their different radiative properties, 
the processes controlling λν differ between the water-vapour bands 
and the atmospheric window. In the following, we separately analyse 
the observed λν in those two spectral regions.

Stabilizing feedback in the water-vapour bands
The two water-vapour absorption bands in the MIR and FIR exhibit com-
bined contributions to the total λ of −0.42 W m−2 K−1 and −0.47 W m−2 K−1 
in the seasonal and interannual variability, respectively. Both all-sky 
λν are in very good visual agreement with the findings of ref. 6, who 
calculated both clear-sky λν (their fig. 2e) and all-sky λν (their fig. 2f) on 
the basis of coupled climate models under forced warming. However, 
studies based on idealized models have found clear-sky λν that are much 
closer to zero in the water-vapour bands15,31.

At first, one might expect clouds to be responsible for this discrep-
ancy. Conceptually, clouds can affect λν in two different ways. First, 
changes in cloud fraction or cloud radiative properties can cause a 
cloud feedback, the net effect of which is thought to be slightly posi-
tive in the water-vapour bands11,19. Second, even in the absence of cloud 
feedbacks, clouds impact the all-sky feedback by masking part of the 
clear-sky feedback due to the fixed anvil temperature mechanism32. 
Both of these mechanisms indicate that clouds presumably act to 
dampen any negative clear-sky λν. Furthermore, the negative all-sky 
λν observed in the water-vapour bands is reproduced largely by the 
simulations of the clear-sky λν mentioned in the preceding (Fig. 2), con-
sistent with the findings of ref. 6. We therefore conclude that clouds are 
unlikely to explain the negative λν observed in the water-vapour bands.

Rather, we will demonstrate in the following that the close-to-zero 
clear-sky λν in the water-vapour bands found by idealized studies15,31 
result partly from two assumptions impacting the clear-sky phys-
ics. These assumptions pertain to the atmospheric feedback and the 

has so far largely prevented observational investigations of λν. For 
this reason, approaches to calculate and analyse spectrally resolved 
long-wave feedbacks have been limited mostly to model studies5,6,8,10–16. 
Recent observational studies have demonstrated the feasibility of 
using hyperspectral satellite observations to derive spectral cloud 
radiative kernels17 and to infer anomalies in temperature and humid-
ity using the spectral fingerprinting method18. Furthermore, satel-
lite observations have been used to calculate the spectrally resolved 
cloud feedback19 and to infer both clear-sky and all-sky λν over parts 
of the tropical ocean20. However, no study we are aware of has used 
observations to derive the global mean all-sky λν, which comprises all 
long-wave feedbacks. To close this gap, we infer λν from hyperspectral 
satellite observations.

One of the main challenges in deriving feedbacks from satellite 
observations is that the available observational time series are much 
shorter compared with those usually realized in model studies, making 
it difficult to infer λ—or even λν—from long-term trends. Instead, previ-
ous studies have used short-term variability on seasonal and interan-
nual timescales to infer λ from both models and observations21–28. 
The reasoning behind this approach is that most radiative feedbacks 
already occur on timescales of hours to weeks4.

However, feedbacks derived from short-term variability are gener-
ally not the same as those derived from long-term trends22,24–28. These 
differences arise because aspects other than the global mean Ts can 
impact ℒν. Most prominently, the spatial distribution of the change in 
sea surface temperature is relevant because it affects overall stability 
and cloudiness—the so-called pattern effect (refs. 24,29 and references 
therein). The largest impact of the pattern effect can be seen in the 
short-wave cloud feedback21–24,27,28, whereas the long-wave λ behaves 
similarly on short and long timescales21,23. However, this is not neces-
sarily the case for the spectrally resolved λν due to the potential for 
spectral cancellation. In fact, the long-wave cloud feedback exhibits 
different spectral distributions between short and long timescales19, 
meaning that the long-term λν might differ from the short-term λν. 
Nevertheless, investigating how long-wave feedbacks operate on sea-
sonal and interannual timescales—regardless of their exact relation to 
long-term feedbacks—gives valuable insights into the inner workings 
of our climate system and improves our understanding of the processes 
affecting long-wave feedbacks on both short and long timescales.

Therefore, we infer λν from short-term variability in ℒν, calculated 
from observations by the infrared atmospheric sounding interferom-
eter (IASI), and Ts, taken from the European Centre for Medium-Range 
Weather Forecasts’ Reanalysis v.5 (ERA5). We perform linear regres-
sions over both the global mean annual cycles and global monthly 
deviations from the mean annual cycles of both quantities to get two 
different estimates of λν. In the following, we will refer to them as sea-
sonal and interannual variability, respectively. Following ref. 30, we 
use a prediction model based on ℒν simulations to extend our estimate 
of λν to the far infrared (FIR), which is not covered by IASI. This way, we 
provide an observational estimate of the global mean all-sky λν, cover-
ing the full spectrum of Earth’s outgoing long-wave radiation.

Spectral feedbacks throughout the long-wave 
domain
First, we compare the observed all-sky spectral long-wave feedback 
parameters λν with previous estimates of the all-sky long-wave feed-
back parameter λ by integrating spectrally. Our calculations based on 
seasonal and interannual variability both yield λ ≈ −2 W m−2 K−1, in agree-
ment with previous studies (Extended Data Table 1). The observed λν 
from seasonal and interannual variability are shown in Fig. 1; their inte-
grals over different spectral bands are listed in Extended Data Table 2.  
The sensitivity of the λν to the selected period, orbital drift and calibra-
tion is discussed in Supplementary Discussion 3.

For comparison, we also show the seasonal and interannual λν 
simulated on the basis of the Max Planck Institute high-resolution 
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Fig. 1 | All-sky spectral long-wave feedback parameter λν (10 cm−1 moving 
average) inferred from satellite observations by the IASI instrument. Shown 
are the λν calculated from seasonal variability (green) and interannual variability 
(blue). The solid lines represent the part of the spectrum covered by IASI; the 
dashed lines show the λν in the FIR, which are estimated using a prediction 
model developed by ref. 30 (Methods). Data are presented as mean value 
(lines) ± standard error (shading). The ranges of different spectral bands  
are shown at the top. For better visibility, only the spectral range 100–2,000 cm−1 
is shown.
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surface feedback, which comprise the radiative effects of atmospheric 
processes and surface warming, respectively31.

First, for the atmospheric feedback, we consider a framework first 
postulated by Simpson33,34. This framework, discussed in more depth 
in other studies15,35, states that for parts of the spectrum dominated by 
water-vapour absorption, constant relative humidity ℛ means that the 
specific humidity—and thus the optical depth τ—depends only on 
temperature. This has implications for the emission level pem, the layer 
the spectral outgoing long-wave radiation ℒν  is most sensitive to, 
located where τ ≈ 1. If τ depends only on temperature, pem is always 
located at the same temperature, causing constant ℒν. Applied to the 
feedback framework, this implies a λν of close to zero. In the real world, 
the assumption that τ depends only on specific humidity is violated 
because of pressure broadening. This induces a negative feedback that 
is discussed in more depth in other studies16,35,36 and accounted for in 
the idealized studies mentioned in the preceding15,31.

Another assumption underlying Simpson’s framework is that ℛ 
does not change with Ts, an assumption also made by idealized studies 
investigating λν

12–15,31. To first order, this is a reasonable assumption: 
changes in ℛ with Ts are generally thought to lie within ±1% K−1, and this 
is believed to cause only a weak feedback37–40.

To investigate how ℛ varies with Ts in the analysed period, we 
calculate seasonal and interannual variability in ℛ from the ERA5 rea-
nalysis. In both cases, the global monthly ℛ decreases with Ts between 
300 hPa and 700 hPa (Fig. 3b), the layer where pem in the water-vapour 
bands is mostly located (Extended Data Fig. 1). The change in ℛ within 
that layer amounts to on average −0.4 ± 0.05% K−1 in the seasonal vari-
ability and −0.6 ± 0.09% K−1 in the interannual variability—in contrast 
to the ℛ increase in the multi-decadal trend found by ref. 41.

To quantify the impact of these ℛ changes, we simulate λν on the 
basis of the one-dimensional radiative-convective equilibrium model 
konrad42 (Fig. 4). We distinguish among three different scenarios: con-
stant ℛ with warming (black), decreasing ℛ with Ts by −0.5% K−1 (brown) 
and increasing ℛ with Ts by +0.5% K−1 (green). Assuming a C-shaped ℛ 
profile (dark shading), the feedback in the water-vapour bands is 
−0.34 W m−2 K−1 for constant ℛ with warming compared with 
−0.45 W m−2 K−1 for decreasing ℛ and −0.23 W m−2 K−1 for increasing ℛ 
with warming. This corresponds to a variation of ±30% in the 
water-vapour bands and of ±10% in the spectrally integrated λ (Extended 
Data Table 4). The results are similar for a vertically uniform ℛ = 75%, 
although the effect is slightly weaker (Fig. 4, light shading). This implies 

that, as long as ℛ is a function of temperature only, the exact shape of 
the ℛ profile only weakly affects λν in the water-vapour bands, in agree-
ment with existing studies33–35. Because we perform the simulations 
under clear-sky conditions and assume that ℛ variations are vertically 
uniform, these numbers might be a slight overestimate. Nevertheless, 
these results show that even small changes in ℛ with Ts represent a 
first-order effect for both the spectral λν and the broadband λ.

Second, we calculate the surface feedback, the change in ℒν caused 
by surface warming alone, on the basis of the MPI-ESM1-2-HR model 
(turquoise line in Fig. 2; Extended Data Table 3 and Methods). Inte-
grated over both water-vapour bands, the surface feedback amounts 
to −0.13 W m−2 K−1, while it is zero in ref. 15 (their fig. 2f). However, their 
single-column set-up by design does not account for horizontal vari-
ations in temperature and thus absolute humidity. To demonstrate the 
effect of these variations, we simulate the surface feedback for different 
Ts using konrad (Fig. 5 and Methods). For the simulations, we assume 
the same C-shaped ℛ profile mentioned in the preceding for all Ts, and 
thus exponentially increasing integrated water vapour 𝒲𝒲 (Methods). 
While the surface feedback in the water-vapour bands is zero for the 
moist atmospheres with Ts at or above the global mean (purple lines), 
it is strongly negative for the dry atmospheres at low Ts (blue lines). 
This causes the mean surface feedback to also be negative (black line)—
analogous to the concept of ‘radiator fins’43,44.

As mentioned, the λν values derived from IASI observations for 
the FIR are based on a prediction model introduced by Turner et al.30. 
Future missions such as the Far-infrared Outgoing Radiation Under-
standing and Monitoring (FORUM) and the Polar Radiant Energy in 
the Far Infrared Experiment (PREFIRE) will provide spectrally resolved 
observations of the entire FIR. These observations will also provide a 
test of the method presented here, shedding light on how well the λν 
in the MIR water-vapour band is suited as a proxy for the λν in the FIR. 
In contrast to the MIR, substantial parts of the FIR are sensitive to the 
layer above 300 hPa, and the parts of the FIR that are sensitive to layers 
below 500 hPa do not exhibit absorption by methane.

Surface feedback variations in the  
atmospheric window
In the atmospheric window, our interannual λν is in good visual agree-
ment with modelling studies of both clear-sky and all-sky λν, whereas our 
seasonal λν is 0.26 W m−2 K−1 more negative (fig. 2f in ref. 6; fig. 7 (bottom) 
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in ref. 12; fig. 2f in ref. 15). To explain this difference between seasonal 
and interannual variability, we first consider the surface feedback, 
which is the dominating factor impacting λν in the window (turquoise 
line in Fig. 2; Extended Data Table 3). Conceptually, the strength of the 
surface feedback depends on two factors: (1) how much surface emis-
sion varies with near-surface air temperature Ts and (2) how much of 
that surface emission is absorbed by the atmosphere.

First, the variability of surface emission with Ts to first order 
depends on how much the skin temperature Tskin, the temperature of 
the ocean or land surface, varies with Ts. In ERA5, the global mean Tskin 
changes about 6% more strongly with global mean Ts in the seasonal 
variability (1.03 ± 0.004 K K−1) compared with the interannual vari-
ability (0.97 ± 0.012 K K−1). Approximating the Planck curve as linear, 
this stronger variability in Tskin would explain a difference in λν in the 
window of about 0.06 W m−2 K−1.

Second, the atmospheric absorption of surface emission in the 
window is caused mainly by water vapour. Therefore, the surface feed-
back in the window is stronger for dry atmospheres compared with 
moist atmospheres (Fig. 5). When we compare the spatial patterns of 
seasonal and interannual variability in the local skin temperature T∗skin 
with global Ts, we find that the seasonal variability in T∗skin originates 
mostly from the continents of the Northern Hemisphere, particularly 
at high latitudes, whereas the interannual variability is also substantial 
in the tropics (Fig. 6). Hence, the seasonal variability occurs under drier 
atmospheres on average, which causes a stronger surface feedback 
and thus a more negative seasonal λν.

Apart from the clear-sky processes discussed in the preceding, 
clouds also play an important role in the atmospheric window. The 
simulated clear-sky λν from seasonal and interannual variability differ 
by only about 0.1 W m−2 K−1—much less than the observed all-sky λν (Fig. 
2 and Extended Data Table 3). Furthermore, according to ref. 19, the 
cloud feedback in the window is about 0.1 W m−2 K−1 in the short term 
but about 25% weaker in the long term. Therefore, it seems plausible 
that the cloud feedback also differs between seasonal and interannual 
timescales, explaining some of the observed difference in λν.

Spectral observations can constrain climate 
sensitivity
We infer the spectral long-wave feedback parameter λν from satellite 
observations of seasonal and interannual variability. This way, we 

demonstrate that the spectral fingerprint of the net long-wave feedback 
can be directly observed using hyperspectral satellite instruments such 
as IASI. Furthermore, we use a prediction model to extend the spectra 
observed by IASI to the FIR. In the future, analogous models could be 
used to calculate λν from other infrared sounders that have gaps in their 
spectral coverage, such as the atmospheric infrared sounder (AIRS) 
and the cross-track infrared sounder (CsIR).

When integrating λν spectrally, we find a long-wave feedback 
parameter λ ≈ −2 W m−2 K−1, in agreement with the existing body of 
evidence. When spectrally integrating over the water-vapour absorp-
tion bands alone, we find a considerably negative feedback of almost 
−0.5 W m−2 K−1. This negative λν results partly from the change of relative 
humidity ℛ with warming. Because direct observations of λν contain 
the radiative fingerprint of this ℛ change, they can provide a more 
realistic picture of λν compared with idealized model studies.

Our findings emphasise the importance of better understanding 
processes affecting the present distribution and the future trends of 
ℛ. Despite recent progress in this field, due partly to the development 
of global storm-resolving models (GSRMs), substantial uncertainties 
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remain45. By providing an observational constraint on λν, our results 
can be used to evaluate whether GSRMs correctly represent long-wave 
feedbacks—and thus by extension variability in ℛ—on seasonal and 
interannual timescales. Due to the high spatial resolution of GSRMs, 
comparable to observations, this evaluation can also include the effect 
of clouds. This can put powerful constraints on the processes that also 
govern the long-term long-wave feedback and thus Earth’s climate 
sensitivity.
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Methods
Data
IASI provides hyperspectral measurements of outgoing spectral radi-
ances in 8,461 channels in the thermal infrared (645–2,760 cm−1) with a 
spectral sampling of 0.25 cm−1 and a spectral resolution after apodiza-
tion of 0.5 cm−1. IASI scans across track, with 30 different elementary 
fields of view symmetrically spanning ±48.33° relative to nadir. This 
corresponds to a maximum satellite zenith angle θmax as seen from Earth 
of about ±59°. Each elementary field of view is sampled by a 2 × 2 array 
of circular instantaneous fields of view (IFOVs). The highest horizontal 
resolution is reached directly below the satellite, with an IFOV diameter 
of 12 km. The swath width on ground is about 2,200 km, causing the 
IFOV diameter to increase to 20 × 39 km at swath edge46,47. We use the 
IASI level 1c (L1C) data from the meteorological operational satellite 
(Metop) A from July /2007 to December 201648 and operational IASI 
level 1c data from Metop A from January 2017 to March 2020.

For the full period ( July 2007–March 2020), we use the Clouds and 
the Earth’s Radiant Energy System CERES EBAF-TOA–Level 3b dataset 
for comparison49.

Atmospheric variables are taken from the ERA5. This includes 
hourly fields of 2 m air temperature and skin temperature50 as well as 
hourly profiles of relative humidity51–59. We use ERA5’s global mean 
monthly 2 m air temperature to calculate λν as it is a very robust variable 
constantly validated against observations60. Hence, we are confident 
that any errors in Ts have a negligible effect on our estimates of λν. 
Furthermore, ERA5’s temperature and humidity profiles, as well as its 
skin temperature, are used for the analysis of the underlying feedback 
processes.

To simulate the model-based clear-sky λν, we use model output of 
the MPI-ESM1-2-HR Earth system model61 prepared for the ‘historical’ 
experiment of the sixth phase of the Coupled Model Intercomparison 
Project62. For the simulated years 2000–2014, the used data include 
daily profiles of atmospheric temperature and specific humidity on 95 
vertical levels, near-surface values of air temperature, specific humid-
ity, air pressure and horizontal wind components, as well as skin tem-
perature, surface type, surface elevation and sea-ice concentration63.

Spectral outgoing long-wave radiation from observations
The spectral long-wave feedback parameter λν is defined in equation 
(1) in terms of spectral outgoing long-wave radiation ℒν, a spectral flux. 
However, IASI measures outgoing spectral radiances Iν(θ) for different 
satellite zenith angles θ as seen from Earth. Hence, the Iν(θ) need to  
be integrated over all θ to yield the desired ℒν. However, some  
intermediary steps are necessary before we proceed to this angular 
integration.

First, we account for the fact that high latitudes are oversampled 
by IASI due to Metop’s polar-orbiting track. We sort all observed Iν(θ, l) 
into 1° latitude bins l centred at latitude lc, whose area is proportional 
to cos(lc). Relating this area to the actual number of observed Iν(θ, l) 
within that bin, N(l), yields the correction factor

α(l) = cos(lc)
N(l) , (2)

which we estimate by averaging over 40 orbits.
Second, we use α(l) as weights to average over all M(θ) spectra in 

each orbit b that are observed under the same θ. Thereby, we assume 
azimuthal symmetry to aggregate the left and right sides of the swath. 
This yields the spectral radiance averaged over orbit b for 15 different 
zenith angles θ as

Iν,b (θ) =
1
Ab

M(θ)
∑
i=1

Iν,i (θ, l)αi (l) , (3)

Ab =
M(θ)
∑
i=1

αi (l) , (4)

θ ∈ [0∘,θmax]. (5)

where θmax ≈ 59° is the maximum θ under which spectra are observed 
by IASI.

Third, we need to account for the fact there are no IASI observa-
tions of Iν(θ) for θ > θmax. Hence, we perform a linear interpolation 
between θmax and 90° of Iν,b(θ)cos(θ), which is zero for θ = 90°, to calcu-
late Iν,b(θ) for those angles as

Iν,b (θ) cos (θ) = Iν,b (θmax) cos (θmax)

+ (Iν,b (90∘) cos (90∘) − Iν,b (θmax) cos (θmax))
θ−θmax

90∘−θmax
,

(6)

Iν,b (θ) cos (θ) = Iν,b (θmax) cos (θmax) (1 −
θ − θmax

90∘ − θmax
) , (7)

θ ∈]θmax, 90∘] . (8)

For each orbit separately, we calculate the mean ℒν,b  by conduct-
ing an angular integration over the Iν,b (θ)  calculated in equations 
(3)–(8), respectively. Assuming azimuthal symmetry, this yields

ℒν,b = 2π
90∘
∫

θ=0∘
Iν,b (θ) cos (θ) sin (θ)dθ. (9)

Finally, we calculate the monthly mean ℒν by averaging over all 
orbits in the respective month as

ℒν =
∑b Lν,bAb

∑b Ab
. (10)

The spectral integral of this monthly mean ℒν is compared with 
CERES observations in Supplementary Discussion 2 and Supplemen-
tary Fig. 2.

Spectral outgoing long-wave radiation from model
We use the Radiative Transfer for TOVS (RTTOV) model version 12.264 
to simulate outgoing spectral radiances Iν in all 8,461 IASI channels 
between 645 cm−1 and 2,760 cm−1 with a spectral sampling of 0.25 cm−1. 
In addition, we simulate Iν in 1,817 channels of the planned Far-infrared 
Outgoing Radiation Understanding and Monitoring mission65 between 
100 cm−1 and 645 cm−1 with a spectral sampling of 0.3 cm−1. As input for 
the radiative transfer simulations, we use the MPI-ESM1-2-HR model 
output described in the preceding. The profiles of temperature and 
humidity, which represent the mean over the respective vertical layer, 
are interpolated in log pressure to the layer bounds, as required by 
RTTOV. We perform clear-sky simulations only by setting the cloud 
liquid and cloud ice contents to zero. For ozone, we use RTTOV’s inter-
nal climatology66. We conduct those radiative transfer simulations for 
500 randomly selected profiles per day.

For every selected profile, we calculate outgoing radiances Iν(θ) 
in all 10,278 channels for two different satellite zenith angles (θ1, θ2) =  
(37.9°, 77.8°). We then apply a two-angle Gauss–Legendre quadrature67 
to approximate ℒν as

ℒν ≈ 2π
2
∑
i=1

Iν(μi)μi wi, (11)

where µi = cos(θi) and the weights wi = 0.5. RTTOV supports simulations 
only for θ ≤ 75°, so we infer Iν(θ2) by interpolating between 75° and 90°, 
analogous to equations (6)–(8). The ℒν spectra are averaged monthly.

Prediction model for FIR
The spectral range covered by IASI does not include the FIR, which 
contributes substantially to the total outgoing long-wave radiation ℒ. 
Hence, we extend our calculation of the observed all-sky ℒν to the FIR. 
The different steps are described in the following.
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The simulated monthly clear-sky ℒν spectra are used to set up a 
prediction model, closely following ref. 30. For every channel between 
100 cm−1 and 645 cm−1, we calculate the correlation coefficient of ln(ℒν) 
with every IASI channel from 645 cm−1 to 2,760 cm−1. Then the IASI chan-
nel with the highest correlation is selected as predictor channel for the 
respective channel between 100 cm−1 and 645 cm−1. The ℒν  of these 
channels are then calculated analogous to equation (1) in ref. 30 as

ln (ℒv,FIR) = α0 + α1 ln (ℒv,predictor) , (12)

where ℒv,predictor are the monthly mean IASI observations and α0 and α1 
are the regression coefficients.

Calculation of spectral long-wave feedback parameter
We use both the simulated clear-sky ℒν spectra and the extended obser-
vational all-sky ℒν spectra to calculate λν from both seasonal and inter-
annual variability, respectively. To this end, we perform linear ordinary 
least-squares regressions of monthly means, with ℒν  as dependent 
variable and Ts as independent variable, and subtract the means over 
the whole period, yielding monthly anomalies of ℒν and Ts.

To calculate λν from seasonal variability, we then calculate the 
mean annual cycles of those monthly anomalies in both ℒν and Ts (Sup-
plementary Fig. 1b). We then regress the mean annual cycle in ℒν against 
the mean annual cycle of Ts. The slope of the regression delivers an 
estimate of λν from seasonal variability (Supplementary Fig. 1c).

To calculate λν from interannual variability, we subtract these mean 
annual cycles of ℒν and Ts from the respective time series of monthly 
anomalies, yielding the deviations from the mean annual cycles for 
every single month. Assuming that the radiative forcing changes lin-
early over the analysed period, we calculate the linear trend in those 
deviations using an ordinary least-squares regression and then subtract 
that trend from the time series as well, following ref. 26. The detrended 
deviations from the mean annual cycle in ℒν (Supplementary Fig. 1d) 
are then regressed against the deviations in Ts to infer λν from interan-
nual variability (Supplementary Fig. 1e).

Calculation of atmospheric variability
We use the same methodology as for the feedback calculation described 
in the preceding to calculate seasonal and interannual variability with 
Ts for the global mean profile of relative humidity ℛ, as well as for both 
the global mean and spatially resolved skin temperature Tskin. All cal-
culations are performed for monthly mean values.

Calculation of surface feedback
We use the same radiative transfer simulations described in the preced-
ing to calculate global mean values of an idealized surface feedback. 
In those simulations, we calculate tν,θi (p,TOA), the transmittance of the 
simulated spectral radiances Iν(θi) from every input pressure level p to 
the top of the atmosphere (TOA), from which we then approximate tν 
(p, TOA), the transmittance with respect to ℒν, as

tν(p,TOA) ≈
2
∑
i=1

tν,θi (p,TOA) cos(θi). (13)

We use tν(sfc, TOA), the transmittance from the surface to TOA, 
to calculate an idealized estimate of the spectral long-wave surface 
feedback as

λν, sfc ≈ tν(sfc,TOA)π dBν
dT

|||T=288K
(14)

Conceptually, the surface feedback represents the radiative sig-
nature of surface warming at TOA. This signature consists of (1) the 
additional radiation emitted by the surface per 1 K of warming, esti-
mated by the derivative of the Planck function Bν with temperature T 
at the global mean Ts of 288 K, multiplied by π to convert to a spectral 

flux, and (2) the fraction of this additional surface emission that reaches 
TOA, estimated by tν(sfc, TOA), the global mean transmittance of the 
whole atmospheric column for each spectral channel. The Ts depend-
ence of λν,sfc is derived from the single-column simulations discussed 
in the following.

Calculation of emission level
From the tν(sfc, TOA), we calculate the optical depth with respect to  
ℒν as

τν (p,TOA) = −ln (tν (p,TOA)) , (15)

from which we calculate the emission level with respect to ℒν as

pem,ν = max (p [τν (p,TOA) ≤ 1]) . (16)

Idealized single-column simulations
We use the single-column model konrad v.1.0.142, developed by Kluft 
et al.12 and Dacie et al.68, which provides an idealized representation of 
the clear-sky tropical atmosphere assuming radiative-convective equi-
librium. We calculate ℒν for a ‘cool’ profile with Ts = 288 K and a ‘warm’ 
profile with Ts = 289 K. We then calculate λν as the difference between 
the warm ℒν and the cool ℒν. The ℒν are calculated using the line-by-line 
radiative transfer model ARTS69,70 in the same spectral range used  
in the preceding (100–2,760 cm−1) with a spectral resolution of  
about 0.1 cm−1.

To quantify the impact of changes in ℛ with Ts on λν, we perform 
six different experiments. In three of them, we use a C-shaped ℛ distri-
bution (Fig. 3a); in the other three experiments, we assume a vertically 
uniform ℛ = 75%. To predict changes of ℛ with surface warming, we 
use T as a vertical coordinate, following ref. 71. For both mean ℛ distri-
butions, we consider three different cases. In the first case, we keep 
ℛ(T) constant with increasing Ts. In the second and third cases, we let 
dℛ (T)/dTs  = −0.5%K−1  and dℛ (T) /dTs  = +0.5%K−1  throughout the 
atmospheric column, respectively. For each of the six experiments, we 
calculate λν as described in the preceding.

We also use konrad to investigate the temperature dependence of 
the surface feedback. To this end, we calculate ℒν for five different Ts 
between 268 K and 308 K in 10 K increments. For the calculations, we 
again use a C-shaped ℛ distribution (Fig. 3a). In contrast to the preced-
ing, we derive the surface feedback by increasing Ts by 1 K, but not 
adjusting the atmospheric profiles of temperature and humidity, which 
isolates the radiative effects of surface warming. For reference, we also 
calculate the integrated water vapour of those profiles as

𝒲𝒲 = − 1
g∫q (p)dp, (17)

where q is the specific humidity and g is the gravitational acceleration.

Data availability
The processed data used to derive the main results of this study are 
available at https://doi.org/10.26050/WDCC/FluxFeedb_ObsSim_
v2 (ref. 72). This includes global monthly averages of the spectrally 
resolved outgoing long-wave radiation derived from IASI observations 
and calculated on the basis of both the MPI-ESM1-2-HR and konrad 
models. Furthermore, IASI Level 1C Climate Data Record Release 1 - 
Metop-A (10.15770/EUM_SEC_CLM_0014) can be ordered through the 
EUMETSAT User Helpdesk (https://www.eumetsat.int/contact-us). 
The operational IASI L1c data can be directly downloaded from the 
EUMETSAT Data Store (https://data.eumetsat.int/data/map/EO:EUM: 
DAT:METOP:IASIL1C-ALL#). The ERA5 reanalysis data can be down-
loaded from the Copernicus Climate Change Service (C3S) Climate 
Data Store for the data on pressure levels (https://doi.org/10.24381/cds.
bd0915c6) and single levels (https://doi.org/10.24381/cds.adbb2d47). 
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The MPI-ESM1-2-HR model output prepared for CMIP6 can be down-
loaded from https://esgf-data.dkrz.de/search/cmip6-dkrz. The CERES 
EBAF Ed4.0 dataset can be downloaded from https://ceres.larc.nasa.
gov/data. Source data are provided with this paper.

Code availability
The computer code used to produce the central results of this study is 
available upon request from the corresponding author.
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Extended Data Fig. 1 | Emission level pem (10 cm−1 moving average) of spectral outgoing long-wave radiation. The emission level is calculated based on the 
MPI-ESM1-2-HR model. In the optically thin atmospheric window, the emission level is located at the surface. For better visibility, only the spectral range 
 100–2000 cm−1 is shown.
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Extended Data Table 1 | Long-wave feedback parameter λ as estimated by different studies
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Extended Data Table 2 | All-sky spectral long-wave feedback parameter λv derived from observations by the IASI instrument

The λv are derived from seasonal and interannual variability and integrated over different spectral bands. The λv for wavenumbers v < 645 cm−1 are estimated using a prediction model 
(Methods). All errors are < 0.005 W m−2 K−1.
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Extended Data Table 3 | Simulated clear-sky spectral long-wave feedback parameter λv integrated over different spectral 
bands

The λv are derived from seasonal and interannual variability calculated from simulations based on the MPI-ESM1-2-HR model. The surface feedback is an estimate based on those simulations, 
calculated using Eq. (14) (Methods). All errors are < 0.004 W m−2 K−1.
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Extended Data Table 4 | Simulated clear-sky spectral long-wave feedback parameter λv derived from konrad simulations 
and integrated over different spectral bands

Shown are the results from three different experiments: Increasing relative humidity ℛ with near-surface air temperature Ts (left column), constant ℛ with Ts (middle column) and decreasing 
ℛ with Ts (right column). The results are shown for both a C-shaped ℛ profile as shown in Fig. 3a and a vertically uniform ℛ profile (numbers in parentheses).
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