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ABSTRACT: This study examines the relationship between frozen hydrometeors and latent heating in model simulations

and evaluates the capability of the Weather Research and Forecasting (WRF) Model to reproduce the observed frozen

hydrometeors and their relationship to tropical cyclone (TC) intensification. Previous modeling studies have emphasized the

importance of both the amount and location of latent heating inmodulating the evolution of TC intensity. However, the lack of

observations limits a full understanding of its importance in the real atmosphere. Idealized simulations usingWRF indicate that

latent heating is strongly correlated to the amount of ice water content, suggesting that ice water content can serve as an

observable proxy for latent heat release in themid- to upper troposphere. Based on this result, satellite observations are used to

create storm-centered composites of ice water path as a function of TC intensity. The model reasonably captures the vertical

and horizontal distribution of ice water content and its dependence uponTC intensity, with differences typically less than 20%.

The model also captures the signature of increased ice water content for intensifying TCs, suggesting that observations of ice

water content provide a useful diagnostic for understanding and evaluating model simulations of TC intensification.
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1. Introduction

Improving the prediction of tropical cyclone (TC) intensity

is a priority for operational TC forecasting. The evolution of

TC intensity is modulated by both environmental effects and

internal dynamics. The environmental effects include vertical

wind shear, sea surface temperature, and ambient water vapor

(DeMaria and Kaplan 1994; Kaplan and DeMaria 2003;

Emanuel et al. 2004; Kaplan et al. 2010), while internal pro-

cesses include barotropic instability and eyewall dynamics

(Montgomery and Kallenbach 1997; Schubert et al. 1999;

Hendricks et al. 2010; Wu et al. 2015). Several of these studies

have discussed how both processes influence the amount of

latent heat release in a storm, which is recognized as the fun-

damental source of energy that drives TC intensification.

Both the amount and location of latent heat release are

important in determining current and future TC intensity.

Previous theoretical studies have suggested that the same

amount of latent heat release at different locations can have

very different impacts on TC intensification (Schubert and

Hack 1982; Hack and Schubert 1986). Using a linearized

dynamical model, Nolan et al. (2007) demonstrated that the

efficiency of energy transformation, from heat energy to ki-

netic energy, varies depending on the distance of the heating to

the TC center and the height of the warm core; When the en-

ergy source is close to the TC center or the warm core’s height,

the efficiency will be higher. Accordingly, measurements of

latent heat release are of great value to the prediction of TC

intensity. However, there are no observations that can directly

measure latent heat release in TCs (Cecil and Zipser 1999;

Nolan et al. 2019).

Latent heat release and condensates are generated simul-

taneously in the upward branch of a convective system, so the

release of latent heating is directly proportional to the pro-

duction of condensate (Yanai et al. 1973). Furthermore, Nolan

et al. (2019) found that latent heating is also highly correlated

with the amount of condensate, because in order to maintain

high values, it must also be continuously produced to replace

loss from precipitation. Satellite measurements of radar re-

flectivity and microwave brightness temperatures provide

useful proxies for the amount of liquid and frozen hydrome-

teors. Previous studies used radar-based retrievals to show the

relationship of intense rainfall with rapidly intensifying TCs,

and found that TCs with greater areal extent of reflectivity

exceeding 20 dBZ tend to intensify in the future (Zagrodnik

and Jiang 2014; Tao and Jiang 2015). Furthermore, several

studies have used microwave brightness temperatures to in-

vestigate their relationships with TC intensity and intensity

change (Cecil and Zipser 1999; Harnos and Nesbitt 2016;

Fischer et al. 2018). Harnos and Nesbitt (2016) used 37 and

85GHz microwave measurements to demonstrate that deep
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convective clouds are more vigorous in rapidly intensifying TCs

than in nonintensifying TCs in higher shear environment,

although no clear differences were found between TCs that

underwent slow and rapid intensification. Fischer et al. (2018)

developed a method, using normalized brightness tempera-

tures, to predict rapid intensification events, showing the

potential of satellite measurements to forecast future TC

intensity. Other studies examined satellite-measured bright-

ness temperature and observed environmental factors, utilizing

their relationships with future changes in TC intensity, to im-

prove statistical models for forecasting future TC intensity

(DeMaria et al. 2005). However, the inability to measure the

vertical distribution of hydrometeors is a crucial factor that

limits the effectiveness of such models. In addition, such obser-

vations are also necessary for the validation of dynamical model

simulations.

The CloudSat cloud profiling radar provides vertically re-

solved measurements of hydrometeors, cloud ice, and liquid

water, which can serve as a reference to validate model simu-

lations (Austin et al. 2009; Tourville et al. 2015). A recent study

by Wu and Soden (2017) used CloudSat-measured ice water

content (IWC) to establish its relationship with future changes

in TC intensity. They demonstrated that TCs with greater IWC

throughout the entire ordinate of composites tend to intensify

in the subsequent 24 h. Though the narrow swath of CloudSat

overpasses limits the spatial and temporal coverage of TCs,

these high-resolution measurements have a potential to benefit

the prediction of future TC intensity.

Numerical models can simulate the evolution of TCs, gen-

erating output over a large and continuous space–time domain.

Miyamoto and Nolan (2018) used the Weather and Research

Forecasting (WRF)Model to generate 270 TC simulations and

investigate the relationship between the rates of TC intensifi-

cation and both internal and environmental conditions. Using

similar model configurations, a recent study showed that

volume-integrated latent heating is closely correlated with

volume-integrated condensates in TCs (Nolan et al. 2019).

However, how well latent heating relates to frozen hydrome-

teor concentration, especially where the energy transformation

efficiency for TCs is higher, has not been specifically addressed.

In this study, we use the same ensemble simulations from

Miyamoto andNolan (2018) to examine howwell the evolution

of simulated latent heating relates to the concentration of

frozen hydrometeors and how well WRF reproduces frozen

hydrometeors seen in the observations. Because this ensemble

of simulations only uses one microphysics scheme (a 6-class

single-moment scheme), we also develop another set of simu-

lations that adopts a different microphysics scheme in order to

account for the influence of microphysics schemes on the pro-

duction of cloud ice (McFarquhar et al. 2006; Jin et al. 2014).

Understanding their relationships can be used to better interpret

satellite measurements of frozen hydrometeors. Using two satel-

lite datasets, CloudSat and the passive microwave SPARE-ICE

retrievals of IWP, we examine the performance of the WRF

Model in simulating both the vertical and horizontal distributions

of frozen hydrometeors and the relationships between frozen

hydrometeor concentrations and TC intensification. Such an

evaluation can help constrain the simulated frozen hydrometeors

inmodels andunderstand towhat extent frozenhydrometeors can

be related to future changes in TC intensity.

2. Methods and data

This study uses three different datasets: 1) 10 years of

CloudSat measurements of ice water content; 2) 5 years of

passive microwave retrievals of vertically integrated ice water

content from SPARE-ICE; and 3) output from an ensemble of

WRF simulations of idealized TCs.

a. CloudSat

CloudSat is equippedwith a cloud profiling radar that retrieves

vertically resolved cloud ice and liquid water condensates, with

horizontal resolution of 1.1 km and vertical resolution of 0.24 km.

The CloudSat Tropical Cyclone Dataset contains more than

10 000 CloudSat overpasses that are within 1000 km of the TC

center and spans the years 2006–17 on a global scale (Tourville

et al. 2015). Since CloudSat does not necessarily penetrate

through the TC center, we define the point of closest ap-

proach (PCA) as the position on overpasses with the closest

distance to the TC center. To focus on the TC core, we select

only those overpasses whose distance from the PCA to the TC

center is less than 300 km. Although this criterion is larger

than the typical size of a TC inner core, it is used to obtain a

sufficient sample size. This selection criterion yields ;1500

FIG. 1. The evolution of (a) areal mean latent heat release

within 10 km of the radius of the maximum latent heating

(K h21) and (b) averaged radius of the radius of top 10% latent

heat release (km). Blue, orange, and green solid lines represent

low, mid-, and upper levels, respectively. (c) The evolution of

TC intensity from the WRF simulations.
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CloudSat overpasses. Both intensifying and weakening TCs

have approximately 500 overpasses each. For additional de-

tails regarding the CSTC dataset and the selection criteria of

CloudSat overpasses, please refer to Tourville et al. (2015)

and Wu and Soden (2017).

b. SPARE-ICE

Holl et al. (2014) describes the SPARE-ICE dataset that

contains 5 years of ice water path (IWP) retrievals (vertically

integrated frozen hydrometeors). The data span 2006 to 2010

with global coverage and have a footprint size of 16 km near

the swath center, degrading to 52 km 3 27 km at the swath

edge. IWP is retrieved using a combination of terrestrial infrared

and microwave data from passive sensors mounted on satellites,

together with an artificial neural network trained with IWP from

CloudSat measurements. Infrared channels are from the

Advanced Very High Resolution Radiometer (AVHRR), and

microwave measurements of frequencies from 89 to 190GHz

are from the AdvancedMicrowave Sounding Unit-B (AMSU-B)

as well as the Microwave Humidity Sounder (MHS) carried

on NOAA satellites. SPARE-ICE only uses channels near

the 183GHz water vapor absorption frequency at 1836 1,63,

and 67GHz (AMSU-B) or 190GHz (MHS) to minimize im-

pacts of surface emissivity variations on the IWP. An artificial

neural network was trained based on CloudSat product 2

C-ICE (Deng et al. 2010), so this dataset inherits all systematic

errors and limitations in 2 C-ICE products. One limitation

of CloudSat measurements is the radar beam’s attenuation

under heavy rainfall conditions. Complete details related to

SPARE-ICE products are available from Holl et al. (2014).

To use the SPARE-ICE product for TC research, we use the

International Best Track Archive for Climate Stewardship

FIG. 2. The evolution of (a) areal mean IWP within 10 km of the

maximum IWP (kg m22) and (b) averaged radius of the top 10%

IWP (km) from the WRF simulations.

FIG. 3. Composites of IWP (shading; kg m22) from SPARE-ICE for (a) TDs, (b) TSs, (c) minor TCs, and

(d) major TCs. The x and y axis are the distance from the TC center in km. The direction of the vertical wind shear

is toward the right of the figure.
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(IBTrACS; Knapp et al. 2010) to identify the location and in-

tensity of storms with 6-h time intervals. Since the time of

SPARE-ICE retrievals is asynoptic, the TC associated infor-

mation at the satellite time is determined by linearly interpo-

lating the IBTrACS data. Two criteria are applied to select TCs

in the SPARE-ICE: 1) The distance frommaximum IWP to the

TC center has to be less than 100 km, 2) IWP has to be greater

than 0 over at least half of the area. For the 5-yr period con-

sidered here, there are 544 snapshots of TCs identified in

SPARE-ICE and adopted in this study. Furthermore, as vertical

wind shear is one of the major causes responsible for TC asym-

metry (Corbosiero and Molinari 2003), we use the NASA

MERRA2 data to derive the direction of vertical wind shear, and

then rotate TCs to the same direction of vertical wind shear. The

vertical wind shear is calculated by averaging the wind fields be-

tween 200 and 800kmof the TC center and then subtracting wind

fields between 300 and 700hPa. The magnitude of wind shear

exhibits a nearly Gaussian distribution with a mean of ;6ms21,

and;5% of the cases whose magnitude is greater than 14ms21.

For CloudSat and SPARE-ICE datasets, the change in TC

intensity is determined using the 6-h difference in maximum

wind speed between the reported time and that 6 h later. If the

maximum wind speed increases 2.57m s21 (5 kt) or more, the

storm is defined as intensifying, while if the wind speed de-

creases more than 2.57m s21, the storm is defined as weaken-

ing. All others are categorized as neutral. We further separate

the dataset into four intensity categories based on TC intensity

at the reported time: tropical depression (TD; ,18m s21),

tropical storm (TS; 18–33m s21), minor TC (33–50m s21), and

major TC (.50m s21), to minimize the influence of TC in-

tensity on the comparison of variables.

c. WRF simulations

Miyamoto and Nolan (2018) usedWRF, version 3.7, with an

idealized configuration to perform a series of 7-day simula-

tions. They created 270 ensemble members by changing the

vertical wind shear (0 to 12.5m s21 with the interval of

2.5m s21), translation speed (2.5 to 12.5m s21 with the interval

of 2.5m s21), initial TC intensity (10, 15, 20m s21), and the

initial size (90, 150, 210 km). The horizontal resolution of the

innermost domain for these simulations is 2 km with 40 vertical

layers. The point downscaling method in Nolan (2011) is

used to create spatially and temporally homogenous background

wind throughout the entire simulations. The microphysical pa-

rameterization adopted is the 6-class single-moment scheme

known as WSM6 (Hong and Lim 2006). Because microphysics

schemes strongly regulate the amount of cloud ice and liquid, we

create another small ensemble with 5 members using a different

microphysics parameterization – the Thompson scheme

(Thompson et al. 2004). The small ensemble has the same

configuration as the large ensemble simulations, except

initial vortex intensity. The initial vortex intensity in the

small ensemble all start from 5m s21, whereas the initial

vortex intensity of the large ensemble ranges from 10 to

20 m s21. Different magnitudes of wind shear are used to

create 5 members (2.5 to 12.5 m s21, with an interval of

FIG. 4. As in Fig. 3, but from the WRF simulations.
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2.5 m s21). The small ensemble has a similar distribution of

TC intensity as the large ensemble simulations.

Two averaging methods are used to sample the WRF sim-

ulations: 1) an azimuthal average and 2) a CloudSat-footprint-

like slicing method. We axisymmetrize the variables related to

latent heating and frozen hydrometeors to examine their re-

lationships, since the axisymmetrization better presents TC

dynamics in a simpler and intuitive way. To evaluate the ability

of the WRF Model to reproduce the CloudSat-measured

frozen hydrometeors, we develop a CloudSat-footprint-like

slicing method, subsampling the model data by selecting cross-

sections from 0 to 300 km with the interval of 30 km from the

storm center to mimic the way CloudSat measures TCs. The

cross-sections are parallel to the x and y axes with 21 cross-

sections in each direction. For both methods, any 6-h window

within simulation time are all separate composites to avoid

oversampling (e.g., 0–6, 6–12, 12–18 h).

The TC intensity in the WRF simulations is defined as the

maximum azimuthal mean tangential wind at the height of 2 km,

because the tangential wind at this height often evolves much

more smoothly than that within the boundary layer in model

simulations. We note that this definition is different from

IBTrACS that uses 10mwind speed. The change inTC intensity is

calculated from the difference between TC intensity at the sim-

ulated time and 6h later. If the intensity grows stronger or weaker

by more than 3ms21 in 6 h, we define it as intensifying or

weakening. Within each intensity category, there are more in-

tensifying TCs than weakening TCs, except in the TD category

(see Fig. S1 in the online supplemental material). It is noted that

although intensifyingTDs for the 6-h lead timehas a lower sample

size (16 cases), they demonstrate a behavior consistent with other

intensity categories. We also isolate the 48-h period, 24 h prior to

and after the time of the TC’s lifetime maximum intensity

(LMI), to examine how the evolution of latent heating re-

lates to that of frozen hydrometeors. It is noted that the

period from 24 h before to the LMI is usually an intensifying

period, whereas the period from the LMI to 24 h after is a

weakening period.

d. Measuring and simulating frozen hydrometeors

It is known that frozen hydrometeors are mostly composed

of ice, snow, and graupel. The CloudSat categorizes all species

of frozen hydrometeors as IWC. Previous studies have applied

various methods of separating the observed IWC into non-

precipitating (ice crystal) and precipitating (snow and graupel)

frozen hydrometeors (Waliser et al. 2009; Chen et al. 2011; Deng

et al. 2018). Waliser et al. (2009) uses a precipitating condition

based on measurements from CloudSat and CALIPSO to dis-

tinguish two types of frozen hydrometeors, while the other

studies utilize particle size to separate different types of frozen

hydrometeors. In this study, we adopt the method of Waliser

et al. (2009) to distinguish between precipitating and non-

precipitating frozen hydrometeors to validate model’s ability to

replicate nonprecipitating frozen hydrometeors.

In the WRF Model, two microphysics schemes used in this

study separate frozen hydrometeors into three species: ice,

snow and graupel. Therefore, we add up ice, snow, and graupel

from the WRF Model so that we can quantitatively compare

the simulated frozen hydrometeors to the CloudSat-measured

frozen hydrometeors. In the following analysis, the ordinates

for the SPARE-ICE and WRF idealized simulations is shown

using the radius to the TC center, whereas the ordinate for

CloudSat measurements is the distance from the PCA, unless

otherwise specified.

FIG. 5. Composites of IWC (shading; mg m23) from CloudSat measurements for (a) TDs, (b) TSs, (c) minor TCs,

and (d) major TCs. The x axis is the axial distance from the PCA in km and the y axis is height in km.
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3. Relationship between latent heating and frozen
hydrometeors

We use WRF simulations to examine how latent heating at

different heights is related to frozen hydrometeor concentration.

The amounts of latent heat release and frozen hydrometeors are

strongly associated with current TC intensity. Thus, we examine

the evolution of TC intensity in the 24-h periods prior to and after

the LMI. Only those storms with LMI exceeding 30ms21 are

considered.As an average, theTC intensity grows by;10ms21 in

the 24h prior to the LMI (intensifying period). After the LMI, the

intensity weakens at a slower rate of;5m s21 in 24 h (weakening

period). The average TC intensity is weaker during the intensi-

fying period than during the weakening period (Fig. 1).

To investigate how latent heating evolves prior to and after

the LMI, we calculate vertically averaged latent heating 24 h

prior to and after the LMI for three levels: low level is 0–3 km

(;surfacen700 hPa), midlevel is 3–6 km (;700–500 hPa), and

upper level is 6–9.5 km (;500–300 hPa). In all three levels, the

time of maximum latent heating coincides with the time of the

LMI, so the amount of latent heating is smaller both before and

after the LMI (see Fig. S2).

Figure 1 shows the evolution of the mean latent heat release

within 10 km of the radius of maximum latent heating (Fig. 1a),

and the average radius of the top 10% latent heat release

(Fig. 1b) for all three levels. Latent heating in all three levels

increases with time before the LMI and then decreases after

the LMI. This evolution is consistent with the previous study

that showed a high correlation coefficient of approximately 0.9

between latent heating and current TC intensity (Nolan et al.

2019). The averaged radius in all three levels generally in-

creases with time, while it behaves differently 12 h prior to and

after the LMI for the three levels. In the low level, the evolu-

tion of latent heating mirrors the intensity, increasing steadily

before the LMI (;2Kh21 in 6 h) and gradually decreasing

after the LMI (;2Kh21 in 6 h), with the radius of maximum

latent heating remaining constant 12 h prior to and after the

LMI. In the midlevels, the amount of maximum latent heating

evolves similarly to that at the low levels (increasing

;3.9Kh21 in 6h and decreasing;3.8Kh21 in 6h), yet its radius

moves slightly outward with time (;9km in 24-h period). For the

upper-level, the radius of maximum latent heating also shifts

slightly outward with time (;5km in 24-h period). However, un-

like the low and midlevels whose evolving rates of latent heating

are mirrored by the LMI, the upper-level latent heating declines

more rapidly after passing the LMI (increasing ;2.6Kh21 in 6h

and decreasing;4.7Kh21 in 6 h). Though the results above are

simply based on the averaged evolution of latent heating, the

spread of the ensembles is consistently small throughout this

period; the standard errors are only about 2% of the ensemble

mean for each level (0.66, 1.12, and 0.99Kh21 for the low, mid-,

and upper levels, respectively). The small standard errors sup-

port the argument that the upper level is the only level that has

substantially reduced latent heating after the LMI.

We repeat the same analysis for IWP to examine its rela-

tionship with latent heating. Figure 2a shows that the amount

FIG. 6. Composites of IWC (shading; mg m23) from the WRF simulations for (a) TDs, (b) TSs, (c) minor TCs, and

(d) major TCs. The x axis is the radius in km and the y axis is height in km.

118 MONTHLY WEATHER REV IEW VOLUME 149

Unauthenticated | Downloaded 03/30/21 10:05 AM UTC



of maximum IWP increases steadily prior to the time of LMI

(1.9 kgm22 in 8h), while it drops sharply after theLMI (3.8 kgm22

in 8h). The radius of maximum latent heating also expands out-

ward with time during this period (Fig. 2b). The correlation coef-

ficients between IWP and upper-level latent heating are 0.98 and

the correlation between their radii is 0.94. For low and midlevels,

the coefficients are 0.9 for the amounts and below 0.89 for the radii.

We speculate that the increase in radius before the LMI may be

due to the tilt of the eyewall associated with the secondary circu-

lation.After theLMI, itmaybe causedby the expansionof eyewall

related to the weakening of TCs. Such evolving patterns of IWP

are nearly identical to that of latent heating in the upper-level,

indicating that, for this model, IWP provides an accurate proxy of

upper-level latent heating. Additionally, it is noted that only the

upper-level latent heating evolves differently from that of TC in-

tensity, indicating upper-level latent heating might have informa-

tion about future TC intensity, rather than current intensity.

4. Evaluation of simulations by comparison to
observations

In this section, we utilize the relationship between latent

heating and frozen hydrometeor concentration to evaluate the

model’s ability to simulate the distribution of latent heating

and its dependence on TC intensity.

a. Horizontal distribution of IWP

We use retrievals from the SPARE-ICE dataset to examine

how IWP is distributed horizontally in TCs and to validate the

simulated IWP from the WRF Model. Several observational

studies have illustrated the importance of shear-relative

precipitation distributions to the evolution of TC intensity

(Corbosiero andMolinari 2003; Alvey et al. 2015; Fischer et al.

2018). To account for the influence of vertical wind shear on

the asymmetric distribution of IWP, the distribution of IWP is

rotated to the same direction of vertical wind shear before

compositing. Figure 3 shows the composites of horizontal IWP

from the SPARE-ICE for four intensity categories, with the

direction of vertical wind shear toward the right of the figure.

For all intensity categories, IWP is concentrated at the TC

center and monotonically decreases outward, though some

composites show a ring-like distribution, likely a sign of an

eyewall. As TC intensity increases, the IWP within the TC

domain increases and the area with IWP greater than 4 kgm22

expands. Interestingly, the distribution of IWP for all intensity

categories is asymmetric, especially for TD and TS, with the

maximum at the downshear left-quadrant. The asymmetric

distribution is consistent with previous studies using the kine-

matic analysis to demonstrate that the innermost convection is

most intense in the downshear-left quadrant (Hence and

Houze 2012; Reasor et al. 2013; DeHart et al. 2014).

We perform the same analysis for the WRF simulations

(Fig. 4). Compared with the SPARE-ICE, the amount of IWP

in the model simulations is ;30% less in both TD and TS

(Figs. 4a,b), whereas it is;15% more in the category of major

TC (Fig. 4d). The smaller amount of simulated IWP in the TD

and TS two categories may be partially related to model

spinup, as these intensity categories are usually found in the

FIG. 7. As in Fig. 5, but from the WRF simulations.
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early stage of our simulations. Similar to the SPARE-ICE, the

distribution of IWP in the simulations is concentrated at the

inner core region, with the maximum at the eyewall for all

intensity categories except TD. A distinct asymmetric distri-

bution of IWP also occurs in TD and TS with larger IWP at the

left-hand side of the shear direction for all intensity categories,

consistent with the SPARE-ICE. The maximum IWP in the

model migrates from downshear left to upshear left, as the

category of TC intensity strengthens from TD to minor TC,

consistent with previous studies (Alvey et al. 2015; Fischer

et al. 2018). However, in contrast to the SPARE-ICE com-

posites, the area with high IWP decreases as TC intensity in-

creases. The difference in the areal coverage of IWP may be

caused by reduced environmental moistening in the model due

to the idealized configuration, which may lead to less produc-

tion of cloud ice outside the eyewall. In addition, maximum

IWP in the model simulations occurs as a ring shape at the

eyewall region, while it is concentrated at the TC center in the

SPARE-ICE. This difference may be caused by the compos-

iting method applied for the SPARE-ICE or different hori-

zontal resolutions between the SPARE-ICE and the WRF

simulations, and will be further discussed later in the paper.

b. Vertical distribution of IWC

Next, we examine the vertical distribution of IWC from

CloudSat measurements. Figure 5 shows the cross-sectional

composites of IWC from CloudSat measurements for four in-

tensity categories. IWC is concentrated within 100 km of the

PCA at a height of 5–15 km, with the maximum located near

the PCA, and decreases away from the PCA. Themaxima IWC

are 106mgm23 in TD, 141mgm23 in TS, 190mgm23 in minor

TC, and 269mgm23 in major TC. The amount of IWC in-

creases with TC intensity, especially within 200 km of the PCA.

The increase of IWC along with TC intensity in CloudSat mea-

surements is consistent with previous studies that displayed a

high correlation between TC intensity and the magnitude of

cloud ice (Cecil and Zipser 1999; Nolan et al. 2019).

In the WRF Model simulations, azimuthally averaged IWC

is concentrated within 200 km of the TC center at a height of 5–

15 km, consistent with the observed IWC. This distribution of

IWC is similar to the distribution of simulated condensates in

Fovell et al. (2016). The simulated IWC has comparable values

with the observed IWC in TD and TS (Figs. 6a,b), whereas the

simulated IWC is, on average, up to 30% greater than obser-

vations in the minor and major TC within 200 km radii

(Figs. 6c,d). A distinct difference appears near the region of

zero ordinate between the simulated and the observed IWC.

That is, the maximum IWC inCloudSatmeasurements extends

inward all the way to zero ordinate, whereas the IWC in model

simulations decreases to negligible values within one RMW.

The difference between CloudSat and WRF is because the

method for subsampling the model simulations penetrates

FIG. 8. Composites of nonprecipitating IWC (shading; mg m23) from CloudSat measurements for (a) TDs,

(b) TSs, (c) minor TCs, and (d) major TCs. The x axis is the axial distance from the PCA in km and the y axis is

height in km.
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through the TC center, as noted in section 2. To ensure that this

distinct difference is due to the differences in sampling, we

repeat the same analysis for model simulations but apply the

CloudSat-footprint-like slicing method proposed in section 2.

Figure 7 shows composites of simulated IWC after the ap-

plication of the CloudSat-like slicing method. The magnitude

of maximum IWC is;150 and 210mgm23 in the categories of

minor and major TC, respectively, which is ;20% less than the

observed IWC. However, in the categories of TD and TS, the

averaged IWC in simulations is ;40% less than the observed

IWC. In terms of the radial distribution, the simulated IWC ex-

tends to the zero ordinate, similar to the observed IWC, while its

maximum is located at the RMW in minor and major TCs.

Considering the vertical distribution, the altitude of the simu-

lated IWC maxima are too low (just above the freezing level).

This might be due to the 6-class single-moment microphysical

scheme or the specified environment used by the model, which

tends to produce less IWC in the upper level than observations.

After applying the CloudSat-like slicing method for simu-

lated IWC, the distribution of simulated IWC appear to be

more consistent with the observed IWC in CloudSat mea-

surements, while the magnitude of simulated IWC is, on av-

erage, ;25% less than the observed IWC.

c. Nonprecipitating IWC

A more complex method to inspect the vertical distribution

of frozen hydrometeors involves separating IWC into the

precipitating and nonprecipitating IWC to examine how the

two types of IWC are distributed in TCs. Previous studies have

demonstrated that precipitating IWC accounts for more than

80% of the total IWC when examined over all types of con-

vective systems (Waliser et al. 2009; Chen et al. 2011; Deng

et al. 2018). Accordingly, we focus our analysis on non-

precipitating IWC. Waliser et al. (2009) utilized precipitating

conditions to distinguish between the two types of frozen hy-

drometeors. We used the same method to differentiate non-

precipitating IWC from the IWC in CloudSat measurements,

and then compare with those from the WRF simulations.

In composites of CloudSat measurements (Fig. 8), the spatial

characteristics of nonprecipitating IWC are similar to what were

shown in the total IWC, while the average is only of about

10%–15% of the total IWC. Nonprecipitating IWC is concen-

trated at 8–13km, which is 3 km higher than that of total IWC. For

model simulations, the amount of nonprecipitating IWC is also

about 15%of the total IWC,with themaximumat around 8–14km

(see Fig. S3). Compared to CloudSat measurements, WRF simu-

lates comparable amounts of nonprecipitating IWC, with a slightly

higher cloud top in the WRF simulations. These results suggest

that the WRF Model is able to qualitatively capture both the

amount and distribution of the observed nonprecipitating IWC.

d. Results with a different microphysics scheme

In the aforementioned analyses, we found that the WRF

Model can reasonably reproduce the magnitude and distribu-

tion of cloud ice in TCs. However, the production of cloud ice

in a full physics model is regulated mainly by the microphysics

scheme. The choice of scheme may change the result of sim-

ulations (Bao et al. 2012; Alvey et al. 2015; Fovell et al. 2016)

FIG. 9. As in Fig. 5, but from the WRF simulations using the microphysical scheme of the Thompson scheme.
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and, therefore, previous conclusionsmay be affected if we use a

different microphysics scheme. To address this concern, we

produced an additional small ensemble of simulations using

the Thompson scheme (Thompson et al. 2008), and used the

CloudSat-like slicing method to evaluate the performance of

the WRF Model in reproducing IWC.

Composites of IWC are made for the simulations using the

Thompson scheme (Fig. 9). For all intensity categories, IWC is on

average ;30% greater than the original ensemble simulations,

which use WSM6. In intensity categories of TD and TS, IWC in

the Thompson scheme is 3 times greater, while it is 50% greater

for minor and major TCs, compared with original simulations. In

terms of distribution of IWC, the extent is similar between two

microphysical schemes, concentrating at the eyewall; however, the

Thompson scheme produces a greater amount of IWC at higher

altitudes and a narrower ring, compared with WSM6.

We also compared the simulations using the Thompson

scheme with CloudSat observations. The values of the simu-

lated IWC maxima are ;20% greater than observed, and the

radial location almost touches the PCA. The extent of IWC is

also relatively compact compared with CloudSat observations,

although this may be due to the narrow distribution of TC size

in the small ensemble. One clear difference is that the radial

extent of large IWC increases with height, while the observed

IWC decreases with height, which may reflect the tendency for

the Thompson scheme tends to over produce IWC, especially

nonprecipitating IWC (Varble et al. 2014).

To quantitatively compare the simulated IWC with the ob-

served IWC, we examined the probability density function of

IWC within 400 km of the PCA for the large ensemble simu-

lations, the small ensemble using the Thompson scheme, and

CloudSat observations, separating into four intensity cate-

gories (Fig. 10). The threshold is from 0 to 250mgm23 with a

bin interval of 12.5mgm23. The relative distributions between

three sets are similar for all four intensity categories. Consider

the intensity category of TS as an example (Fig. 10b). For the

smallest bin (0–12.5mgm23), CloudSat observations and the

large ensemble simulations have ;70% falling into this bin,

whereas the Thompson ensemble has a higher percentage of

;82% (not shown). For small to medium IWC below

87.5mgm23, the large ensemble simulations have the highest

percentage while the Thompson ensemble is the lowest. For

the large magnitudes of IWC above 87.5mgm23, the Thompson

ensemble has the highest percentage and the large ensemble

simulations have the lowest. In addition, the Thompson ensemble

has the largest maxima of 175mgm23 among all sets, whereas

CloudSat observations and the large ensemble simulations

have the maxima of 125mgm23, consistent with a previous

study suggesting that the Thompson scheme tends to produce

more cloud ice (Varble et al. 2014). The analysis using the

FIG. 10. The probability density function of IWC (mg m23) for (a) TDs, (b), TSs, (c) minor TCs, and (d) major TCs,

with bins of 12.5mgm23. The blue line is forCloudSatobservations, the orange line is for the large ensemble simulations,

and the green line is for the small ensemble using the Thompson scheme. The y axis is the percentage of total grid.
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probability density function suggests that the production of

IWC in WRF is dominated mainly by the choice of micro-

physical schemes: the 6-class single-moment scheme tends to

produce fewer large values of IWC, while the Thompson

scheme is likely to produce more large values of IWC, com-

pared to the CloudSat observations.

5. Can WRF capture the signal of TC intensification?

Latent heating is important in determining the evolution of

TC intensity (Schubert and Hack 1982; Hack and Schubert

1986; Nolan et al. 2007). The results above show that frozen

hydrometeor concentration can serve as a proxy for latent heat

release. Here we examine whether the simulated IWC also

reproduces the observed signal that precede TC intensity

change found by Wu and Soden (2017).

a. IWC

Previous analyses of CloudSat measurements found that

intensifying TCs tend to have greater IWC than that of weak-

ening TCs (Wu and Soden 2017). To examine whether the WRF

Model reproduces this signal, we create composites of CloudSat-

measured IWC for intensifying (.2.57m s21; 5 kt) and weaken-

ing TCs (,22.57m s21;25 kt). Figure 11 shows the difference in

IWC between intensifying and weakening TCs: for all in-

tensity categories, intensifying TCs have greater IWC than

weakening TCs throughout the whole domain, with the

largest differences within 100 km of the PCA, except for

major TC which is not as uniform. The reason may be partly

due to a stronger TC intensity in weakening major TCs,

which undermines the IWC signal.

We apply the CloudSat-like slicing method to sample the

WRF simulations, and then compare results from the WRF

simulations to CloudSat measurements. The WRF Model

shows the same pattern of TC intensification as the CloudSat

measurements. That is, the increasing IWC in intensifying TCs

is throughout the whole domain, except for major TC (Fig. 12).

In terms of the magnitude in WRF simulations, the difference

in areal mean IWC between intensifying and weakening is only

about half of the difference found in CloudSat measurements

for TD, TS, and minor TC. For minor TC, the clear positive

differences in IWC are only within 150 km of the PCA, and this

distribution is slightly different from CloudSat, where the

positive signal is distributed throughout the entire 500 km of

the PCA. However, for major TCs, the WRF simulations have

negative differences in most of the region, and this is incon-

sistent with those in the CloudSat measurements. The unclear

signature outside 150 km in minor and major TC might be due

to the drying effect on the environment when the TC is

developing in an idealized simulation. In previous studies using

an idealized model framework, the mean state of the atmo-

sphere has been shown to become drier as tropical convective

systems develop (Wing and Emanuel 2014; Wing and Cronin

2016), and this dry environment could result in less production

of cloud ice outside TC inner core. As the CloudSat-like slicing

method samples the area that is outside TC inner core, this

drying effect may substantially influence the composites of

IWC, leading to negative values in differences between com-

posites for intensifying and weakening TCs.

We repeat the same analysis for the azimuthally averaged

IWC to better understand physical processes that regulate TC

intensification. The areal mean IWC is also greater in

FIG. 11. Difference in IWC (shading; mg m23) of the CloudSat measurements between intensifying and weak-

ening TCs for (a) TDs, (b) TSs, (c) minor TCs, and (d) major TCs. The x axis is the radius to PCA in km and the

y axis is height in km.
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intensifying TCs for all intensity categories. However, the

distribution of greater IWC in intensifying TCs differs from

those using the CloudSat-like slicing method: for TD and TS

(Figs. 13a,b), intensifying TCs possess higher IWC throughout

the entire TC, yet for minor and major TC (Figs. 13c,d), a di-

pole pattern appears in the inner core, such that the difference

in IWC is negative near the TC center, and positive outside the

50 km radius. The dipole pattern may be caused by different

TC sizes between intensifying and weakening TCs, or the in-

tensifying TC eyewall getting stronger andmoister, and the eye

getting drier. To verify the reason for the dipole pattern, we

perform the same analysis but for composites with the axial

distance normalized by RMW (Fig. S4). It is shown that in-

tensifying TCs have a greater IWC around the radius of one

RMW for minor and major TC. This indicates that the eyewall

in intensifying TCs is stronger, resulting in a greater amount of

IWC. On the other hand, a previous study using airborne

Doppler observations found that intensifying TCs generally

have a smaller RMW compared to TCs in steady state (Rogers

et al. 2013). In the ensemble simulations, intensifying minor

and major TCs have, on average, 10 km larger RMW than

weakening TCs (supplementary Table 1). The outward dis-

placement of eyewall in intensifying TCs may lead to less cloud

ice production within the 50 km radius, while we cannot rule

out the possibility that intensifying TCs have a moister eyewall

and a drier eye. The variation of RMW along with intensity

change seems opposite to previous studies, where RMW tends

to be negatively correlated with intensity change. However, the

comparison in the ensemble simulations was executed for the

same intensity categories, which is an important factor in regulat-

ing TC size, while previous studies performed the comparison

across the entire spectrum of intensity categories. Consequently,

the dipole pattern and the displacement of eyewall in minor and

major TC suggests that using the areal mean IWC within certain

radius of theTCcentermay reduce the signal of TC intensification.

We further extend the lead time up to 24 h before the in-

tensity change, to inspect how early the signal of intensification

occurs. We compute the 6-h intensity change from 0–6 to 6–12

to 12–18 to 18–24 h after the simulated timeframe, and then

sort into intensifying and weakening TCs for 6-, 12-, 18-, and

24-h lead times. Figure 14 shows the areal mean IWC for in-

tensifying and weakening TCs at four different lead times and

for four intensity categories. For 6-h lead time, the areal mean

IWC of intensifying TCs is greater than that of weakening TCs,

consistent with the aforementioned signal of TC intensifica-

tion. However, for lead times greater than 6 h, the differences

between intensifying and weakening TCs are not as clear. This

differs substantially from the observed signal of TC intensifi-

cation in the amount of cloud ice, in which the signal occurs all

the way up to 24-h lead time (Wu and Soden 2017; see Fig. S5).

Possible reasons might be due to the magnitude differences of

modeled IWC or a lack of environmental variability in the

idealized simulations, which may affect the signal in a longer

forecasting time.

FIG. 12. Difference in IWC (shading; mgm23) of theWRFModel between intensifying and weakening TCs using

the CloudSat-like slicing method for (a) TDs, (b) TSs, (c) minor TCs, and (d) major TCs. The x axis is the radius to

the TC center in km and the y axis is height in km.
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b. IWP

We create composites of IWP from the SPARE-ICE for

intensifying and weakening TCs to examine their differences in

the horizontal distribution of frozen hydrometeors. On aver-

age, intensifying TCs have a greater mean IWP than weaken-

ing TCs for all intensity categories, although the differences are

small for major TC. We further evaluate the distribution of

their differences by subtracting composites for weakening TCs

from those for intensifying TCs using a shear-relative frame-

work. Figure 15 shows that intensifying TCs have greater IWP

in most of the areas within 200 km radius for TD and TS.

However, for minor and major TC, intensifying TCs still have

more areas with large IWP than weakening TCs (the ratio of

positive to negative differences is 5:2 for minor TC and 5:3 for

major TC), although the differences in IWP are not as sys-

tematic throughout the domain. This result is generally con-

sistent with previous observational studies that suggest that

intensifying TCs tend to have a greater amount of convection

than weakening TCs (Zagrodnik and Jiang 2014; Tao and Jiang

2015; Harnos and Nesbitt 2016).

We repeat the same analysis for theWRF-simulated IWP to

examine whether the observed signal of TC intensification also

occurs in the simulated IWP. In the WRF simulations, inten-

sifying TCs have a greater mean IWP than weakening TCs for

all intensity categories. Figure 16 shows that the greater IWP in

intensifying TCs is distributed with a similar extent as that in

the SPARE-ICE: in TD and TS, the greater IWP in intensi-

fying TCs is throughout the whole domain; in minor TC,

however, IWP in intensifying TCs is smaller at the region of

30–60 km radius, but becomes greater at the region of 70–

200 km radius, compared with weakening TCs. Again, this

might be due to different TC sizes between intensifying and

weakening TCs, or/and a stronger eyewall in intensifying TCs,

FIG. 13. As in Fig. 12, but for the azimuthal mean composites.

FIG. 14. The arealmean IWC for each category of storm intensity

as a function of lead time from theWRF simulations. Red and blue

bars are the areal mean of IWC for intensifying and weakening

TCs, respectively. The different brightness represents different

categories of TC intensity: tropical depression, tropical storms, and

minor and major TCs (from light to dark). Error bars are the

standard error. The results are grouped by lead time: 6, 12, 18, and

24 h (in sequence, from left to right).
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similar to the dipole pattern related to simulated IWC in a

previous discussion.

Another similarity between the SPARE-ICE and WRF-

simulated IWP is the difference in azimuthal distribution be-

tween intensifying and weakening TCs. Except for TD, the

greater IWP in intensifying TCs is at the same shear-relative

quadrant. Previous passive satellite studies suggested that the

major difference in horizontal IWP between intensifying and

weakening TCs mainly occurs at the upshear quadrants of the

TC (Alvey et al. 2015; Fischer et al. 2018), while Figs. 15 and 16

show that only TS and minor TC in the SPACE-ICE and TD

and TS in the WRF demonstrate the major difference at the

upshear quadrants.

6. Discussion

In this study, we examined how the evolution of latent

heating is related to IWC and the ability of the WRFModel to

simulate IWC and its relationship with TC intensification

shown in satellite measurements.We found that only the latent

heating in the mid- to upper levels displays temporally asym-

metric evolution relative to the time of the LMI, overlapping

with the area of high energy transformation efficiency noted in

Nolan et al. (2007). The evolution of latent heating in the mid-

to upper levels suggests that latent heat release in 500–300 hPa

not only can be efficiently utilized by TCs, but also plays an

important role in modulating the evolution of TC intensity

compared to latent heat release at other levels. Although Nolan

et al. (2019) suggested that total condensates above 10kmhave a

relatively low correlation coefficient with TC intensity change of

;0.4, these results imply that IWC at 6–10 km could potentially

be used to predict future TC intensification.

Nevertheless, this study does not aim to develop an algo-

rithm that can be applied for the operational forecasting. One

possibility is to use the normalization method noted in Fischer

et al. (2018), which minimizes the effect from TC intensity and

enlarge the signal of TC intensification. It is worth noting that

the idealized WRF Model does not include all ranges of vari-

ability in the real atmosphere such as environmental humidity,

even though the wind shear is changed incrementally in these

ensemble simulations. Because the distribution of sample sizes

is different between CloudSat measurements and WRF simu-

lations regarding respective intensity change categories, this

might affect results shown in this study. Regardless, the phys-

ical processes and mechanisms found in these ensemble sim-

ulations still provide valuable insights for TC research.

The similarity between the evolution of latent heating and

frozen hydrometeors suggests that frozen hydrometeors can be

an important predictor in statistical models of TC intensity. For

dynamical models, observations of IWC can provide useful

information for evaluating model simulations of latent heat

release.

FIG. 15. Difference in IWP (shading; kg m22) of the SPARE-ICE between intensifying and weakening TCs for

(a) TDs, (b) TSs, (c) minor TCs, and (d) major TCs. The x and y axes are the radius to the TC center in km. The

direction of the vertical wind shear is toward the right of the figure.
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The comparison between the simulated IWC and observed

IWC suggests that the WRF Model can reasonably reproduce

the magnitude of IWC and appropriately replicate the distri-

bution of IWC. Comparing the large ensemble simulations

with CloudSat observations, the simulated IWC values in TD

and TS are too small and the altitudes of the simulated IWC

maxima are too low. On the other hand, using the Thompson

scheme, the simulated IWC values are ;20% greater than

observations and the altitudes of the IWCmaxima are too high.

These opposing results suggest that the choice of microphysics

scheme substantially impacts the amount of IWC in the WRF

Model, such that it is hard to discern the true causes of the

discrepancies between simulations and observations.

The signal of a greater areal mean frozen hydrometeor con-

centration for intensifying TCs is found in both satellite obser-

vations and model simulations. This conclusion is consistent with

previous studies that found a signal of TC intensification in passive

microwave satellite and lightning measurements (Harnos and

Nesbitt 2011, 2016; Wu and Soden 2017; Stevenson et al. 2018).

Yet, some studies showed that the increase of frozen hydrome-

teors is the consequence of the increase in TC intensity, rather

than the precursor (Tao and Jiang 2015; Fischer et al. 2018). The

different conclusion might be due to the fact that the 37 and

85GHz microwave channels have a much greater sensitivity to

liquidwater and larger ice particles than smaller ice particles in the

upper troposphere. Twoweaknesses in theWRF results are 1) the

less difference in IWC between intensifying and weakening TCs,

and 2) the failure to replicate the signal of TC intensification up

to a 24-h lead time. We speculate that these might be due to the

barely acceptable magnitude of modeled IWC or a lack of influ-

ences from environment in idealized simulations.

On the other hand, the WRF simulates the ring-like

structure of IWP, whereas the SPARE-ICE seems to miss

the eyewall structure. One possible explanation is that the

SPARE-ICE is unable to identify the TC eyewall due to its

coarse resolution. Another possibility is that TC centers in the

SPARE-ICE slightly differ from their true centers, so that the

eyewall blurs after compositing hundreds of cases. In addition,

WRF demonstrates a negative-inside, positive-outside pattern

in the difference between intensifying and weakening TCs,

while such a pattern is not observed in the SPARE-ICE. We

speculate that the pattern in the WRF simulations is caused by

the displacement of the eyewall between intensifying and

weakening TCs. Outside of this aspect, the WRF Model can

successfully reproduce the distribution of frozen hydrometeors

and qualitatively capture their magnitudes in the satellite ob-

servations, although there is plenty of room for improvement

considering its mixed performance discussed above.

7. Conclusions

We examined the relationship between latent heating and

frozen hydrometeors, the ability of the WRF Model to repro-

duce the observed frozen hydrometeors in TCs, and the sig-

nature of TC intensification in satellite-based as well as

simulated metrics. We found the following:

FIG. 16. As in Fig. 15, but for the WRF simulations.
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d Upper-level (6–10 km) latent heat release might play a key

role in governing the evolution of TC intensity.
d In the WRF Model, IWP is correlated with latent heating in

the mid- to high troposphere, and thus has a potential to

serve as a proxy of latent heating in this level.
d The WRFModel reasonably reproduced the magnitude and

distribution of the observed frozen hydrometeors, with

;20% deviation from observational metrics, suggesting that

the model still appears to have microphysical deficiencies

that needed to be improved.
d The enhancement of frozen hydrometeors in intensifying TCs is

found in both the satellite-based and simulated metrics, though

the model only captures the observed signal up to 6-h lead time.
d The dipole pattern occurs in the difference between com-

posites of intensifying and weakening TCs, indicating that a

simple domain average of frozen hydrometeors is likely to

obscure the clarity of the signal of TC intensification.
d Further investigations are required to examine the cause of

the increasing frozen hydrometeors in intensifying TCs, and

to explore how to utilize this signal to better predict future

TC intensity.
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