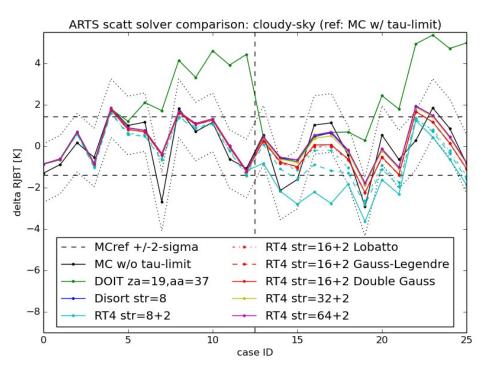

Scattering calculations in ARTS: Improvements and new features

<u>Jana Mendrok</u>, P. Eriksson (Chalmers University of Technology)

and the ARTS team (Hamburg, ...)

- Scattering solvers
 - for passive sensor simulations

Handling of single scattering data


Microphyiscs

• aka deriving particle number (density) fields

Scattering solvers

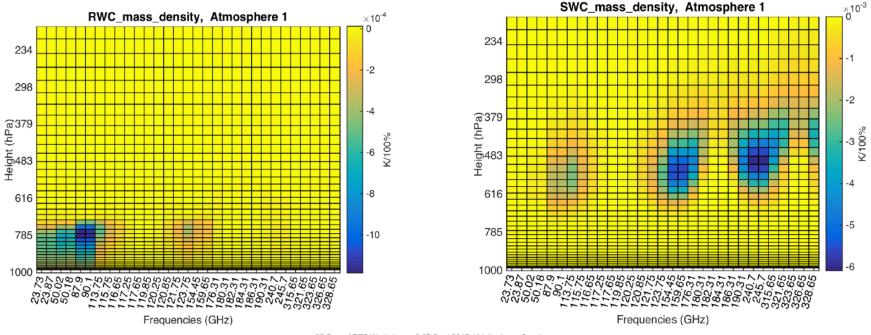
	MC	DOIT	(FOS)	(Hybrid)	Disort	RT4
dimensionality	3D	1D (+3D)	3D	1D(?)	1D	1D
planet shape	sp+	sp+	sp+	sp	flat (pp)	flat (pp)
polarization	4	4	4	4*	1	2
orientation	any	any	any	any*	totally random	azimuth. random
speed	very slow	slow	medium - fast	medium*	fast	medium
output	rad	field	rad	rad	field	field
notes			scat in thin atmospheres	not stand- alone (background rad field) all-sky Jacobians	Lambertian; Stamnes	ARTS surf., auto- adaptive Nstreams; Evans

Performance & Issues

- MC = reference
- DOIT:
 - setup sensitive (level spacing)
 - speed and accuracy(?) improved
- Disort (Legendre-decomp based):
 very stable (energy conservation ensured)
- RT4 (Fourier-decomp based):
 - diff between solvers not very big
 - setup sensitive for strongly peaked Z (Nstreams & Naz => Z norm)
- Hybrid:
 - not stand-alone (primary focus: Jacobians)
 - accuracy & performance largly determined by background radfield "generator"

Performance & Issues:

- 1-thread only for FORTRAN-interfaced Disort & RT4
- ARTS-side data management/prep needs time, too (my tests: 1:2)


Notes to users (incl experts):

For interfaced external solvers (Disort, RT4) cite the original sources, too.

- \succ Read the documentation, please.
 - primarily the **built-in doc** (use the doc browser)
- \geq Be a little careful when changing (degrading) default settings.
 - e.g. for speed improvements or to force non-failure
- \succ Feel free to consult the users mailinglist.

- More new stuff: WSM JacobianDOIT
 - full-field perturbations using coordinated optimized DOIT setup

- ➤ "common" interface:
 - scat_data[SE](f,T) with Z, K, a
 - pnd_field(SE,p,lat,lon)
 - $K_{\text{bulk}} = \sum_{i=1}^{se} K_i^* \text{pnd}_i$
- > scattering element (SE)?
 - an individual particles (series representing, e.g., a size distribution; pnd=actual number of particles)
 - bulk representative (pnd=some weighting/rescaling factor)

- ➢ each SE has its own f- & T-grids
- ➢ so far: Z/K/a for a specific f&T extracted (read: interpolated) just-in-time

for each SE

⇒ computationally expensive

> WSM scat_dataCalc:

- "reduce" f-grid of all SE to RTE f-grid (or 1-f data; Z/K/a independently)
- future standard (revising all solvers now; non-reduced: scat_data_raw)

- ➢ each SE has its own f- & T-grids
- so far: Z/K/a for a specific f&T extracted (read: interpolated) just-in-time for each SE
 - ⇒ computationally expensive

- > WSM scat_dataReduceT (? to come...):
 - reduce T-dimension to 1 (on Z primarily; consistency?)

1) external:

- some functionality in atmlab (&typhon?)
- the users own methods

1) external

2) WSM pnd_fieldCalcFromscat_speciesFields

3) WSM pnd_fieldCalcFromParticleBulkProps

2) WSM pnd_fieldCalcFromscat_speciesFields

• ...

- ➤ scattering species (SS)?
 - a (scattering) entity characterised by one (or several) atmospheric fields
 - e.g. one hydrometeor species
 - consisting of a number of SE

2) WSM pnd_fieldCalcFromscat_speciesFields

- series of atm fields to characterise the species (mass density, mass flux, number density, mean mass with one entry per SS)
- microphysical model specified by one tag per SS

(scat_speciesSet)

2) WSM pnd_fieldCalcFromscat_speciesFields

```
2
 3
 4 scat speciesSet(scat species, [ "IWC-F07ML" ])
 5
 6[...]
 7
 8
      # Clouds
 9
      Extract(scat species mass density field, part fields, ybatch index)
      Touch( scat species mass flux field )
10
11
      Touch( scat species number density field )
      Touch( scat_species_mean_mass_field )
12
      cloudboxSetAutomatically( particle field=scat species mass density field )
13
14
      pnd fieldCalcFromscat speciesFields
15
```

2) WSM pnd_fieldCalcFromscat_speciesFields

- series of atm fields to characterise the species (mass density, mass flux, number density, mean mass with one entry per SS)
- microphysical model specified by one tag per SS

(scat_speciesSet)

- tested & applied
- fairly easy setup (a bit tedious for non-compact atms)
- but somewhat black-boxy and inflexible...

3) WSM pnd_fieldCalcFromParticleBulkProps

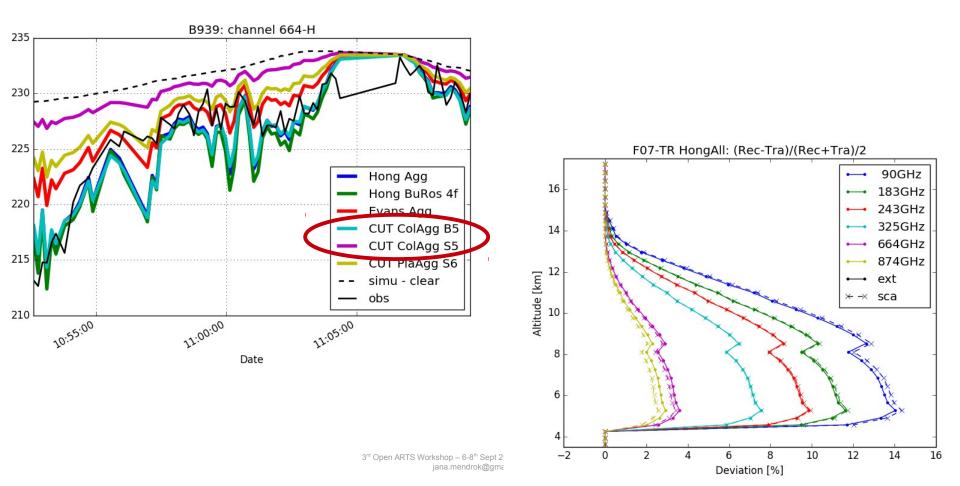
- all SS related atm fields in one WSV: particle_bulkprop_field
- a corresponding WSV of (semi-free) field names:

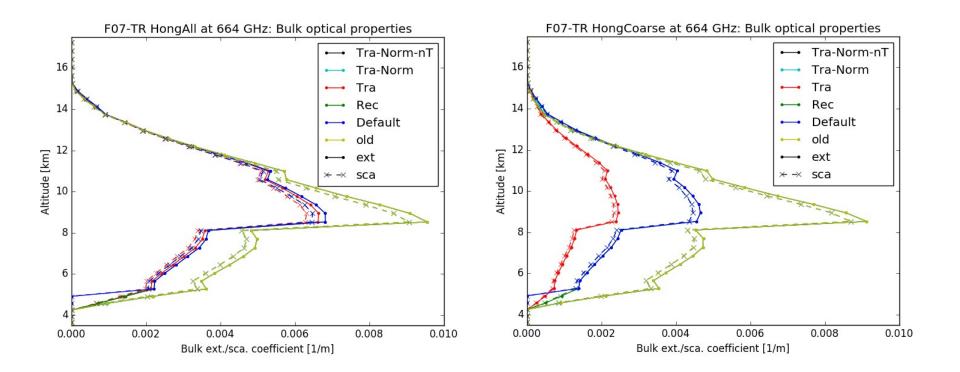
particle_bulkprop_names

- one agenda per SS: pnd_agenda_array
- a corresponding WSV linking atm fields to each agenda/SS:

pnd_agenda_array_input_names

```
How to derive the pnd_field?
```


3) WSM pnd_fieldCalcFromParticleBulkProps


```
182
183 StringSet( species id string, "IWC-F07ML" )
184 Append( scat species, species id string )
185 ArrayOfStringSet( pnd_agenda_input_names, [ "SWC", "Temperature" ] )
186 Append (pnd agenda array input names, pnd agenda input names )
187 ArrayOfAgendaAppend( pnd agenda array ){
188
     pnd size gridFromScatMeta( scat index=agenda array index, unit="dmax" )
189 Copy( psd size grid, pnd size grid )
     MassSizeParamsFromScatMeta( alpha=alpha, beta=beta, scat_index=agenda_array_index )
190
     psdF07( regime="ML", alpha=alpha, beta=beta )
191
     pndFromPsd( scat index=agenda array index )
192
193 }
194
237
238
       # Clouds
       ArrayOfStringSet( particle_bulkprop_names, [ "SWC" ] )
239
       Extract(particle bulkprop field, part fields, ybatch index)
240
241
       cloudboxSetAutomatically( particle field=particle bulkprop field )
       pnd fieldCalcFromParticleBulkProps
242
243
```

3) WSM pnd_fieldCalcFromParticleBulkProps

- more flexible reg. input atm fields parameters (any thinkable field possible, e.g. mean size, asphericity, ...)
- more control over the individual calculation steps and applied parametrisations (e.g., specify valid T-range for certain SS, rescale pnd to intended mass?, ...)
- providing Jacobians (dpnd_field_dx)

CHALMERS UNIVERSITY OF TECHNOLOGY