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CSU 1DVAR

VAR cost function
® = (x-x,)'S, 1 (x-x,) + [y-AXD)['S, [y-f(x,b)]

‘Full’ observation error covariances
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Important for correlated
forward model errors

10V 10H 19V 19H 23V 37V 37H 89V 89H 166V166H +/-3 +/-7
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Extend to warm rain

« GPM and A-Train disagree at high latitudes
«  GMI is more sensitive to drizzle than DPR

e Warm rain is ~35% of oceanic rain occurrence and
19% of accumulation [Chen et al. 2011]
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« If GMI retrieval is tied to DPR (like GPROF, CORRA),
it can waste valuable signal in warm rain

*  Properly treated, VAR maximizes signal to noise of
warm rain—Dbetter than Bayesian or DA schemes

[Skofronick-Jackson et al. 2017)]
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Extend to warm rain

Simple case (not true VAR
precip retrieval):

AMSR2/CloudSat in N. Atlantic . . 05

1
Surface Rain Rate [mm hr’]

Regression-based rain rate after
standard retrieval converges

RWP=LWP-LWP,, I &%k o
= R* 1.1
10 15 20 RR = 5"RWP IDVAR
SST [°C]
0.25 0.5 1
Surface Rain Rate [mm hr']
6/9/17 Chalmers University of Technology

[Duncan et al. 2017]
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Extend to warm rain

For true VAR precip retrieval we still need:

RWP per layer [g m?]

2. vertical information to run the forward model

Take profile data from CloudSat 2C-Rain-Profile
product [Lebsock and L’Ecuyer 2011]
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Reduce dimensionality using principal component
analysis (PCA)
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Extend to warm rain

Disdrometer data from LPVEX & OLYMPEX

For true VAR precip retrieval we still need: Separate DSD observations via PCA analysis to
approximate convective/stratiform classes

3. treatment of DSD variability

Need to choose realistic/physical drop distribution
for running forward model and calculating RR.

Also need to account for forward model error
. : |
incurred by assuming a DSD! ND) = wa(p)(Di)”e—(““)D/Dm

From [Dolan et al. 2016]
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Stratiform RWP = 50 g m? Stratiform RWP = 150 g m?

Extend to warm rain

19H

For true VAR precip retrieval we still need:

10H
1oV,
10V 10H 19V 19H 23V 36V 36H 89V 89H 166VI66H +/-3 +/-7 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V166H +/-3 +/-7

3. treatment of DSD variability

0
Sqrt Covariance [K]

Convective RWP = 50 g m* Convective RWP = 150 g m*

Run DSD parameters through CRTM to calculate

errors from using an a priori DSD: N -
cSconv(v) = Stddev(TB[V’DSDconv] — TB[VaDSDactual]) ::: ZZC
Observation errors are scene-dependent and vary N IEZ
d u ri ng ite rati o n ! * 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V166H +/-3 +/-7 b 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V166H +/-3 +/-7
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Stratiform RWP = 50 g m* Stratiform RWP = 150 g m*

Extend to warm rain

For true VAR precip retrieval we still need:

3. treatment of DSD variability

10V 10H 19V 19H 23V 37V 37H 89V 89H 166V166H +/-3 +/-7

Run DSD parameters through CRTM to calculate Sy (RWEstra) = S, non-raining + Systra(RWP)
errors from using an a priori DSD:

cSconv(v) = Stddev(TB[V’DSDconv] w TB[V’DSDactuaI]) In practice.

Observation errors are scene-dependent and vary Non-raining  Stratiform  Convective
during iteration!

6/9/17 Chalmers University of Technology 13
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Reflectivity [dBZe]
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Results
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Co-location with CloudSat shows
promise but also shortcomings

. 1DVAR matches CloudSat retrieval
magnitudes better than GPROF

» Areas of non-warm rain fail to converge

»  Simulated vs. observed GMI Tg
demonstrates useful information gained
(e.g. for DA applications)
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only

0.20 5.7% 13.9% 4.2% 10.0% 18.1% 0.4%
Southern
Hemisphere
1.00 1.5% 7.3% 1.3% 4.9% 8.6% 0.0%
0.20 7.9% 12.5% 3.7% 6.1% 16.3% 0.3%

Northern
Hemisphere 1,00

1.9% 6.6% 1.7% 2.3% 8.3% 0.0%




CHALMERS

UNIVERSITY OF TECHNOLOGY

Results

Performance relative to DPR

*  Footprint averaging of DPR NS to GMI
at 23GHz FOV

Warm season summer only—
DJF (30°S+), JJA (30°N+)

»  Co-located percentage of precipitation
beyond threshold rain rates

Cutoff DPR 1DVAR DPR 1DVAR . 1DVAR
i} . . Eith .
[mm hr] rain rain only only missed

Hemisphere
Northern - 79% 12. 5% 37% 61% 163% 03%

Latitude
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Stratiform

10V 10H 19V

Convective

6/9/17 10V 10H 19V
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19H 23V 36V 36H 89V 89H 166V 166H +/-3 +/-7

22



