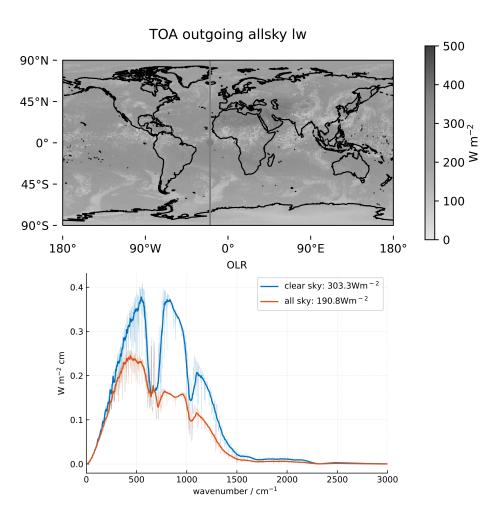


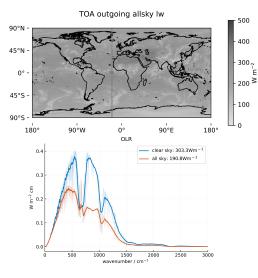
FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

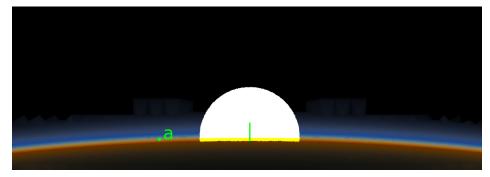
Extending ARTS to shortwave radiation


Manfred Brath

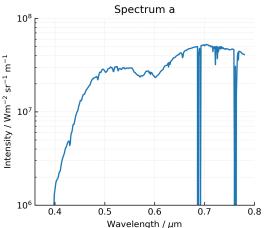
Meteorological Institute

What's new?

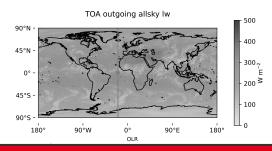

Good old ARTS: "dark and grey" Confined to thermal radiation

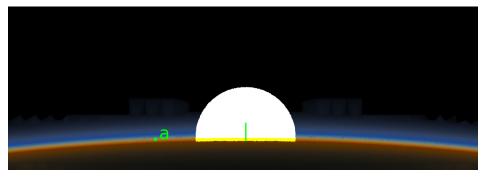

What's new?

Good old ARTS: "dark and grey" Confined to thermal radiation



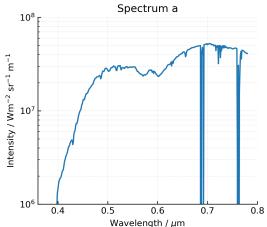
Now: "bright and colorful" The sun is rising in ARTS.





What's new?

Good old ARTS: "dark and grey" Confined to thermal radiation


Now: "bright and colorful" The sun is rising in ARTS.

Paper about the new SW features in preparation

What was missing?

- The absorption part of ARTS were used for SW (Gasteiger et al., 2014, JQSRT; Emde et al., GMD, 2016)
- ARTS could not simulate highly directed sources like the sun.

What was missing?

- The absorption part of ARTS were used for SW (Gasteiger et al., 2014, JQSRT; Emde et al., GMD, 2016)
- ARTS could not simulate highly directed sources like the sun.

The Solution

• Add collimated beam source (CBS) to simulate the incoming solar radiation

Collimated Beam Source

Assumptions:

- $r_{sun} \ll d_{se}$, solar radiation is parallel
- Radiation at surface of the sun is isotropic

• $I_{TOA}(\Omega) = F_{Sun,TOA}\delta(\Omega - \Omega')$

$$F_{sun,TOA} = \pi I_{sun} \sin^2 \alpha = F_{sun} \frac{r_{Sun}^2}{d_{se}^2 + r_{sun}^2}$$

F_{sun}: Spectral irradiance at the position of the sun

Additional Needs: Molecular scattering

 Rayleigh scattering cross section parametrization from M. Callan (Stamnes et. al, Book, 2017)

•
$$\sigma(\lambda) = \lambda^{-4} \sum_{i=0}^{3} a_i \lambda^{-2i} \times 10^{-28} [cm^2]$$

- Accurate to 0.3% between 0.205 μm and 1.05 μm
- Phase matrix including depolarization (Hansen and Travis, Space Science Reviews, 1974)

Additional Needs: Surface Updates

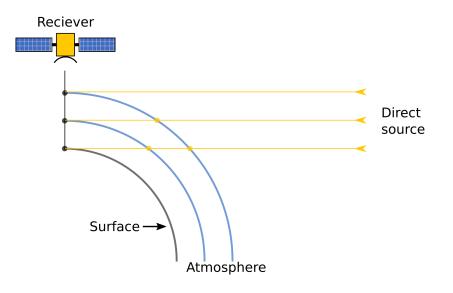
Two surface types can be used for SW simulation:

- Lambertian
- Specular
 - With fixed reflectivity
 - Fresnel reflectivity

SW simulations

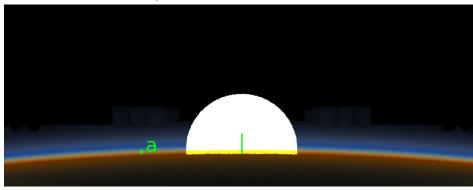
Simulate SW Radiation

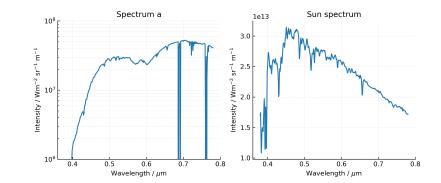
Two ways to conduct SW simulations:

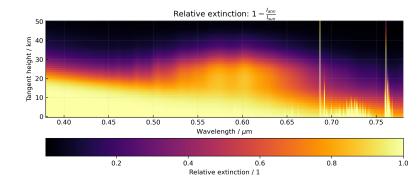

- **1. iyClearsky** ARTS' internal clear sky solver
- CDISORT (Buras et. al, JQSRT, 2011)
 3rd party solver. C version of DISORT 2.1 (Stamnes et al., Report, 2011)

iyClearsky

$$\frac{dI}{ds} = -kI + aB(T) + \sum_{n=1}^{N_{suns}} F^*_{s,n} P(\Omega_i, \Omega_s)$$


- 3D clear sky solver for spherical geometry
- Fully polarized
- Multiple suns
- 1st order molecular scattering and surface scattering



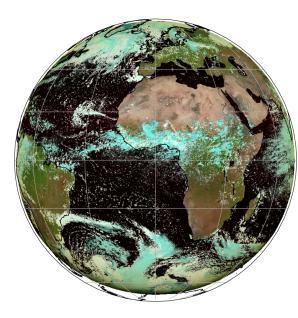


What can we simulate with iyClearsky?

A sunrise from space

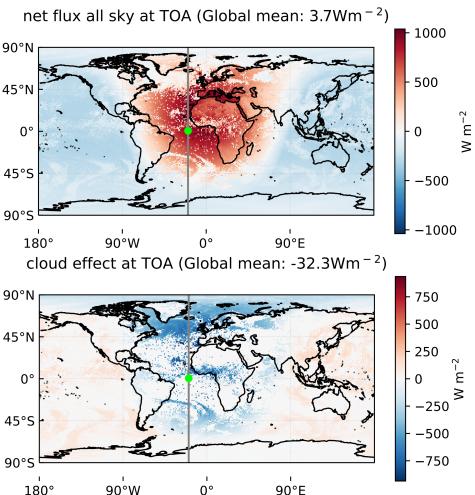
(C)DISORT

- 1D all sky solver for plane parallel atmospheres
- Hybrid geometry
 - Sun geometry 3D \rightarrow needs to be run for specific location
 - Radiative transfer 1D
- Multiple scattering
 - Molecular scattering and particulate scattering
 - Particulate scattering (so far) realized only for hydrometeors
- No polarization
- One sun only
- Radiance and irradiance mode
- Only Lambertian surface



What can we simulate with DISORT?

MODIS



SEVIRI

- Simulation of geostationary satellite with spectral channels like MODIS and SEVIRI.
- Corrected reflectances mapped to RGB
- Snapshot of ICON Monsoon run by L. Kluft
 Ø 5km

What else can we simulate with DISORT?

- Cloud radiative effect (CRE)
- Line-by-line simulation with 4000 frequencies from the far infrared (FIR) to the ultraviolet (UV)
- Snapshot of ICON Monsoon run by L. Kluft
- For flux simulation sampled @ 1°

What do we have achieved?

- Added collimated beam source
- Added new clearsky solver and updated DISORT interface
- Able to simulate
 - Sunsets
 - Skylight
 - Limb geometry
 - SW Satellite images
 - All sky full spectrum radiation fluxes

What is missing?

- Wind roughened ocean surface model like Cox and Munk [1954] or Lin et al.
 [2016]
- Sophisticated Rayleigh scattering cross-section model like Bodhaine et al.
 [1999] or Tomasi et al. [2005]
- Scattering data and parametrizations for aerosols as they are important scatterers within the short wave range

What is missing?

- Wind roughened ocean surface model like Cox and Munk [1954] or Lin et al.
 [2016]
- Sophisticated Rayleigh scattering cross-section model like Bodhaine et al.
 [1999] or Tomasi et al. [2005]
- Scattering data and parametrizations for aerosols as they are important scatterers within the short wave range

Despite these issues, ARTS is already a powerful and versatile tool for the short wave range especially by its line-by-line capability.

