

Evaluating atmospheric absorption models using ISMAR

Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, Donatello Gallucci

ARTS workshop, Kristineberg, May 2024

Passive submillimetre radiometry: A new method for ice cloud remote sensing

Set Office EUMSTSAT study overview

- **EUMETSAT-funded study** ٠
- Recommend clear-sky • absorption model for use with ICI
- Accurate clear-sky • absorption needed for:
 - Cal/val of • radiometric accuracy
 - Calculating cloud-• induced BT depression
 - Detection of thin • clouds
 - Extracting humidity ٠ information

https://doi.org/10.5194/egusphere-2023-3160 https://doi.org/10.1051/0004-6361/202243409

In AMSUTRAN, used for RTTOV-13 ICI coefficients

Literature review

- · Review of literature for spectroscopy relevant to ICI
- Compares different sources of data (e.g. HITRAN, AER, studies of individual lines/parameters)
- Compares of spectroscopic parameters for key absorption lines, including uncertainties where available
- Published as <u>NWP-SAF report</u>

Paramete	erS	Yair	n_{air}	Poelf	n_{velf}	δ_{air}	δ_{self}
units	em ⁻¹ molecules×em	$\frac{em^{-1}}{atm}$	-	$\frac{em^{-1}}{atm}$	-	$\frac{em^{-1}}{afm}$	$\frac{em^{-1}}{atm}$
22.235 G	Hz						
AER 3.8	4.348e-25 ⁿ	0.0917 ^b	0.65?	0.385 ^c	0.65?	-0.800e-3?	-
	0.5%	0.00275 (3%) ⁸	-	>20%		0.989e-3 (121.9%) ^a	1 <u>.</u>
PWR19	4.454e-25°	0.0912^{f}	0.76 ^g	0.449 ^f	1.2 ^h	-1.115e-3 ^I	27.51e-3 ^f
	1%	0.00062 (0.68%)-	0.00148 (0.33%)0.5 (41.67%)	0.127e-3 (11.40%)	0.303e-3 ($1.10%$)
183.31 G	Hz						
AER 3.8	7.691e-23 ^a	0.1025 ^b	0.71 ⁱ	0.519 ^c	0.71 ¹	-2.700e-3 ^{g*}	-
	0.5%	0.00238 (3%) ^g	-	$\geq\!10\%<\!\!20\%$	-	0.989e-3 (36.79%) ^j	f=
PWR19	7.736e-23 ^e	0.0995 ^h	0.77^{g}	0.499 ^h	0.78 ^h	-2.433e-3 ^h	5.830e-3 ^h
	1%	0.0005 (0.51%)	/-	0.0127(2.5%)	0.08 (10.26%))0.254e-3 (10.42%)	0.761e-3 (13.04%)
325.15 G	Hz						
AER 3.8	9.012e-23 ^a	0.0944^{k}	0.73?	0.507 ^C	0.73?	-2.000e-3?	
	0.5%	$\geq 5\% < 10\%$	$\geq 5\% < 10\%$	>10% <20%	$\geq 5\% < 10\%$	>0.001 < 0.01	-
PWR19	9.077e-23 ^e	0.09621	0.64 ^m	0.4711	0.74 ⁿ	-0.439e-3 ¹	44.7e-3
• · · · ·	1%	0.00071 (0.74%)0.09 (14.06%)0.00071 (0.16%	j)-	0.167e-3 (38.10%)	0.020e-3 (0.45%)
448.00 G	Hz				-		
AER 3.8	8.625e-22 ⁸	0.0889 ^j	0.65°	0.467 ^p	0.65 ⁿ	-3.100e-3 ⁷	
	>5% <10%	>5% <10%	>2% <5%	>2% <5%	>2% <5%	>0.001 < 0.01	-
PWR19	8.633e-22 ^e	0.08839*	0.70 ^r	0.440 ^q	0.67 ⁿ	-3.291e-3 ^q	-20.786e-3 ^q
	$\geq 1\% < 2\%$	0.0333 (0.96%)	,	0.00076 (0.17%	j)-	0.43e-3 (11.04%)	0.89e-3 (4.27%)
556.94 G	Hz				-		
AER 3.8	5.207e-20 ⁸	0.1103 ^b	0.75 ^r	0.487 ^p	0.75 ^r	6.800e-3?	-
	>5% < 10%	4.1%	<1%	>1% <2%	<1%	>0.001 < 0.01	-
PWR19	5.238e-20 ^e	0.1053*	0.75 ^q	0.481 ⁸	1.00 ⁿ	6.326e-3 ⁸	-57.22e-3 ⁸
	$\geq \! 1\% < \! 2\%$	0.00045 (0.43%)<1 %	0.0051 (1.06%)	-	0.45e-3 (7.17%)	2.56e-3 (4.47%)
752.03 G	Hz						
AER 3.8	3.433e-20 ^t	0.1072 ^b	0.77 ^r	0.463 ^p	0.77 ^r	8.500e-3 [?]	-
	≥5 % <10 %	× 1.9 %	<1 %	>1 % <2 %	<1 %	>0.001 < 0.01	-
PWR19	3.454e-20 ^e	0.1052^{u}	0.77 ^q	0.459 ^u	0.84 ⁿ	5.48e-3 ^u	-29.66e-3 ^u
	$\geq 1~\% < 2~\%$	0.0012 (1.12%)	<1 %	0.0038 (0.83%)		0.68e-3 (12.5%)	0.76e-3 (2.56%)

Figure 37: TOA brightness temperature differences between PWR19 and the AER model (AER v3.8 lines and MT-CKD 3.5 continuum), due to water vapour only. Simulations are made using the 83 diverse atmospheric profile with nadir viewing geometry and an emissivity of 1. The coverage of MetOp-SG channels are shaded grey.

	\frown	\frown		
Feature	AER	(PWR19)		
Updates	Active on-going work to refine parameters	Regularly updated with new parameters		
Spectral range	Microwave to ultra-violet	Microwave to sub-millimetre		
Sources	Field campaigns constrain key parameters	Majority from various laboratory studies		
Lineshape	Voigt using the Humlíček (1982) approxi- VVW with optional speed-depend			
	mation Most	recent version at time of ² line		
H_2O lines	Hundreds included, nine below 10 revie	iew. Airborne analysis used ¹²⁵		
	constrained: 22.23, 183.31, 325.15, updated 2022 version.			
Pressure shifts	Air-broadened	Air and self-broadened		
H_2O continuum	MT-CKD model at 300 GHz increments up-	Turner et al. (2009) continuum parameters		
dated regularly based on new campaigns		adjusted slightly for new line parameters		
O_2 lines	Tretyakov et al. (2005) parameters	Parameters from various recent studies		
Line mixing	First order from Tretyakov et al. (2005)	Second order from Makarov et al. (2018)		
Uncertainties	Few specific estimates and HITRAN ranges	Most can be sourced from original study		

- Recommends two (water vapour) spectroscopic configurations for further study
- These are self-consistent, but follow different philosophies
- Non-negligible differences between these two models for TOA brightness temperatures at ICI frequencies

"AER" (AMSUTRAN) implementation in ARTS

Line catalogs created in ARTS XML format:

- AER v3.8 "fast" H2O line catalog (338 lines)
- Custom O3 line catalog (based on JPL, 652 lines)
- Set mirroring_option to None and use abs_lines_per_speciesManualMirroringSpecies
- Use ByLine cutoff option, with cutoff_value=750e9

MT-CKD v3.5 continuum (now available in ARTS)

02-TRE05

N2-SelfContMPM93

Se Met Office Comparison of absorption coefficients

- A couple of bugs in AMSUTRAN absorption implementation identified and fixed
- ARTS O2-TRE05 has "feature" related to isotopic abundance. Need to set O2 VMR to 0.2085 rather than 0.2095
- Temperature-dependence of pressureinduced line shift differs
- Difference in H2O TIPS values mainly affects minor isotopologues.

Final BT comparison

- Remaining differences primarily due to implementation of RT calculation
- To get this level of agreement need high vertical resolution in ARTS calculation ppath_1max=100

Set Office "Rosenkranz" models

- New "PWR" complete absorption models now available in ARTS PWR2021 and PWR2022 for H2O and O2, PWR2021 for N2
- Comparison with CNR implementation within ~0.05% for absorption coefficient
- Brightness temperature mostly within 0.4K difference due to RT implementation and reduces with increased vertical resolution

Airborne dataset

Data from 13 FAAM flights between 2015 and 2021, mostly around the UK

ISMAR/MARSS channel	ICI channel
183±7 GHz (H)	183±7 GHz (V)
183±3 GHz (H)	183±3.4 GHz (V)
183±1 GHz (H)	183±2 GHz (V)
243 GHz (V and H)	243 GHz (V and H)
325±9.5 GHz (V)	325±9.5 GHz (V)
325±3.5 GHz (V)	325±3.5 GHz (V)
325±1.5 GHz (V)	325±1.5 GHz (V)
448±7.2 GHz (V)	448±7.2 GHz (V)
448±3.0 GHz (V)	448±3.0 GHz (V)
448±1.4 GHz (V)	448±1.4 GHz (V)
664 GHz (V and H)	664 GHz (V and H)
874 GHz (V and H)	

ISMAR/MARSS channel	MWI channel
89 GHz (mixed)	89 GHz (V and H)
118±1.1 GHz (V)	118±1.2 GHz (V)
118±1.5 GHz (V)	118±1.4 GHz (V)
118±2.1 GHz (V)	118±2.1 GHz (V)
118±3 GHz (V)	118±3.2 GHz (V)
118±5 GHz (V)	
157 GHz (H)	165.6 GHz (V)

Met Office Dataset overview

h'MR9.M' h'zenith

b'M183+7' b'zenith

30000

8000 6000

200

h/M157.H" h/zenith

b'(118+1.1' b'zenith'

<114 <115

b'M183+3' b'zenith

b'1118+2.1' b'zenith

h'M183+1' h'zenith

b'1118+1.5' b'zenith

Radiative closure

Closure results – AER/AMSUTRAN

Atmospheric profile retrieval

Retrieval results – AER/AMSUTRAN

Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²]

Comparison of AER & PWR

	Best guess (K)		Retrieved (K)	
Channel	AMSUTRAN	Ros22	AMSUTRAN	Ros22
89 GHz	0.85	0.67	0.58	0.42
118±1.1 GHz	0.75	1.07	0.50	0.63
118±1.5 GHz	0.37	0.47	0.31	0.15
118±2.1 GHz	0.57	0.86	0.46	0.69
118±3.0 GHz	0.86	1.15	0.75	1.02
118±5.0 GHz	1.14	1.40	1.11	1.45
157 GHz	1.67	1.18	0.94	0.50
183±1 GHz	2.50	2.98	0.66	0.76
183±3 GHz	0.67	0.73	0.33	0.51
183±7 GHz	1.40	1.27	0.80	0.80
243 GHz	0.88	1.09	0.30	0.38
325±1.5 GHz	0.88	0.98	0.62	0.58
325±3.5 GHz	1.45	0.98	1.30	1.03
325±9.5 GHz	0.53	0.82	0.64	0.74
448±1.4 GHz	4.41	4.66	1.36	1.24
448±3.0 GHz	1.50	1.68	1.43	1.42
448±7.2 GHz	2.13	2.47	1.56	1.46
664 GHz	1.01	1.00	1.49	1.50
Mean	1.31	1.41	0.84	0.85
Mean (>183 GHz)	1.58	1.70	0.95	0.95

Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²] Partial column integrated water vapour [kg/m²]

Set Office Downward-looking closure

- Downward-looking views from high altitude compared to simulations
- Near-nadir views
- Simulations performed using atmospheric profiles and surface properties from:
 - Short-range high-resolution NWP model
 - Dropsondes
 - Aircraft in-situ measurements before/after high-altitude runs
- Only performed simulations for cloud-free scenes over the sea
 - TESSEM-2 surface emissivity model used

Downward-looking closure results

- Many channels show mean differences < 1K
- Some differences between sondes and NWP model (particularly for water vapour channels)
- Window-channel biases
 likely surface-related
- ICI radiometric accuracy ~1.5K

Conclusions and recommendations

- A dataset of observations from FAAM aircraft was developed and used to evaluate AER and PWR absorption models, implemented within ARTS
- For individual flights, atmospheric profile uncertainty is the largest contributor to observation-model differences. This can be mitigated by averaging multiple flights or performing profile retrievals.
- Both AER and PWR spectroscopic models compare well with zenith and nadir observations
 - Mean differences mostly within 2K for zenith profiles
 - Mean differences mostly within 1K for nadir profiles
- Zenith observations mostly agree within spectroscopic uncertainty estimate. Nadir differences can be greater than spectroscopic uncertainty.
- Comparison with simulated brightness temperatures using radiosondes and NWP profiles will be a useful method to validate radiometric accuracy during ICI cal/val

EGUsphere - An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations (copernicus.org)

Extra slides

Met Office AER-Rosenkranz model difference

- Difference between modelled zenith brightness temperature for all profiles in dataset mostly <2K
 - Exceptions are at 664 and 874GHz where contribution of lines > 1THz not present in Rosenkranz model is significant