AAC CLYDE SPACE

ARCTIC WEATHER SATELLITE

JOHAN RIESBECK

AAC CLYDE SPACE AT A GLANCE

WHAT WE DO

Foundedin 2005 — over 15 years' operational experience

Focus on design, manufacture and assembly of space craft up to 50 kg.

29 satellites designed, manufactured and launchedo date

Enable a growing number of commercial, government and educational organisations to access high quality timely data from space

Productionfacilities in house majority of design, manufacturing, ssembly indtesting inhouse

Some of our clients include Orbcomm, NSLComm, OHB Sweden, ESA, Intuitive Machines, Orbital Micro Systems, United States Airforce Academy, UK Space Agency and NASA

OUR SUBSIDARIES

AAC Clyde Space Sweden

AAC Clyde Space Scotland

Hyperion Technologies
Netherlands

SpaceQuest

Omnisys Sweden

AAC Space Africa South Africa

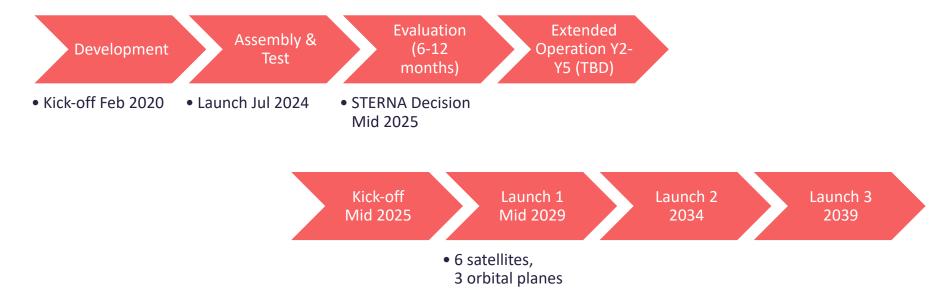
ARCTIC WEATHER SATELLITE

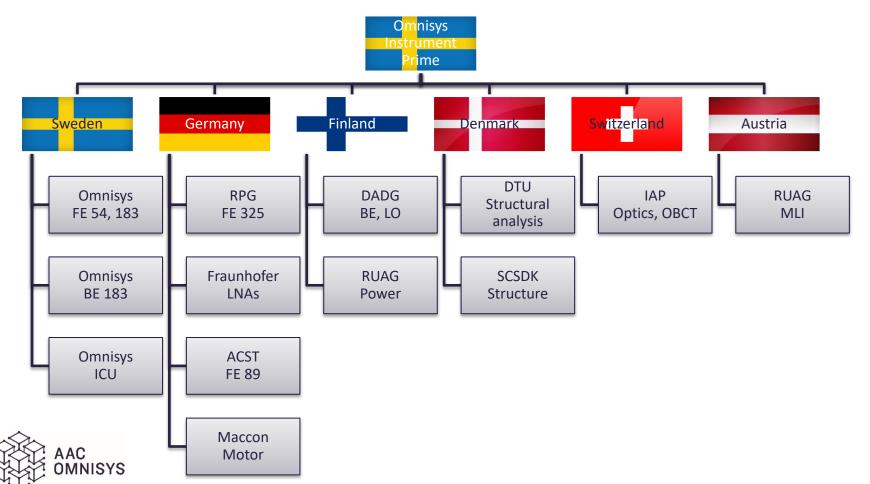
Background

- Approved by ESA council in Nov 2019
- Improve observations in the arctic regions for both climate change and weather predictions
- Consortium of OHB Sweden (platform),
 AAC Omnisys (payload) and Thales (ground segment)

ARCTIC WEATHER SATELLITE

The Mission

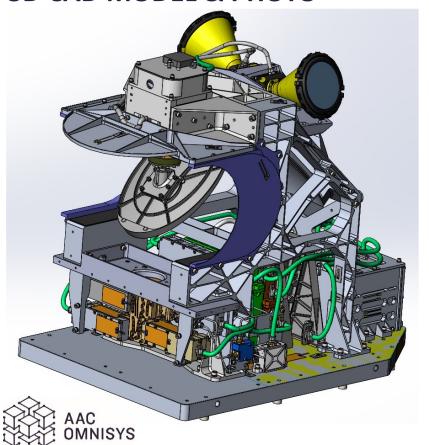

- Improved nowcasting and numerical weather prediction
- Demonstrate a cost-effective, new-space approach
- Pave the way for EPS-Sterna, a constellation of several AWS satellites
- Launch: July 2024 (TBC) on SpaceX
 Transporter 11
- Polar orbit at 600 km.


Image credit: OHB Sweden

PFM AND STERNA TIMELINES

Total 15 years of operation

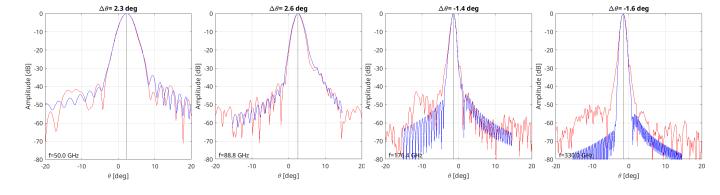
INSTRUMENT OVERVIEW

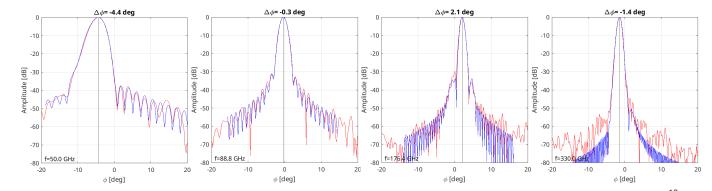

Receivers:

- 54 GHz: 8 channels: O2 temperature & pressure
- 89 GHz: 1 channel: window channel
- 166/183 GHz: 1+5 channels: window & water
- 325 GHz: 4 channels: water & ice particles

- Heater 2x4 Thermistor 2x8 Motor ICU:A rotating main reflector ICU:B OBCT Platform PSU:A 28 V Earth PSU:B scene LO325 LO183 survival heaters LO54 and thermistors cluster from platform FE325 BE325 FE183 BE183 FE89 **BE89** FE54 **BE54**
- Antenna and optics providing < 10 km diameter ground resolution at 183 and 325 GHz, using 2.5 ms integration time
- On-board ambient calibration target (complemented with a cold sky view)
- 145 spots of the earth, 15 OBCT and 25 cold space.
- Mechanism scanning the earth at constant speed of about 1.2 seconds / revolution
- Redundant Power and Control electronics for the instrument functions and the interface to the platform

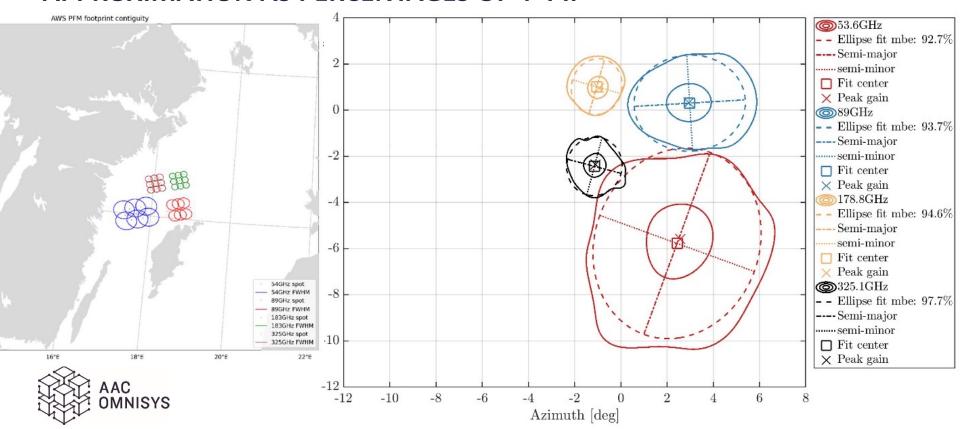
3D CAD MODEL & PHOTO

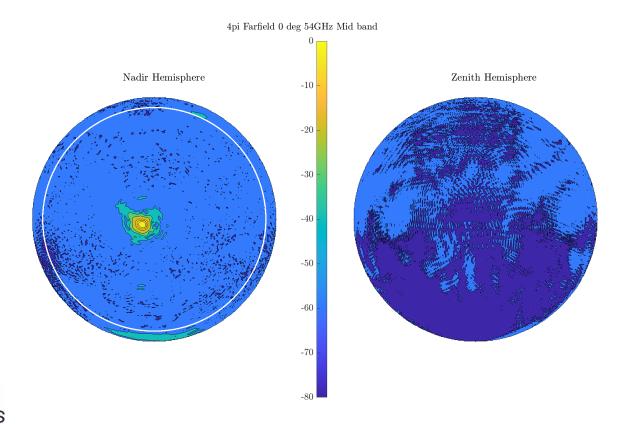




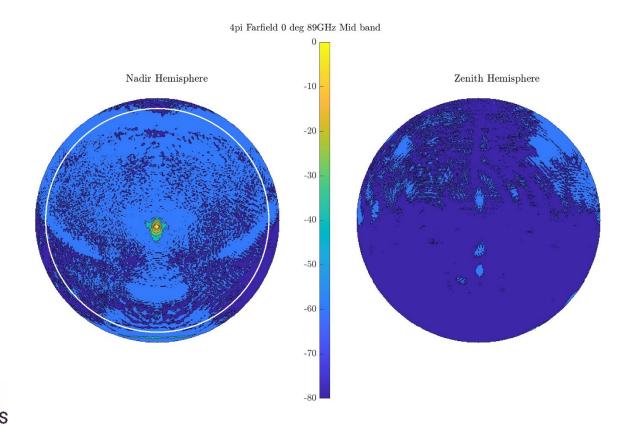
ANTENNA AND OPTICS

Beam shape in excellent correspondent to design (GRASP)
Relative beam pointing between receivers also excellent
In orbit pointing verification and correction will be used

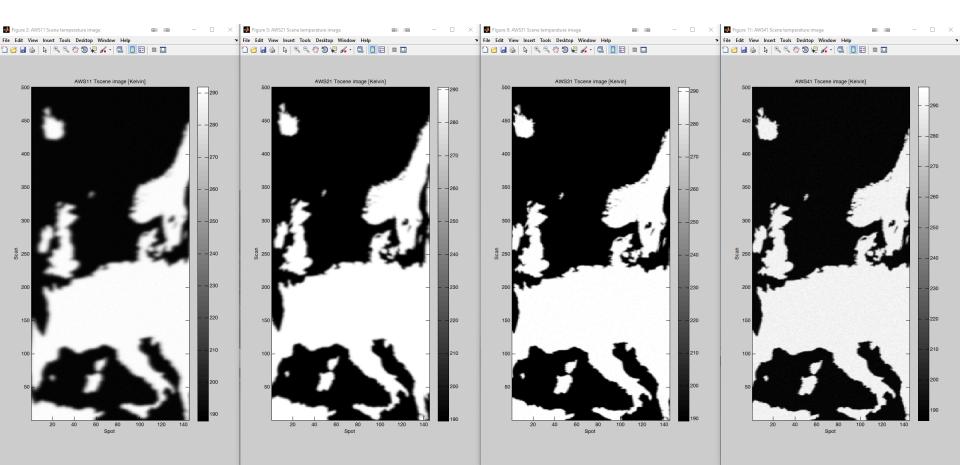

Receiver	FWHM footprint (min) [km]	FWHM footprint (max) [km]	
54	14.7	18.1	
89	8.6	10.4	
183	4.5	5.1	
325	4.8	5.5	



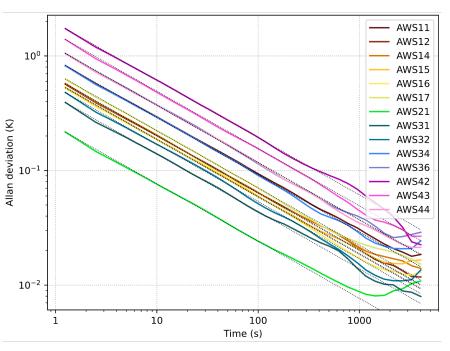
MAIN BEAM EFFICIENCY USING 2.5 TIMES FWHM ELLIPSE APPROXIMATION AS PERCENTAGES OF 4*PI.

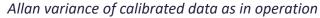


54 GHZ FARFIELD SIMULATION



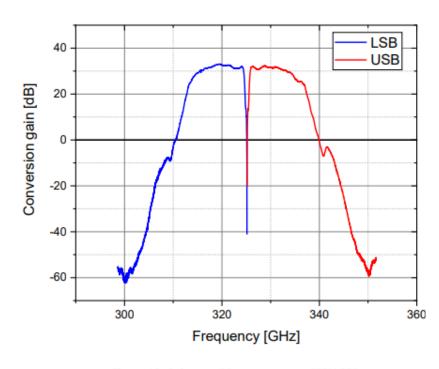
89 GHZ FARFIELD SIMULTATIONS




SIMULATED EARTH SCENE

SENSITIVITY AND STABILITY

	Frequency			NEDT	_	_
Channel	(GHz)	BW (MHz)	BW	req	Test	Accuracy
AWS-11	50.3	180	180	0.6	0.484	0.39
AWS-12	52.8	400	400	0.4	0.363	0.32
AWS-13	53.246	400	400	0.4	0.396	0.39
AWS-14	53.596	370	370	0.4	0.354	0.31
AWS-15	54.4	400	400	0.4	0.365	0.27
AWS-16	54.94	400	400	0.4	0.412	0.52
AWS-17	55.5	330	330	0.5	0.515	0.39
AWS-18	57.2903	330	330	0.6	1.181	0.60
AWS-21	89	3000	3000	0.3	0.21	0.11
AWS-31	165.5	2000	2000	0.6	0.363	0.20
AWS-32	176.311	2000	2000	0.7	0.499	0.27
AWS-33	178.811	2000	2000	0.7	0.561	0.29
AWS-34	180.311	1000	1000	1	0.787	0.30
AWS-35	181.511	1000	1000	1	0.839	0.32
AWS-36	182.311	600	600	1.3	0.996	0.32
AWS-41	325.15+-1.2	800	800	1.7	1.601	0.74
AWS-42	325.15+-2.4	1200	1200	1.4	1.532	0.71
AWS-43	325.15+-4.1	1800	1800	1.2	1.051	0.68
AWS-44	325.15+-6.6	2800	2800	1	0.908	0.64



2.5 ms as nominal integration time Average over 4 samples = 10 ms used to assess 50-58 GHz channels, using up to 16 could be relevant.

325 FREQUENCY RESPONSE

-10 -15 -15 Wmblitude [dB] -20 -25 -30 Amplitude [dB] -20 -25 -30 -35 -35 FE&BE Combined LSB Response FE&BE Combined USB Response Specification Specification 323.6 323.8 324 324.2 324.4 324.6 323.4 Frequency [GHz] Frequency [GHz] AWS41 USB Channel Shape AWS42 USB Channel Shape -10 -10 -15 -20 -25 -30 -30 -20 -25 -25 -30 -35 -35 -40 FE&BE Combined USB Response FE&BE Combined USB Response Specification Specification 325.8 326.2 326.4 326.6 326.8 327.2 327.4 327.6 327.8 328 328.2 328.4 327 Frequency [GHz] Frequency [GHz]

AWS41 LSB channel shape

AWS42 LSB channel shape

Figure 16: Gain over RF measurement FERX-325.

THANK YOU

ENQUIRIES@AAC-CLYDE.SPACE #SPACEISAWESOME

