ARTS retrieval options

Patrick Eriksson

Department of Space, Earth and Environment Chalmers University of Technology, Gothenburg, Sweden

patrick.eriksson@chalmers.se

Optimal estimation, theory

A special case of Bayesian inference

- Generally:
 - Forward model needed: y = F(x, b)
 - Uncertainties can be represented with covariance matrices (S)

$$\hat{x} = \min_{x} \left((y - F(x, \hat{b}))^T S_{\Theta}^{-1} (y - F(x, \hat{b})) + (x - x_{\alpha})^T S_{\alpha}^{-1} (x - x_{\alpha}) \right)$$

$$S_{\Theta} = S_{\varepsilon} + K_{D} S_{D} K_{D}^{T} \text{ or just } S_{\Theta} = S_{\varepsilon}$$

• Solution for (local) linear forward model:

$$D_{Y} = \left(K_{X}^{T}S_{\Theta}^{-1}K_{X} + S_{\alpha}^{-1}\right)^{-1}K_{X}^{T}S_{\Theta}^{-1}$$

$$\hat{x} = x_{\alpha} + D_{y}(y - F(x, \hat{b})) A = D_{y}K_{x} S = D_{y}S_{e}D_{y}^{T} + (A - I)S_{x}(A - I)^{T})$$

Bayesian inference with machine learning

See Pfreundschuh et al. (2018) for details

- Recipe:
 - Create a database of $\{x_i, y_i\}$ with x_i following prior distribution
 - \diamond This can be fully empirical with x_i taken from "ground truth"
 - Or by simulations: $y_i = F(x_i, b_i)$
 - Let neural network predict properties of the posterior
 - Such as quantiles if its CDF (QRNN)
- Advantages
 - No restrictions to Gaussian statistics or linearity of F
 - Retrievals fast when training done
- Disadvantages
 - Training can be computationally expensive
 - Limitations in the characterization. Not provided directly:
 - Error correlations between elements in x
 - The contribution from different sources to retrieval uncertainty
 - Averaging kernels
 - but seems possible to derive an ensemble mean characterization

Optimal estimation with ARTS

- The actual inversion can now be done inside ARTS
- Covariance matrices:
 - Methods to define diagonal and Markov-process covariance matrices
 - The common case of a block-diagonal structure can be used
- Minimization by linear, Gauss-Newton and Levenberg-Marquardt
- A conjugate gradient approach for large x
- Workspace methods for defining retrieval quantities:

retrievalAddAbsSpecies retrievalAddCatalogParameter retrievalAddCatalogParameters retrievalAddCreqShift retrievalAddFreqStretch retrievalAddMagField retrievalAddPointingZa

• Transformations can be applied

retrievalAddPolyfit retrievalAddScatSpecies retrievalAddSinefit retrievalAddSpecialSpecies retrievalAddSurfaceQuantity retrievalAddTemperature retrievalAddWind

Questions

- Anyone still using Qpack?
- How do you use ARTS' OEM?
- Missing retrieval variables?
- Anything else missing?