

State-Dependence of the Spectral Longwave Feedback

ARTS-Workshop, 06/06/2024 Florian Roemer, Stefan Buehler

Climate Sensitivity

Clear-Sky Longwave Feedback: $\lambda = -\frac{dOLR_{cs}}{dT_s}$

climate feedbacks λ_i

The spectral dimension

Feedback decomposition

 <u>conventional</u>: feedbacks decomposed into effects of changes in temperature and absolute humidity q

- <u>new</u>: feedbacks decomposed into effects of changes in temperature and relative humidity *R* (Held and Shell, 2012)
- "Simpson's law": near-zero feedback in water vapor bands under constant R (Simpson 1928; Ingram, 2010; Jeevanjee et al., 2021)

Previous studies

Most studies use models of different complexity to calculate λ_ν (Jeevanjee et al., 2021; Kluft et al., 2019; Huang et al., 2014, Feng et al., 2023)

 Recent study uses satellite observations to derive λ_ν (Roemer et al., 2023)

Surface temperature dependence

 H₂O concentration increases with surface temperature T_s, affecting λ_ν, particularly in the atmospheric window

 Therefore, T_s dependence of λ_ν has been modeled (Koll & Cronin, 2018; Koll et al., 2023; Kluft et al., 2021; Seeley & Jeevanjee, 2021)

> Can we derive this T_s dependence of λ_v from satellite observations?

Challenges in observing T_s dependence

- Satellite observations of spectral OLR available for $T_s \in [210K, 310K]$
 - Aqua AIRS Level 3 Spectral Outgoing Longwave Radiation (OLR) Monthly dataset (Huang, 2020). Spectral resolution: 10cm⁻¹
- BUT: those observations include radiative signature of variations in atmospheric temperature and humidity with T_s caused by general circulation

How can we disentangle those effects?

- Simulate λ_ν based on single-column model konrad (Kluft et al., 2019; Dacie et al., 2019)
- Input data from ERA5 reanalysis (Hersbach et al., 2019)
- Divide *T*_s range into ten 10K regimes
- Perform different experiments to disentangle effects of atmospheric processes:
 - $\left.\begin{array}{c} \text{constant-}\mathcal{R} \\ \text{o} \text{variable-}\mathcal{R} \\ \text{o} \text{constant-LR} \end{array}\right\} \text{vertically} \\ \text{uniform }\mathcal{R} \\ \text{closure} \end{array}$

Radiative transfer simulations using ARTS

- Based on these atmospheres: simulate clear-sky OLR_ν using ARTS (Eriksson et al., 2011; Buehler et al., 2018)
- Spectral range: 10cm⁻¹ to 2000cm⁻¹, with 0.1cm⁻¹ resolution
- Absorption species: H₂O, CO₂, CH₄, N₂O (no O₃)
- H₂O continuum: MT_CKD 4.0 (Mlawer et al., 2023)

Feedback calculation

- Observed OLR_{ν} sorted into 1K T_{s} bins (210K to 310K)
- Simulate OLR_v for same T_s range in 1K increments
- Linear regression of OLR_{ν} against T_{s} to calculate λ_{ν} for ten T_{s} regimes (simulations and observations)

Observed spectral feedback

- Far-infrared window ($\approx 400 - 600 \text{ cm}^{-1}$) already closes at $T_{\rm s} \approx 260 \text{ K}$
- Mid-infrared window ($\approx 800 - 1200 \text{ cm}^{-1}$) starts to close at $T_{\rm s} \approx 290 \text{ K}$

Spectral feedback at low surface temperatures

- Atmosphere has little impact on λ_{ν}
- Simulations underestimate λ_ν in optically thin spectral regions → presumably due to surface processes

Reanalysis underestimates *T*_{skin} at low *T*_s

- Simulated brightness temperature T_{b, sim} in window around 5K higher than observed T_{b, obs} below 240K
- Consistent with erroneous
 T_{skin} in ERA5 in polar regions (Muñoz-Sabater et al., 2021)
- Simulations underestimate $\frac{dT_{skin}}{dT_s}$ and thus the feedback

Spectral feedback at high surface temperatures

- Atmosphere plays important role for λ_{ν}
- H₂O bands: changes in *R* profile with *T*_s
- CO₂ band: *T* profile change with *T*_s in upper troposphere and stratosphere

Conclusions

- Clear-Sky spectral feedback λ_{ν} observed for surface temperatures $T_{\rm s}$ between 210K and 310K
- Simulated λ_{ν} used to understand role of circulation-induced atmospheric variations
- λ_{ν} at low $T_{\rm s}$ sensitive to biases in skin temperature
- λ_{ν} at high $T_{\rm s}$ sensitive to changes in atmospheric temperature and humidity profiles
- conceptional understanding of $\lambda_{\nu}(T_s)$ can help in studies on paleoclimates and exoplanets

florian.roemer@uni-hamburg.de

