A brief overview of hydrometeor scattering and surface modelling in ARTS (microwaves to IR)

Patrick Eriksson

Department of Space, Earth and Environment Chalmers University of Technology, Gothenburg, Sweden

patrick.eriksson@chalmers.se

Surface

Workspace methods (WSMs) for describing the surface

Through surface_rtprop_agenda

- General methods
 - Unpolarized: surfaceBlackbody, surfaceFlatScalarReflectivity, surfaceLambertianSimple
 - Polarised, pre-set reflectivities: surfaceFlatRvRh
 - Polarised, n-based: surfaceFlatRefractiveIndex
 - Polarised, lookup: surfaceFlatReflectivity
 - Uses surface_reflectivity, that can be interpolated from Tensoró(f, stokes, stokes, ia, lat, lon)
 - Flat = only one downwelling direction
- Ocean
 - FASTEM
 - \diamond Don't use above \sim 250 GHz
 - TESSEM
- Land
 - TELSEM
 - Not strictly land, affected by water around coasts, rivers and lakes

Features and tricks

- Specular direction (specular_los) "tunable":
 - Standard choice is to consider surface topography
 - Assume horizontal surface (e.g. lakes)
 - Can be set to a fixed angle (e.g. 53° to approx. Lambertian)
 - Would be possible to use a Lambertian factor
- Emulate scalar radiative transfer (RT):
 - Recipe:
 - Run ARTS with stokes_dim = 1
 - $^{\diamond}~$ Inside surface agenda, call surface WSM with stokes_dim ≥ 2
 - Call WSM surfaceMapToLinearPolarisation with "polarization angle"
 - ◊ And you get surface properties for e.g. H or V polarization
 - With this you can mimic a scalar solver, such as RTTOV!
 - Complements our aARO scheme (more later)

Representation of surface variables

- z_surface is linked to main latitude and longitude grids
 - Bad choice!
 - There is also t_surface ...
- Other surface variables best provided as GriddedField2
 - That is, provided with dedicated lat and lon grids
 - Interpolated to point of interest by InterpGriddedField2ToPosition
- No pre-defined workspace variables for this
- You likely need to define variables for:
 - skin temperature and wind speed
 - wind direction (if using FASTEM)
- This works also for 1D and 2D
 - With lat_true and lon_true set properly

Recipe for working with surface types

- Create surface_type_mask with types coded as 0, 1, 2, ...
- Fill surface_rtprop_agenda_array for each surface type
 - Append to the agenda, starting with setup for surface type 0
- Set surface_rtprop_agenda to contain surface_rtpropFromTypesNearest

Example on surface type data

From ERA5, Jan 2, 2015

GLCNMO Land Cover v3

"Footprint operator"

- There is also a start for a "footprint operator" scheme
 - That is, to derive the (weighted) average over the footprint
 - Activated by instead applying surface_rtpropFromTypesAverage
 - Contact Patrick if you want to test this beta feature
- You define the sample patters + weights
- An attempt to an equal-weight sampling scheme:

Hydrometeor scattering

Passive scattering solvers

- Monte Carlo (MC)
 - Only option for full 3D
- DOIT
 - Main option for 1D limb sounding
- DISORT
 - Limited to flat planet, 1D and scalar RT
 - Fastest and most robust solver
- RT4
 - Limited to flat planet and 1D
 - Slower and less robust (and can even cause Segmentation fault)
- Hybrid
 - Only option to retrieve hydrometeor properties with OEM
- Independent beam approximation (IBA)
 - Allows to run DOIT, DISORT and RT4 on local 1D inside 2D or 3D
 - Seems to remove systematic beam filling errors

Single scattering data

- ARTS' interface to T-matrix
- ARTS microwave scattering database
 - TRO: 35 habits
 - ARO: 2 habits
 - ◇ For ICI we use "aARO", similar to as implemented in RTTOV-SCATT
 - $\diamond~$ That is, separate V and H runs, using TRO data with scaled extinction
- UV-to-IR database by Yang&Bi now at hand in ARTS format
 - Wavelengths 0.2 to 99 μ m
 - Nine habits, sizes 2 to $10\,000\,\mu{
 m m}$
 - Three levels of surface roughness
 - Some shapes common with ARTS TRO database
 - A aggregates have b = 3

Possible to streamline definition of particle models

```
def scat_speciesAbelBoutle12(
   ws: Workspace,
    species: str.
   t \min \cdot float = 265
   t max float = 373
) \rightarrow None:
   ws.Append(ws.scat_species, species)
   ws. ArravOfStringSet(
        ws.pnd_agenda_input_names,
        (species).
   ws. Append(
        ws.pnd_agenda_array_input_names.
        ws.pnd_agenda_input_names.
    @arts_agenda(ws=ws, set_agenda=True)
    def aa(ws):
        ws.ScatSpeciesSizeMassInfo(
            species_index=ws.aaenda_array_index.
            x_unit="dvea",
        ws.Copy(ws.psd_size_grid, ws.scat_species_x)
        ws.Copy(ws.pnd_size_arid, ws.scat_species_x)
        ws.psdAbelBoutle12(t_min=t_min, t_max=t_max)
        ws.pndFromPsdBasic()
```

for species in ws.particle_bulkprop_names.value: if species == "RWC": ea.scat speciesAbelBoutle12(\w/S species ea.scat_data_rawAppendStdHabit(\w/S habit="LiquidSphere" elif species == "SWC": ea.scat_speciesFieldEtAI07(WS. species. reaime="TR" ea.scat_data_rawAppendStdHabit(\A/S habit="LaraePlateAaareaate", dmax start=1e-4 else : raise ValueError(...

easy_arts

- Not an official ARTS package
- Developed at Chalmers for our own purposes
- Contains code for:
 - Working with surface types
 - Working with particle models
 - Importing data from standardized xarray/netcdf format
 - Automatic download/import from ERA5
 - Running DISORT and RT4 on 2D and 3D scenes (IBA)
 - Doing radar onion peeling
 - Inclusion of spectral and polarization responses
 - Band-averaging of abs_lookup
 - ► ...
- Can be shared on a "personal basis"
 - Mainly relevant for microwave meteorology sensors

AWS simulations based on CloudSat and ERA5

Outlook: V3, present plans

- Description of surface variables and types similar to present system
 - Also z_surface will have its own grids
 - All more user friendly
- Improved description of surfaces' EM properties
 - More consistent treatment between solvers needed
 - Introducing a full, general representation of the BDRF?
- Handling of scattering properties re-implemented from scratch
 - Easier to set up particle models
 - Possible to tabulate bulk properties, like RTTOV-SCATT
- Updates of scattering solvers
 - In-house implementation of DISORT (based on ??)
 - New version of DOIT in development
 - In-house implementation of RT4 on the wish list