

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Shortwave simulations with ARTS Examples and explanations

Manfred Brath

Meteorological Institute

Shortwave simulations

- Some things are different in the SW range than we are used to.
- Planck emission is less important.
- Molecule scattering is important.
- Even for 1D radiative transfer there is zenith and azimuth dependency.
 ⇒ There is no azimuthal symmetry anymore!

Purpose of this talk

- Explain the main steps to simulate SW radiation
- Focus: Difference or additional steps compared to thermal radiation

Collimated Beam Source (recap)

Assumptions:

- $r_{sun} \ll d_{se}$, solar radiation is parallel
- Radiation at surface of the sun is isotropic

•
$$I_{TOA}(\Omega) = F_{Sun,TOA}\delta(\Omega - \Omega')$$

• $F_{sun,TOA} = F_{sun}\sin^2\alpha = F_{sun}\frac{r_{Sun}^2}{d_{se}^2 + r_{sun}^2}$

• *F_{sun}*: Spectral irradiance at the position of the sun

The sun in ARTS is defined by

- Irradiance spectrum at the position of the sun
- Radius and distance to the planet
- Geographic location where the sun is at zenith

The sun in ARTS is defined by

- Irradiance spectrum at the position of the sun
- Radius and distance to the planet
- Geographic location where the sun is at zenith

Example: Date: March 22 POI: 0°N, 0°E UTC-time: 9h00 ⇒zenith latitude = 0°N ⇒zenith longitude = 45°N

The sun in ARTS is defined by

- Irradiance spectrum at the position of the sun
- Radius and distance to the planet
- Geographic location where the sun is at zenith

WSM to define the sun(s):

- sunsAddSingleBlackbody
- sunsAddSingleFromGrid
- sunsAddSingleFromGridAtLocation

Example: Date: March 22 POI: 0°N, 0°E UTC-time: 9h00 ⇒zenith latitude = 0°N ⇒zenith longitude = 45°N

The sun in ARTS is defined by

- Irradiance spectrum at the position of the sun
- Radius and distance to the planet
- Geographic location where the sun is at zenith

WSM to define the sun(s):

- sunsAddSingleBlackbody
- sunsAddSingleFromGrid
- sunsAddSingleFromGridAtLocation

Example: Date: March 22 POI: 0°N, 0°E UTC-time: 9h00 ⇒zenith latitude = 0°N ⇒zenith longitude = 45°N

We provide 6 solar spectra from NOAA for different conditions at 1nm resolution in arts-xml-data/star/Sun

Set up absorption

- Mostly similar than for longwave
- Use cutoffs (750GHz) and continua
- Ozone:
 - $\lambda > 1.4 \mu m$: line-by-line
 - $\lambda < 1.4 \mu m$: absorption cross-section

- Most important absorbers in UV/vis and NIR:
 - *O*₃, *O*₂, *H*₂*O*

Set up molecular scattering

- Defined within gas_scattering_agenda
- Possible workspace mathods:
 - gas_scattering_coefAirSimple
 - gas_scattering_coefXsecConst
 - gas_scattering_matlsotropic
 - gas_scattering_matRayleigh

• Set the WSV gas_scattering_do to 1

Two ways to conduct SW simulations:

- **1. iyClearsky** ARTS' internal clear sky solver
 - 3D fully polarized clear sky solver with multiple suns
 - 1st order molecular scattering and surface scattering

2. CDISORT (Buras et. al, JQSRT, 2011)

3rd party solver. C version of DISORT 2.1 (Stamnes et al., Report, 2011)

- 1D non polarized all sky solver for plane parallel atmospheres with one sun
- Multi scattering

SW clearsky simulation with iyClearsky

- Use iyClearsky in iy_main_agenda
- Atmosphere must be 3D!
- Setup molecule scattering via gas_scattering_agenda
- Define sun(s)
- Define surface via iy_surface_agenda, do not use surface_rtprop_agenda.
 This will not work!

Surface methods

Lambertian surface

- iySurfaceLambertian()
- iySurfaceLambertianDirect()

Specular surface

- iySurfaceFlatReflectivity()
- iySurfaceFlatReflectivityDirect()
- iySurfaceFlatRefractiveIndex()
- iySurfaceFlatRefractiveIndexDirect()

iyClearsky: Example

- Sensor position: 25000km, 0°N,0°E
- Looking direction: 168°, 90°
- Sun position: 1.49x10⁸km, 0°N, 168.25°E
- Surface: Specular (Fresnel)
- $\Delta \lambda = 1 \text{ nm}$
- Virtual camera: 2.5° x 0.94°
- Postprocessing:
 - Transform spectral image to RGB using CIE color matching kernels typhon 0.10 : match_color()

A sunrise from space

SW all sky simulation with DISORT

- Radiance mode: cloudbox_fieldDisort()
- Scattering data is more complex than for MW.
 - Important when doing high spectral simulation, high ram usage.
 - Apart from that everything is the same as before.
 - Scattering database of Yang et al.[2013] and Bi and Yang [2017] in ARTS format is freely available from Zenodo (<u>https://doi.org/10.5281/zenodo.10807525</u>).
 - Only Lambertian surface
- Sun geometry 3D → DISORT needs to be run for specific location.
- Atmosphere must be 1D

SW all sky simulation with DISORT

- Radiance mode: cloudbox_fieldDisort()
- Scattering data is more complex than for MW.
 - Important when doing high spectral simulation, high ram usage.
 - Apart from that everything is the same as before.
 - Scattering database of Yang et al.[2013] and Bi and Yang [2017] in ARTS format is freely available from Zenodo (<u>https://doi.org/10.5281/zenodo.10807525</u>).
 - Only Lambertian surface
- Sun geometry 3D → DISORT needs to be run for specific location.
- Atmosphere must be 1D

Problem:

If using yCalc-formalism and 1D atmospheres, ARTS expect no azimuth dependency, but cloudbox_field (DISORT output) has an azimuth dependency.

Solution

- Remove azimuth dependency:
 - Calculate for the location of the atmospheric profile the local azimuth angle towards the sensor.
 - Interpolate/select specific azimuth angle from the cloudbox_field using cloudbox_fieldInterp2Azimuth
- Expand **cloudbox_field** to actual 3D (not tested)
- Important: This problem will be gone in ARTS 3!

DISORT: Example

MODIS

SEVIRI

- Simulation of geostationary satellite
- Corrected reflectances $R = \frac{\pi I_{TOA}}{F_{sun,TOA} \cos\theta}$ mapped to RGB
- Snapshot of ICON run by L. Kluft @ 5km (3600X3600 pixels)
- Sun position: 1.49x10⁸km, 18°N, 0°E
- Sensor position: ≈
 36000km, 0°N,0°E

0°W

• As radiative transfer is 1D:

0°W

• As radiative transfer is 1D:

0°W

No shadows present

- As radiative transfer is 1D:
- No shadows present
- Small scales clouds tend to be rougher than in 3D

0°W

- As radiative transfer is 1D:
- No shadows present
- Small scales clouds tend to be rougher than in 3D
- In general: 3D effects are not included

0°W

Modis: corrected reflectance (true color)

20°E

- There is no azimuthal symmetry in SW simulations.
- Molecular scattering is important.
- iyClearsky:
 - 3D clear sky simulations with specular or Lambertian surface
- DISORT:
 - 1D all sky simulations with Lambertian surface
- ARTS can be used for a wide range of new applications!

