The Ice Cloud Imager: new retrieval possibilities

Eleanor May¹, Bengt Rydberg², Inderpreet Kaur², Vinia Mattioli³, Patrick Eriksson¹, Hanna Hallborn¹ ¹Chalmers University of Technology ²Swedish Meteorological and Hydrological Institute (SMHI), Sweden ³EUMETSAT, Germany

ARTS Workshop, 2024 Observations of clouds

Ice mass in the atmosphere

There are significant discrepancies between datasets.

Why?

One reason is the lack of satellite observations suited to measure ice hydrometeors

The Ice Cloud Imager (ICI)

EUMETSAT'S Polar System – Second Generation
ICI on METOP-SG

- Microwave and sub-mm (183 664 GHz).
- V and H polarised channels.
- Close to global coverage on daily basis.
- Swath width: ~1500km
- Footprint: 20 km x 8.5 km

Launch scheduled for early 2026.

Image copyright: EUMETSAT

Retrieval product

Variables: Ice water path (IWP), mean mass height (Zm), mean mass diameter (Dm).

- Empirical not possible no sub-mm observations.
- Need **simulated** observations.

Database to be used operationally for ICI retrievals at EUMETSAT.

Simulation framework

Database generation - Microphysics

6 hydrometeor models from ARTS scattering database:

Each particle model includes:

Habit, PSD, occurrence probability, and a scaling factor to mimic azimuthal orientation (aARO factor).

Validation: simulated radiances

Comparison of simulations of GMP Microwave Imager (GMI) and real GMI observations.

- Overlap with ICI channels
- Both V and H polarised channels available

Simulated: green Observed: orange

Quantile Regression Neural Networks

Output: Probabilistic estimates suited for ill-posed problem.

Allows for non-Gaussian statistics.

Database retrieval performance

Sensitive to $10 \text{ g/m}^2 \leq \text{IWP} \leq 10 \text{ kg/m}^2$

Retrieved IWP (mean of dist.)

Database retrieval performance

Aims: Database **statistically consistent** with reality.

Retrievals consistent with database.

Distribution of retrieved IWP

ICI level-2 product

EUMETSAT IMAGES SATELLITES ABOUT US DATA AND SCIENCE NEWS & EVENTS

cloud radiation database for EPS-SG ICI IWP retrieval

Q

The Ice Cloud Imager: retrieval of frozen water column properties

Eleanor May¹, Bengt Rydberg², Inderpreet Kaur^{1,2}, Vinia Mattioli³, Hanna Hallborn¹, and Patrick Eriksson¹

¹Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
 ²Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
 ³EUMETSAT, Darmstadt, Germany

Correspondence: Eleanor May (eleanor.may@chalmers.se)

DOI: 10.5194/eg usphere-2024-829

Further retrieval possibilities

Radar and lidar are the best sources of information on the vertical distribution of ice. **Can ICI offer a complimentary source of data?**

EarthCARE

Good vertical resolution
 Short lifespan (~3 years)
 Narrow swath

ICI

- imes Poorer resolution
- Long lifespan (~22 years)
- ✓ Wider swath
- ✓ 13 channels

Retrieval of ice water content

Retrieval of ice water content

Retrieved IWC at altitude of 8.75 km.

 $MFE = median\left(exp_{10}\left(\left|\log_{10}\frac{x_{retrieved}}{x_{true}}\right|\right) - 1\right)$

Retrieval of IWC

IWC retrieval resolution

$$\hat{\mathbf{x}} = \mathbf{x}_a + \mathbf{A}(\mathbf{x} - \mathbf{x}_a),$$
$$\mathbf{A} = \left((\Delta \mathbf{X} \Delta \mathbf{X}^T)^{-1} \Delta \mathbf{X} \Delta \hat{\mathbf{X}}^T \right)^T$$

Resolution - FWHM of the averaging kernels.

$$\Delta \mathbf{X} = [x_1 - x_a, x_2 - x_a, \dots, x_n - x_a]$$
$$\Delta \hat{\mathbf{X}} = [\hat{x}_1 - x_a, \hat{x}_2 - x_a, \dots, \hat{x}_n - x_a]$$

Further retrieval possibilities: aARO

Azimuthal orientation scheme developed by Barlakas et al. (2021).

aARO factor - Scaling factor applied to the extinction values obtained from assumption of totally random orientation.

AARO factor is randomly selected from a predetermined range (e.g. 1.0 - 1.6).

Preliminary result.

Short training of a neural network, only for high IWP cases.

Summary

- Our retrieval database, containing the most detailed simulations to-date, will be used within operational retrievals at EUMETSAT from day-one of ICI launch.
- Simulated observations are consistent with reality.
- Reliable retrievals of ice water path are possible, and statistically consistent with DARDAR.
- Possible to retrieve ice water content with ICI observations, and potentially additional variables (aARO).

