

Arctic Weather Satellite Spillover Simulations with ARTS

UNIVERSITÄ1 BERN

Catalina Medina¹, Alistair Bell¹, Roland Albers¹, Mikko Kotiranta¹, Tobias Plüss¹, Kalle Kempe², Anders Emrich², Axel Murk¹

> Institute of Applied Physics, University of Bern, Bern, Switzerland 2 AAC Omnisys, Gothenburg, Sweden

The Arctic Weather Satellite Mission

- Omnisys
- constellation (EPS-Sterna)
- Sounder on MetOp-SG and Advanced

ARTS Simulations

Motivation: Determine the bias in measured temperature caused by the spillover and far sidelobes of the radiometer

- ► 1D Atmosphere
- Three atmosphere models considered: Tropical, Midlatitude-Winter, Subarctic-Winter
- ► Four surface reflectivities considered
- ► Ideal 1D antenna sensor

Brightness Temperature for Different Frequency Channels

Beams rotate around boresight as a function of scan angle

Beams are offset from boresight of

- For combined data products each measurement needs to be geolocated
- Asymmetric beam shape due to off-axis geometry
- Simulating several scan angles crucial for accurate performance assessment

www.iap.unibe.ch

Predicted Brightness Temperature Considering Spillover Distribution at Nadir

50.3GHz	Power[%]	Temperature[K]	
Main Beam	93.7	251.499	
Earth	2.4	234.946	
Cold Sky	2.69	2.7	
Absorber	1.16	273.15	
Tb uncalibrated		244.53	Т
Tb difference		6.96(0.4*)	
	*Contribution from spillover over earth		

89GHz	Power[%]	Temperature[K]
Main Beam	95.29	250.079
Earth	2.23	203.677
Cold Sky	1.94	2.7
Absorber	0.52	273.15
Tb uncalibrated		244.315
Tb difference		5.76(1.034*)
	*Contribut	tion from spillover over earth

- Main Beam looking to a surface with R=0.1
- Earth Spillover looking to a surface with R=0.4

Spillover Changes with Scan Angle for each Frequency

WBE Frequency: 50.3 GHz Scan angle: 0 deg

- Tb predicted calculated from the power distribution in each surface
- ► Tb difference between main beam and predicted temperatures

Conclusions

Spillover power distribution changes for each frequency and scan angle Brightness temperature measured by the instrument will vary for each frequency and scan angle depending on the surface properties ► The most affected bands are the window channels

Future Work

- Model improvement
- Simulating different scan angles with their correspondent spillover distribution for an assessment of the instrument calibration

catalina.medinaporcile@unibe.ch