Modelling polarized microwave radiation in a 3D spherical cloudy atmosphere

Claudia Emde Stefan Bühler Patrick Eriksson Oliver Lemke Sreerekha T.R.

Radiative Transfer Workshop Juli 7-10, 2003 Bredbeck

ARTS - Atmospheric Radiative Transfer System

Contents

- Model atmosphere and cloudbox
- Concept of ARTS (Atmospheric Radiative Transfer System)
- Single scattering database
- Radiative transfer in cloudbox
 ⇒ successive order of scattering method
- First results
- Conclusions and outlook

Model atmosphere

• 3D:

- Spherical coordinate system (pressure, latitude, longitude)
- Realistic simulations (strongly inhomogeneous cloud coverage)

• 1D:

- Spherically symmetric atmosphere (only pressure coordinate).
- Estimation of upper limit of scattering effects.
- Much faster computation than 3D.

• 2D:

- Atmosphere extends inside plane (polar coordinate system).
- Application: Satellite measurements (Observation inside orbit plane).
- Scattering calculations impractical.

Cloudbox - scattering domain

Scattered radiation field is calculated inside the cloudbox using successive order of scattering approach.

Definition of cloudbox:

- corner points \Leftrightarrow atmospheric grid points
- 3D atmosphere: $[p_1, p_2, \alpha_1, \alpha_2, \beta_1, \beta_2]$

The concept of ARTS

ARTS - Atmospheric Radiative Transfer System

Single Scattering Database

- Hydro-meteor species defined by
 - Phase matrix
 - Extinction matrix
 - Absorption vector
- One species can be ensemble or single particle.
- T-matrix method for computation (Mishchenko code).
- Data format: XML

Hydro-meteor species

• General case:

Scattering media exhibiting no symmetries.

• Macroscopically isotropic and mirrorsymmetric scattering media:

Randomly oriented particles.

Optical properties are calculated in a special coordinate system to save storage memory.

- Horizontally aligned plates and columns: Azimuthally randomly oriented scattering media.
- Spherical particles:

A special case of randomly oriented scattering media.

Cirrus particle shapes measured in FIRE campain. http://www.mmm.ucar.edu/science/cirrus/

Vector radiative transfer equation

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}s}(\mathbf{n},\nu) = -\mathbf{K}(\mathbf{n},\nu)\mathbf{I}(\mathbf{n},\nu) + \mathbf{a}(\mathbf{n},\nu)B(\nu) + \int_{4\pi} \mathrm{d}\mathbf{n}'\mathbf{Y}(\mathbf{n},\mathbf{n}',\nu)\mathbf{I}(\mathbf{n}',\nu)$$

 $\mathbf{I} = (I, Q, U, V)$

Stokes Vector

- ${f n}$ propagation direction of the radiation
- u frequency
- **K** extinction coefficient matrix
- **a** absorption coefficient vector
- *B* Planck function
- Y phase matrix

Successive order of scattering method

1D test calculations for a homogeneous cloud

Setup:

- 1D atmosphere.
- Cloudbox altitude: 7.0 12.2 km
- Cloud altitude: 9.8 12.1 km
- Spherical, and cylindrical ice particles
- Gamma size ditribution, effective radius 85.5 $\mu {\rm m}$
- Ice mass content: 0.04 g/m^3
- Absorption from lookup table for the species: H_2O , O_3
- Frequency band: 318 325 GHz

Convergence behaviour

Convergence behaviour (2)

Different cloud scenarios

cloud	$r_{eff} \; [\mum]$	IMC [g/m ³]	altitude [km]
1	21.5	0.0001	10 - 12
2	34.0	0.004	8 - 10, 10 - 12
3	68.5	0.02	6 - 8, 10 - 12
4	85.5	0.04	10 - 12
5	128.5	0.1	10 - 12

Spectra at 11 km tangent altitude

Effect of particle shape on intensity

Summary

- Scattering calculations performed for 1D and 3D test cases. \Rightarrow Reasonable results.
- Successive order of scattering method implemented for solving VRTE.
- Polarized and unpolarized radiation fields can be simulated.
- T-matrix method selected for calculating single scattering properties.
- Geometrical propagation path calculations implemented for 1D, 2D and 3D; with and without refraction.

Outlook

- Main problem: Using all implemented features at the same time requires long computation time and large working memory.
- Optimizations planned to be implemented.

More information availabe on web-page:

http://www.sat.uni-bremen.de/arts/

