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Abstract

In this paper two algorithms for the solution of nonlinear ill-posed problems with simple bounds on the variables are
presented. The proposed algorithms are bound-constraint versions of the iteratively regularized Gauss—Newton method.
The numerical performances of the algorithms are studied by means of simulations concerning the retrieval of molecular
concentrations from limb sounding observations. For these examples, the unconstrained algorithm leads to unreasonable
solutions.

0 2003 Elsevier Science B.V. All rights reserved.

1. Introduction solutions. This is the case in atmospheric remote sens-
ing by means of high resolution spectroscopy, when
One of the most efficient regularization methods for the iterative process leads to gas concentrations with
nonlinear ill-posed problems is the iteratively regular- negative values. In fact, if a negative solution occurs,
ized Gauss—Newton method. This method can be re-the forward model used to compute the new iterate
garded as a Tikhonov regularization with a variable fails. In this context, the solution of a bound-constraint
regularization parameter. The iteratively regularized inversion problem is justified. In the present paper,
Gauss—Newton method was first studied by Bakushin- we discuss two extensions of the iteratively regular-
skii [1]. Convergence results for solving nonlinear ill-  ized Gauss—Newton algorithm for the solution of non-
posed problems were given by Blaschke et al. [2], Ho- linear ill-posed problems with simple bounds on the
hage [3] and Deuflhard et al. [4]. The performances of variables. The benefits of using a bound-constraint
the algorithm on the choice of the regularization ma- a|g0rithm stem from two observations about most
trices and sequences of regularization parameters forpractical problems. Firstly, the restriction on the ex-
atmospheric remote sensing were discussed by DoiCUpected size of the variables is frequently encountered
etal. [5]. o o in atmospheric remote sensing. Secondly, even if no
However, in some applications the iteratively regu- o nds are active at the solution, their presence can
larized Gauss-Newton method may lead to unrealistic e\ ent the function from being evaluated at unreason-
able or non-physical points during the iterations.
~* Corresponding author. In Section 2 we describe the basic unconstrained
E-mail address: adrian.doicu@dlr.de (A. Doicu). algorithm for atmospheric remote sensing and outline
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some of the concepts that will be used. The bound- of an appropriate estimate of the exact state vector
constraint algorithms are discussed in Section 3. In x. An estimate of the exact solution can be found by
Section 4 we illustrate these approaches by calculating minimizing the output least squares function
the vertical profiles of molecular concentrations from 2

b Fe)=3|Fo - 3)

limb sounding observations.
possibly by an iterative method.
In the framework of the iteratively regularized
2. Basic unconstrained algorithm for theretrieval Gauss—Newton method one considers the augmented
problem objective function

: - : Fito) = 3r@]?
The retrieval problem in atmospheric remote sens- 2
ing is to extract vertical profil_es of atmospheric state = %[” F(x)—y® ”2 o |Lx — xa)Hz], @)
T eihete L is some reguiarizalon i) i &
ters and th% spectral radiance is piven by the rgdiative monotonically decreasing sequence andis the a
P . 9 y .. "~ priori state vector, the best beforehand estimaté. of
transfer equation. The discrete form of the radiative

. . The generalized residual vector
transfer equation can be written as

F _ 0
y=F(x), n = [m(z)(x —yxa)}

where the mapping : R" — R™ is the radiative trans- g 5 mapping : R" — R"+7 for L € RP*", The new
fer model,x € R" is the state vector containing the at-  jierate is given by

mospheric parameters (temperature or molecular den- 5 5

sity profiles) to be retrieved ang e R™ is the exact  *j+1=X; + Pk, (5)

data vector containing the spectral radiances (at a finite wherep, is the solution of the unconstrained subprob-
number of typically equidistant wavenumbers) mea- |em:

sured by a “perfect” instrument. Hef®" stands for T s 1T ST /s
the n-dimensional real Euclidean space with the usual rg]'er(r (i) Jr(xe)p + 50" I () Jr(xk)p).  (6)
inner productx, y) = x "y, while || - || denotes thé, P , ,
vector norm and the subordinatednatrix norm. The ~ @nd J;-(x) = r'(x) denotes the Jacobian matrix of
width of the grid on which the atmospheric state pa- €valuated aix. The iteration is stopped accordingly
rameters are represented depends on the altitude rest© the discrepancy principle, that is, at the first index
olution and representational errors, while the spectral %+ = k«(A) for which

inter\./aI. is given by the characte_ristics of the spectro- [ F(X;f*) —y0 | <A< ||F(x,‘f) -y,
scopic instrument. In our analysis we assume that the 0<k <k 7
exact data are attainable, i.e. that there exists the ex- =~ ~% =% ()

act solutiont such thaty = F(x). Measurements are  wheret > 1 and A is an upper bound for the error,
made to a finite accuracy and in practice only the noise ||§]| < A. In practice, this bound can be chosen as the

data vecton?, expected value of 8|, i.e., A = \/E{[|8]|2} = o /m,
FLISY @) wheref is the expected value operator.

The regularization matrix. is typically either the
is available. In the present analysis we consider a identity matrix (L = Lo = I), a discrete approxima-
semi-stochastic data model in the sense that the exaction to the first { = L1) or second L = L,) deriva-
solutionx is deterministic but the measurementedor tive operator or some approximation to the a priori co-
is stochastic with zero mean and the covariance matrix variance matrix [5]. Information about the magnitude
Ss, Ss = 021, wherel is the identity matrix. and smoothness of the state vector can be simultane-
While the forward model maps the state space ously taken into account by combining several deriv-
into the measurement space, we are interested in theative orders. The sequence of regularization parame-
inverse mapping, or equivalently, in the determination ters(«;) can be constructed by using the noise-level
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criterion or the L-curve criterion for each linear sub-

61

Certainly it may happen that no such step-length

problem. The second parameter choice method allows a; exists; in this casey is taken asa, even though

enough regularization to be applied at the beginning

&a does not satisfy the criteria usually required of

of iterations and then to be gradually decreased. For a step length for unconstrained optimization. At the

more details we refer to [5].
The process of finding the new iterate can be
summarized as follows:

Compute the Gauss—Newton directipp by solv-
ing the unconstrained subproblem (6) and take

5 _ .8
Xip1 =X T Pk

Since the iteratively regularized Gauss—Newton
method is a version of the Tikhonov regularization
with variablex, Eriksson [6] computes the new iterate
by using a step-length algorithm, i.e.

Compute the Gauss—Newton directipp by solv-

ing the unconstrained subproblem (6) and deter-
mine a positive step-lengtty, for which it holds
that fk(x,f + axpr) < fk(x,f). Takex,fJrl = x,‘? +

ay Pk

. Modified bound-constraint algorithms

When the constraints are simple bounds on the
variables, so that the minimization problem is
{minxeRn F@)=31F@x) = y*I1%, ®)

subject to the simple bounds x < u,

it is reasonable to preserve feasibility, i.e. to consider
only iteratest! that satisfyl < x{ <u.

The first algorithm we propose is a simplified
version of an active-set algorithm for well-posed
problems [7]. In order to retain feasibility of the next

next iteration, the point,f + &apy can be regarded as
initial guess for the new objective function (4). The
choiceé < 1 guarantees that the new iterate is in the
interior of the feasible region. In fact the variables are
not fixed on their bounds, that is, the variables remain
free during the iterative process. This algorithm will
be referred to as the bound-constraint algorithm A.

The second algorithm relies on the use of a col-
lection of optimization routines contained in the pub-
lic part of the PORT library. For our purpose we use
the routine DRN2GB which is the double-precision
version of an algorithm for solving nonlinear least-
squares problems with simple bounds [8]. The algo-
rithm is a trust-region method with a local active-
set strategy to select the step, while the active set is
made afresh every iteration. The routine works by “re-
verse communication”. With reverse communication
the caller invokes the minimizing routine with an ap-
proximate minimization point and the values of the
residual function and of the Jacobian matrix at that
point. The minimizing routine returns a hew approx-
imate solution at which the user should evaluate the
residual function and the Jacobian matrix and call the
minimizing routine again. In essence, the method pro-
videsSxy+1 asxx + pk, wherepy is the solution of the
trust region subproblem:

minegs T (x0)Jr () p + 307 G () p
subject to the simple bounds x < u
and the trust region constraiihp || < k.

(9)

Here py is the radius of the trust region ame(x;) is

iterate we impose that the step length does not violate some approximation to the Hessian Bf computed
any bound. The process of computing the new iterate at x,. G can be computed in the framework of

then takes the form:

Compute the Gauss—Newton directipp by solv-
ing the unconstrained subproblem (6). Compite
the maximum non-negative feasible step algng
i.e.l < xP +apx <uforall a with 0 < a < a. De-
termine a positive step-length for which it holds
that]:k(x,f + axpr) < fk(x,‘f) anda; < éa, where
& <1. Take)cl‘zJrl = x,f ~+ ay px.

a Gauss—Newton model a$(x;) = J,(xx) T J- (xx),
or in the framework of a Quasi-Newton model as
G(xp) = J,(x) " J-(xx) + Sk, where S; is a secant
approximation to the second-order part of the least-
squares Hessian [9]. The algorithm starts wiigh= 0.
With this choice, the first iteration is equivalent to an
iteration of the Gauss—Newton method.

In this context the step of computing the new iterate
is:
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Compute the new itera1a¢§f+l by a single call of the In limb sounding the line of sight of a space-borne

subroutine DRN2GB. instrument is oriented at the Earth’s limb. A sequence

of observations with different angles corresponding to

Since the DRN2GB is invoked a single time, differenttangent altitudes can be used for the retrieval

G(x)) = J,(x)TJ.(x}) and the radius of the trust of gas concentration as a function of altitude. The

region is the Gauss—Newton step. If the Gauss— geometry of the atmospheric remote sensing by a limb
Newton step is too long the trust region is shrunk sounding instrumentis shown in Fig. 1.

repeatedly to obtain an acceptable feasi;qjgl_ An Although the retrieval grid can be chosen indepen-

acceptablerf; means at least a feasible solution for dently of the tangent grid a close relation between
which the objective functiod; decreases. In contrast the resolution of the retrieved profile and the tan-
to the previous algorithm the variables can be fixed 9€nt altitude spacing is expected. Scanning the at-
on their bounds during the iterative process. This Mosphere with smaller altitude steps might improve
algorithm will be referred to as the bound-constraint the vertical resolution, but due to the finite field
algorithm B. of view of the instrument the contributions of ad-
The new algorithms maintain the peculiarities of 1acent atmospheric layers are more correlated and
the unconstrained version of the iteratively regularized conséguently the Jacobian matrix becomes more ill-
Gauss—Newton method: a descending sequence of r(:Jg__condltloned. An equidistant retrieval grid with a spac-

ularization parameters and the use of the discrepancy'nﬁ_lOf 3kmis con;ider;ed kl)(etV\_/een 12 km and 42 km,
principle as an a posteriori stopping rule. while a grid spacing of 5 km is considered between

42 km and 52 km. The tangent grid is assumed to be
identical to the retrieval grid. The field of view of the
instrument is a symmetric trapezium with 1.4 km and
2 km base lengths.

In our first example we consider the retrieval of

In our numerical simulations we consider the Mi- NO, in the spectral interval between 1600.50 and
chelson Interferometer for Passive Atmospheric 1601.40 cml. This corresponds to Channel C of
Sounding (MIPAS) that has been designed to measurethe MIPAS instrument. A number of 37 equidistant
the Earth’s atmospheric composition with respect to a data points were chosen in this spectral interval. Be-
large number of species. MIPAS is one of the instru- cause HO, O, and CH, are dominant in the ob-
ments on the ESA's Environmental Satellite (Envisat) served spectral region, no other gases were consid-
which was launched successfully into its orbit on 1 ered. The exact gas profilé was taken from the
March 2002. The MIPAS instrument provides infor- U.S. standard atmosphere. The a priori and initial

4. Numerical simulations

mation about temperature, ozonesjOnitrogen fam- gas profilesx, andxg, respectively, were assumed to
ily (NO2, HNO3, N2O, etc.), dynamic tracers ¢go, be identical and were chosen as a constant profile,
CHj) and other species. i.e.x; = xg = 0.006 ppmv. For the exact gas profile
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Fig. 1. Geometry of atmospheric remote sensing by a limb sounding instrument.
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Fig. 2. Result of NQ@ retrieval using the unconstrained algorithm. 0

a contaminated spectrum was generated. The rdoise
was described by a Gaussian probability distribution wl
with zero mean and covariance matfix= o21. We
chooser = 4 nW/(cn? sr cn 1), In Fig. 2 the inver-
sion results of the unconstrained algorithm are plotted.
The profiles correspond to thiey and L1 regulariza-
tion matrices. In both situations the gas concentration
has negative values. Note that the unconstrained al- 2

30 F

Altitude [km]

&—e L0-matrix

gorithm is stopped as soon as negative solutions oc- P o

cur. The results in Fig. 3 are obtained by using the exact solution

bound-constraint algorithms. For the bound-constraint 0002 6004 0.006 0.008 001
NO2 vmr [ppmv]

algorithm A we imposed > [, while for the bound-

constraint algorithm B we imposdd< x < u, where ()

[ =0.0001x, andu = 10Qx,. Both algorithms lead to Fig. 3. Result of NQ retrieval using: (a) the bound-constraint

realistic solutions with comparable accuracy. The rel- @lgorithm A and (b) the bound-constraint algorithm B.

ative errorse = || X — x,f* II/lIX]| decrease from 57 to

10% for the Lo regularization matrix and from 57 to

6% for the L regularization matrix. 60
Next we consider the retrieval of J0. For this

simulation the intensity spectrum between 1270.825 |

and 1272.025 cm' was analyzed. This spectral in-

terval corresponds to Channel B of the MIPAS in-

strument. The number of equidistant data points for

each spectrum was 49.,8, CH; and HOCI were

considered as active gases. The exact gas profile

corresponds to the U.S. standard atmosphere, while

the a priori and initial gas profiles were chosen as 20| e Lo-matix

Altitude [km]
»
o

W
S

x4 = x§ = 0.15 ppmv. The standard deviation of the =T e quess
. . exact solution
added noise was = 12 nW/(cn? sr cnt1). In Figs. 4 0 oeaeser
and 5 we plot the inversion results obtained by us- 0408 0204 0 01 02 03 04

i H . N20 vmr [ppmv]
ing the unconstrained and the bound-constraint algo-

rithms. If no constraints on the variables are imposed, Fig. 4. Result of NO retrieval using the unconstrained algorithm.
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Fig. 5. Result of NO retrieval using: (a) the bound-constraint algorithm A and (b) the bound-constraint algorithm B.
Table 1 gorithm may lead to correct solutions. However, this
History of regularization parametersy;, relative residuals

F(xp)/(ma?) and relative errorsy for the retrieval of NO using
the bound-constraint algorithm B with tlig regularization matrix

k o f(x,‘z)/(maz) €k

0 7.34 595752 5990
1 7.09 161443 1719
2 6.64 37312 1446
3 6.27 06813 899
4 5.98 05524 710
5 5.56 05130 630
6 5.07 05042 5806
7 5.02 05037 5803
8 - 05035 5802

negative solutions occur. The bound-constraint algo-
rithms have similar inversion performances and lead
to solutions with acceptable accuracy. The relative er-
rors for the bound-constraintalgorithms decrease from
60 to 11% for theLg regularization matrix and from
60 to 6% for theL1 regularization matrix. Table 1
shows the history of regularization parameteysrel-
ative residuaISF(x,f)/(moz) and relative errorsy, for
the bound-constraint algorithm B with tlig regular-
ization matrix. These results serve as an evidence for
the convergence of the sequence of regularization pa-
rameters and the convergence of the relative residual
to 0.5 (cf. Egs. (3) and (7)).

We want to point out that we can also prevent the

strategy is time consuming and restricts the capabil-
ities of the unconstrained algorithm to handle unex-

pected situations. This aspect is especially important
in case of automated operational data processing of
large amounts of satellite data.

Our numerical analysis indicates that the bound-
constraint algorithm B is more time consuming than
the bound-constraint algorithm A. The explanation
lies in the fact that the model and the trust radius
selection requires more function evaluations than the
step-length procedure.

5. Conclusions

In the present paper two implementations of the it-
eratively regularized Gauss—Newton algorithm for the
solution of bound-constraint problems arising in re-
mote sensing are discussed. The first algorithm uses
a “constrained” step-length procedure to compute the
new iterate. The second algorithm uses the optimiza-
tion routines DRN2GB from the PORT library to min-
imize the quadratic function subject to simple bounds
on the variables. In order to cope with the ill-posedness
of the problem, a decreasing sequence of regulariza-
tion parameters and the discrepancy principle as an
a posteriori stopping rule are used. Whether the pro-

occurrence of negative solutions by an adequate choiceposed algorithms are regularization methods in the

of the initial guess. If the initial guess is “sufficient-
ly” close to the exact solution, the unconstrained al-

sense of [10] remains an open question. However, the
inversion performances of the algorithms are accept-



A. Doicu et al. / Computer Physics Communications 153 (2003) 59-65 65

able, at least for the examples of gas concentration re- [4] P. Deuflhard, H.W. Engl, O. Scherzer, A convergence analy-
trieval considered in Section 4. The retrieval of sis of iterative methods for the solution of nonlinear ill-posed
and NG from limb sounding observations are suf- problems under affinely invariant conditions, Inverse Prob-

- L . lems 14 (1998) 1081-1106.
ficiently accurate for an initial guess lying far away [5] A. Doicu, F. Schreier, M. Hess, lteratively regularized Gauss—

from the exact solution. These encouraging results Newton method for atmospheric remote sensing, Comput.
suggest that the present approach is suitable for inver-  Phys. Commun. 148 (2002) 214-226.
sion of the radiative transfer equation to analyze limb [6] J. Eriksson, Optimization and regularization of nonlinear least
sounding measurements. squares problems. Ph.D. Thesis, Department of Computing
Science, Umea University, Sweden, 1996.
[7] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization,
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