

Sea Ice Emissivity

The Microwave Emissivity of Sea Ice: – an overview

Christian Melsheimer

Institute of Environmental Physics, University of Bremen, Germany

ARTS Workshop, Kristineberg, Sweden 9-11 June, 2014

C. Melsheimer 1/22

< □ > < 団 > < 三 > < 三 > 、 三 の Q @

Overview

- 1 Motivation
- 2 Sea ice emissivity
- 3 Sea ice emissivity modeling
- 4 Sea ice emissivity measurement/retrieval
- 5 Summary and Outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sea Ice

- covers about 5% of global oceans
- affects heat flow (thermal insulation of ocean)
- affects radiative balance (emissivity and albedo)
- can vary quickly (hours to days) on large scales (> 100 km) (advection, thermodynamics)

Sea Ice

- covers about 5% of global oceans
- affects heat flow (thermal insulation of ocean)
- affects radiative balance (emissivity and albedo)
- can vary quickly (hours to days) on large scales (> 100 km) (advection, thermodynamics)

Sea Ice

- covers about 5% of global oceans
- affects heat flow (thermal insulation of ocean)
- affects radiative balance (emissivity and albedo)
- can vary quickly (hours to days) on large scales (> 100 km) (advection, thermodynamics)

Emissivity of Sea Ice

- much higher than emissivity of open ocean!
- varies with frequency and polarization (and temperature...)
- needs to be known for remote sensing in polar regions
 - sea ice concentration
 - sea ice type

rsität Bremen

- sea ice thickness
- water vapour, clouds (background: ocean and sea ice)
- Interesting frequency range (current satellites): 1 GHz – 200 GHz
- Satellites/sensors: SMOS, AMSR2/AMSR-E, SSMIS, AMSU-A, AMSU-B/MHS

Institute of Environmenal Physics ARTS 2014 9 June 2014

Sea ice: Complex structure

- Ice with brine
 inclusions
- Snow layer(s) on top
- Brine slowly
 percolates down
- Summer: Melt water flushes brine ⇒air inclusions

from Ulaby et al. [1986]

C. Melsheimer 5/22

Sea ice: Processes

- emission by water, sea ice and snow
- absorption by sea ice and snow
- scattering by brine and air inclusion, snow grains
- reflection at interfaces between layers
- emitting layer depth/penetration depth: strong dependence on frequency
 - below 10 GHz: whole ice and water underneath contribute
 - at 100 GHz: top few cm only
- melting conditions drastically change everything

Sea ice emissivity modeling

- No closed model for 1–200 GHz
- Approach by Tonboe [2010]
- dielectric model of sea ice with brine or air inclusions, one or few layers
- in addition: layers of snow on top
- ⇒ using extension of land snow model for layered snow [MEMLS, Wiesmann and Mätzler, 1999]
 - · refraction and reflection at layer interfaces
 - absorption by layers
 - scattering by snow grains, brine and air inclusions
 - using improved Born approximation
 - correlation function approach for scatterer size and distribution
 - $\Rightarrow\,$ non-trivial relation between grain size and correlation length

Universität Bremen

C. Melsheimer 7/22

5990

< ロ > < 回 > < 三 > < 三 > < 三 > 、

Sea ice emissivity modeling (ctd.)

- problem: where to get realistic sea ice and snow profiles? including crusts from surface melt and refreeze
 - few comprehensive observations
- ⇒ 1-dim. thermodynamic model of evolving sea ice and snow, driven by meteorological reanalysis data incl. precipitation
 - Note: emissivity modeling breaks down when the surface is wet!

Measuring Sea Ice Emissivity: Principle

Measuring Sea Ice Emissivity: Principle

- emissivity = $\frac{\text{brightness temperature}}{\text{physical temperature}}$???
- Well...

Brightness temperature of the ground measured directly above the ground (viewing angle θ , frequency ν):

$$T_{B}(\nu,\theta) = ET_{s} + (1-E)T_{d}(\nu,\theta)$$

where

- E: emissivity of the surface
- T_s : physical temperature of the surface
- T_d : downwelling radiation, i.e. emission from atmosphere

5990

<<p>・ロト

C. Melsheimer

< ロ > < 回 > < 回 > < 三 > < 三 > <</p>

9/22

5990

Measuring Sea Ice Emissivity: Principle

- emissivity = $\frac{\text{brightness temperature}}{\text{physical temperature}}$???
- Well...

Brightness temperature of the ground measured directly above the ground (viewing angle θ , frequency ν):

$$T_{B}(\nu,\theta) = ET_{s} + (1-E)T_{d}(\nu,\theta)$$

where

- E: emissivity of the surface
- T_s : physical temperature of the surface
- T_d : downwelling radiation, i.e. emission from atmosphere

$$\Rightarrow E = [T_B - T_d] / [T_s - T_d]$$

Universität Bremen

Measuring Sea Ice Emissivity: Principle (Ctd.)

- ⇒ must also measure surface temperature and downwelling radiation
 - measure skin temperature with IR, but true temperature profile in emitting layer usually not known
 - Note: in winter strong temperature gradient in snow layer (≫ 10 K/m!)
- \Rightarrow when using skin temperature: "effective emissivity "
 - when not in-situ, atmospheric absorption and upwelling emission has to be allowed for

Measuring Sea Ice Emissivity: Configurations

• in-situ radiometer measurements and temperature measurement

but: single point measurements

- Airborne campaigns
 - Measuring brightness temperature along same track from high and low altitude ⇒derive contribution from atmosphere
 - measure surface temperature: brightness temperature \rightarrow emissivity

but: short time period only, spatially limited

- Satellite "measurement" (retrieval)
- in principle large areas and time periods
 but: need to model atmospheric contribution (and surface

temperature)

tät Bremen

Emissivity Measurements: Example

Sea ice and open water emissivity at microwave frequencies [Spreen et al. 2008]

Emissivity Retrieval from Satellite Data

 Total brightness temperature measured by satellite sensor like AMSR-E or AMSR2 (viewing angle θ ≈ 55°, frequency ν):

$$T_B(\nu) = T_u(\nu,\theta) + e^{-\tau \sec \theta} ET_s + (1-E)T_d(\nu,\theta)e^{-\tau \sec \theta}$$

where

- T_u : upwelling radiation from atmosphere
 - τ : opacity of atmosphere (integrated absorption coefficient)
- T_d : downwelling radiation from atmosphere
- T_s : physical temperature of the surface
- E: emissivity of the surface

$$\Rightarrow E = [T_B - T_B(E = 0)] / [T_B(E = 1) - T_B(E = 0)]$$

C. Melsheimer 13/22

5990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$E = [T_B - T_B(E = 0)] / [T_B(E = 1) - T_B(E = 0)]$$

- This means: Emissivity at given ν can be determined from measured (AMSR-E) T_B if we simulate $T_B(E = 0)$ and $T_B(E = 1)$ for ν
- Here: MWMOD (MicroWave radiative transfer MODel). Input: Atmospheric profile from ECMWF analysis [Mathew et al., 2008, 2009]

Emissivity from Sat. (Ctd.)

- Emissivity retrieval from AMSR-E or AMSR2 in principle daily coverage of Arctic/Antarctic
- However: Rather noisy, temporal/spatial averages more sensible
 - Monthly emissivities of typical first-year and multiyear ice areas, and their variabilities
 - ⇒ e.g., for improved a priori surface emissivity data in other retrieval
 - Correlation of FYI and MYI emissivities at different AMSR-E frequencies and polarizations

Sea Ice Emissivity

ARTS 2014 9 June 2014

< □ >

16/22

500

Sea Ice Emissivity

Summary

- Sea ice is a complex layered medium (more or less saline ice plus layered snow)
- sea ice emissivity higher than open water emissivity
- depends on ice type, snow layer, temperature

5990

< D > < D > < E > < E > < E >

Summary (Ctd.)

- Modeling: No closed model
 - · dielectric mixing models for ice with brine or air inclusions
 - snow models for layered snow on top
 - models usually do not cover 1 GHz to 200 GHz range
 - recently: extended model for layered snow to include ice underneath
 - emissivity in summer (wet snow) not well modeled/investigated!
- Measuring:
 - · point measurements with hand-held/airborne radiometers
 - measurement over larger area and time only from satellite (retrieval)

 \rightarrow needs RT modeling of the atmosphere

Sea Ice Emissivity

ARTS 2014 9 June 2014

Ideas, Outlook

- ARTS atmospheric RT modeling for emissivity retrieval from satellite?
- measurement campaigns?
- include/connect sea ice emissivity module to ARTS?

End

Institute of

Environmenal Physics

References I

- N. Mathew, G. Heygster, C. Melsheimer, and L. Kaleschke. Surface emissivity of Arctic sea ice at AMSU window frequencies. *IEEE Trans. Geosci. Remote Sens.*, 46(8):2298–2306, August 2008. doi: 10.1109/TGRS.2008.916630.
- N. Mathew, G. Heygster, and C. Melsheimer. Surface emissivity of the arctic sea ice at AMSR-E frequencies. *IEEE Trans. Geosci. Remote Sens.*, 47(12):4115–4124, August 2009. doi: 10.1109/TGRS.2008.916630.
- R.T. Tonboe. The simulated sea ice thermal microwave emission at window and sounding frequencies. *Tellus A*, 62(3):333–344, May 2010. doi: 10.1111/j.1600-0870.2010.00434.x.

References II

- F. T. Ulaby, R. K. Moore, and A. K. Fung. *Microwave Remote Sensing, Active and Passive, Vol. 3: From Theory to Applications.* Artech House, Dedham, MA, 1986.
- A. Wiesmann and C. Mätzler. Microwave emission model of layered snowpacks. *Remote Sens. Environ.*, 70:307–306, 1999.

C. Melsheimer 22/22

5990

 </

C. Melsheimer

<<p>< ロ > < 回 > < 回 > < 三 > < 三 > <</p>

23/22

996

AMSR-E

- AMSR-E (Advanced Microwave Scanning Radiometer) on "Aqua"
- polar orbit, about 100 min
- conical scan (47.4° off-nadir) \Rightarrow Viewing angle on Earth: 55°
- 5 frequency [en], 2 polarization [en]

Freq. [GHz]	6.93	10.65	18.7	23.8	36.5	89.0
pol.	H,V	H,V	H,V	H,V	H,V	H,V
Resol. [km]	56	38	21	24	12	5.4

- Daily coverage of Arctic/Antarctic
- 2002 Oct. 2011

SSMIS

- SSMIS (Special Sensor Microwave Imager/Sensor)
- conical scan (45° off-nadir) ⇒viewing angle on Earth: 53.1°
- 21 frequencies (19–188 GHz), z.T. 2 polarization [en]

Freq. [GHz]	19.35	22.24	37.0	 91.0	
pol.	H,V	V	H,V	H,V	
Resol. [km]	45×74	45×74	28×45	14	

- Daily coverage of Arctic/Antarctic
- operational satellite series (Defense Meteorological Satellite Program), since 2005
- currently 3 satellites operational

Data source: AMSR-E/AMSR2 and SSMIS

- AMSR-E on sat. "Aqua"
- 2002 Oct. 2011
- AMSR2 on sat.
 "GCOM-W1 (Shizuku)"
- Since Aug. 2012
- Resolution about 20 km

- SSMIS on DMSP satellites
- Operational satellite series, since 2005

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Resolution about 50 km

Daily coverage of Arctic/Antarctic

5990