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Chapter 1

The art of developing ARTS

The aim of this section is to describe how the program is organized and to give detailed
instructions how to make extensions. That means, it is addressed to the ARTS developers,
not the users. If you only want to use ARTS, you should not need to read it. But if you
want to make changes or additions, you should definitely read this carefully, since it
can safe you a lot of work to understand how things are organized.

1.1 Organization

ARTS is written in C++ and uses the cross-platform, open-source build system CMake
(http://www.cmake.org/). It is organized in a similar manner as most GNU pack-
ages. The top-level ARTS directory is either called arts or arts-x.y, where x.y is the
release number. It contains various sub-directories, notably doc for documentation, src
for the C++ source code, and aii for the IDL interface. The document that you are reading
right now, the ARTS Developer Guide, is located in doc/uguide.

There are two different versions of the ARTS package: The development version and
the end-user version. Both contain the complete source code, the only difference is that
the developers version also includes the SVN housekeeping data. If you want to join in the
ARTS development (which we of course encourage you to do), you should write an email to
the ARTS Development mailing list. Furthermore, for serious development work you need
a computer running Unix, CMake, LaTeX, and the Doxygen program. All this is freely
and easily available on the Internet, and, what is more, all these tools are included in the
standard Linux distributions like Ubuntu or openSUSE.

The end-user version contains everything that you need in order to compile and install
ARTS in a fairly automatic manner. The only thing you should need is an ANSI-C++
compiler, and the CMake utility. Please see files arts/README and arts/INSTALL
for installation instructions. We are developing with the GNU C++ compiler, no other
compilers have been tried so far.

History
020425 Stefan Buehler: Put this part back in the AUG. Updated.
000728 Stefan Buehler: Added stuff about build system and howto cut a release.
000615 Created by Stefan Buehler.

http://www.cmake.org/
http://www.ubuntu.com/
http://www.opensuse.org/
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1.2 The ARTS build system

As mentioned above, CMake is used to construct the ARTS build system. A good introduc-
tion to the CMake system can be found in:

http://www.cmake.org/cmake/project/about.html

Using this tool makes a lot of things very easy, but also some things slightly more compli-
cated.

The support for documentation other than info and man pages is not very good in the
GNU system, so we had to use some tricks to make sure that the Doxygen automatic docu-
mentation and the User Guide work as they should.

1.2.1 Configure options

Here are some interesting options for CMake:

-DCMAKE BUILD TYPE=Release: Removes ’-g’ from the compiler flags and includes
#define NDEBUG 1 in config.h. The central switch to turn off all debugging
features (index range checking for vectors, the trace facility, assertions,...). The de-
fault configuration RelWithDebInfo turns on some optimizations and provides
debugging information.

-DCMAKE BUILD TYPE=Debug: This switch turns off all optimizations. This should
only be used if the default configuration makes debugging a certain problem difficult.

-DNO OPENMP=1: Disables the generation of multi-threaded code. CMake tries to detect
if the compiler supports OpenMP and enables it by default.

1.3 Conventions

Here are some general rules for ARTS programming:

1.3.1 Numeric types

Never use float or double explicitly, use the type Numeric instead. This is set by
CMake (to double by default). In the same way, use Index for all integers. It can
take on positive or negative values and defaults to long. To change the default types, run
cmake with the options -DINDEX=long or -DNUMERIC=double:

cmake -DINDEX=int --DNUMERIC=float ..

Note that changing the numeric type to a lower precision type than double might have
unforseen impacts on the numerical precision and could lead to wrong results. In a similar
way, reducing the index type can make it impossible to handle larger Vectors, Matrices
or Tensors. The maximum range of the index type determines the maximum number of
elements the container types can handle.

http://www.cmake.org/cmake/project/about.html
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1.3.2 Container types

Use Vector and Matrix for mathematical vectors and matrices (with elements of type Nu-
meric). Use Array<something> to create an array of somethings. Commonly used
Arrays have been predefined, they have names like ArrayOfString, ArrayOfMatrix, and so
forth.

1.3.3 Terminology

Calculations are carried out in the so called workspace (WS), on workspace variables
(WSVs). A WSV is for example the variable containing the absorption coefficients. The
WSVs are manipulated by workspace methods (WSMs). The WSMs to use are specified in
the controlfile in the same order in which they will be executed.

1.3.4 Global variables

Are not visible by default. To use them you have to declare them like this:

extern const Numeric PI;

which will make the global constant PI=3.14... available. Other important globals are:

full name Full name of the program, including version.
parameters All command line parameters.
basename Used to construct output file names.
out path Output path.
messages Controls the verbosity level.
wsv data WSV lookup data.
wsv group names Lookup table for the names of types of WSVs.
WsvMap The map associated with wsv data.
md data WSM lookup data.
MdMap The map associated with md data.
workspace The workspace itself.
species data Lookup information for spectroscopic species.
SpeciesMap The map associated with species data.

The only exception from this rule are the output streams out0 to out3, which are visible
by default.

1.3.5 Files

Always use the open output file and open input file functions to open files.
This switches on exceptions, so that any error occurring later on with this file will result
in an exception. (Currently not really implemented in the GNU compiler, but please use it
anyway.)

1.3.6 Version numbers

The package version number is set in the ChangeLog file in the top level ARTS directory.
Always increase this when you do a SVN commit, even for small changes. In such cases
increase the last digit by one. If you make a new distribution, increase the middle digit by

http://www.radiativetransfer.org/docserver-stable/all/Vector
http://www.radiativetransfer.org/docserver-stable/all/Matrix
http://www.radiativetransfer.org/docserver-stable/all/Numeric
http://www.radiativetransfer.org/docserver-stable/all/Numeric
http://www.radiativetransfer.org/docserver-stable/all/ArrayOfString
http://www.radiativetransfer.org/docserver-stable/all/ArrayOfMatrix
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one and omit the last digit. If you make a bug-fix distribution, you can add the last digit to
indicate this.

1.3.7 Header files

The global header file arts.h must be included by every file. Apart from that you have to
see yourself what header files you need. If you use functions from the C or C++ standard
library, you have to also include the appropriate header file.

1.3.8 Documentation

Doxygen is used to generate automatic source code documentation. See

http://www.stack.nl/˜dimitri/doxygen/

for information. There is a complete User manual there. At the moment we only generate
the output as HTML, although latex, man-page, and rtf format is also possible. The HTML
version is particularly useful for source code browsing, since it includes the complete source
code! You should add Doxygen headers to the following:

1. Files

2. Classes (Including all private and public members)

3. Functions

4. Global Variables

The documentation headers are comment blocks that look like the examples below.
They should be put above the definition of a function, i.e., in the .cc file. Some functions
are defined in the .h file (e.g., inline member functions). In that case the comment can be
put in the .h file.

There is an Emacs package (Doxymacs) that makes the insertion of documentation
headers particularly easy. You can find documentation of this on the Doxymacs webpage:
http://doxymacs.sourceforge.net/. To use it for ARTS (provided you have it),
put the following in your Emacs initialization file:

(require ’doxymacs)

(setq doxymacs-doxygen-style "Qt")

(defun my-doxymacs-font-lock-hook ()
(if (or (eq major-mode ’c-mode) (eq major-mode ’c++-mode))

(progn
(doxymacs-font-lock)
(doxymacs-mode))))

(add-hook ’font-lock-mode-hook ’my-doxymacs-font-lock-hook)

(setq doxymacs-doxygen-root "../doc/doxygen/html/")
(setq doxymacs-doxygen-tags "../doc/doxygen/arts.tag")

http://www.stack.nl/~dimitri/doxygen/
http://doxymacs.sourceforge.net/
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The only really important lines are the first two, where the second line is the one se-
lecting the style of documentation. The next block just turns on syntax highlighting for the
Doxygen headers, which looks nice. The last two lines are needed if you want to use the
tag lookup features (see Doxymacs documentation if you want to find out what this is). The
package allows you to automatically insert headers. The standard key-bindings are:

C-c d ? look up documentation for the symbol under the point.
C-c d r rescan your Doxygen tags file.
C-c d f insert a Doxygen comment for the next function.
C-c d i insert a Doxygen comment for the current file.
C-c d ; insert a Doxygen comment for a member variable on the

current line (like M-;).
C-c d m insert a blank multi-line Doxygen comment.
C-c d s insert a blank single-line Doxygen comment.
C-c d @ insert grouping comments around the current region.

You can call the macros also by name, e.g., doxymacs-insert-file-comment.

File comment

Generated by doxymacs-insert-file-comment.

/*!
\file dummy.cc
\author John Doe <john.doe (at) example.com>
\date 2011-03-02

\brief A dummy file.

This file has no purpose at all,
it just servers as an example...

*/

Function comment

Generated by doxymacs-insert-function-comment. If arguments are modified
by the function you should add ‘[out]’ after the \param command, just like for the pa-
rameter a in the example below. If a parameter is both input and output, you should say
‘[in,out]’. Parameters that are passed by value or not modified inside the function should
carry an ‘[in]’. The documentation for each parameter should start with a capital letter and
end with a period, like in the example below.

Author and date tags are not inserted by default, since they would be overkill if you
have many small functions. However, you should include them for important functions.

//! A dummy function.
/*!
This function has no purpose at all,
it just serves as an example...

\param[out] a This parameter is initialized by the
function.

\param[in,out] b This parameter is modified by the function.
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\param[in] c This parameter used but not changed by the function.

\return Dummy value computed from a and b.

*/
int dummy(int& a, int& b, int c);

Generic multi-line comment

Generated by doxymacs-insert-blank-multiline-comment.

//! A dummy comment.
/*!
Some more elaborate description about this variable,
class, or whatever.

*/

Generic single-line comment

Generated by doxymacs-insert-blank-singleline-comment.

//! Short comment here.

1.4 Extending ARTS

1.4.1 How to add a workspace variable

You should read Section 2.2 to understand what workspace variables are. Here is just the
practical description how a new variable can be added.

1. Create a record entry in file workspace.cc. (Just add another one of the
wsv data.push back blocks.) Take the already existing entries as templates. The
ARTS concept works best if WSVs are only of a rather limited number of different
types, so that generic WSMs can be used extensively, for example for IO.

The name must be exactly like you use it in the source code, because this is used to
generate interface functions.

Make sure that the documentation string you give explains the variable and its purpose
well. In particular, state the dimensions (in the case of matrices) and the units!
This string is used for the online documentation. Please take some time to write it
carefully. Use the template at the beginning of function define wsv data() in
file workspace.cc as a guideline.

2. That’s it!

1.4.2 How to add a workspace variable group

You should read Section 2.2 to understand what workspace variable groups are. Here is just
the practical description how a new group can be added.

1. Add a wsv group names.push back("your type") function to the function
define wsv group names() in groups.cc. The name must be exactly like
you use it in the source code, because this is used to generate interface functions.
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2. XML reading/writing routines are mandatory for each workspace variable group.
Two steps are necessary to add xml support for the new group:

(a) Implement an xml read from stream and xml write to stream
function. Depending on the type of the group the implementa-
tion goes into one of the three files xml io basic types.cc,
xml io compound types.cc, or xml io array types.cc. Ba-
sic types are for example Index or Numeric. Compound types are structures
and classes. And array types are arrays of basic or compound types. Also add
the function declaration in the corresponding .h file.

(b) Add an explicit instantiation for xml read from file<GROUP> and
xml write to file<GROUP> to xml io instantiation.h.

3. If your new group does not implement the output operator (operator<<), you
have to add an explicit implementation of the Print function in m general.h and
m general.cc.

4. That’s it! (But as stated above, use this feature wisely)

1.4.3 How to add a workspace method

You should read Section 2.3 to understand what workspace methods are. Here is just the
practical description how a new method can be added.

1. Create an entry in the function define md data in file methods.cc. (Make a
copy of an existing entry (one of the md data.push back(...) blocks) and edit
it to fit your new method.) Don’t forget the documentation string! Please refer to the
example at the beginning of the file to see how to format it.

2. Run: make.

3. Look in auto md.h. There is a new function prototype

void <YourNewMethod>(...)

4. Add your function to one of the .cc files which contain method functions. Such files
must have names starting with m . (See separate HowTo if you want to create a new
source file.) The header of your function must be compatible with the prototype in
auto md.h.

5. Check that everything looks nice by running

arts -d YourNewMethod

If necessary, change the documentation string.

6. Thats it!

http://www.radiativetransfer.org/docserver-stable/all/Print
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1.4.4 How to add a source code file

1. Create your file. Names of files containing workspace methods should start with m .

2. You have to register your file in the file src/CMakeLists.txt. This file states
which source files are needed for arts. In the usual case, you just have to add your
.cc file to the list of source files of the artscore library. Header files are not added to
this list.

3. Go to src and run: svn add <my file> to make your file known to SVN.

1.4.5 How to add a test case

1. Tests are located in subdirectories in the controlfiles folder. Instrument spe-
cific test cases are in the controlfiles/instruments folder, all other cases
are located in the controlfiles/artscomponents folder. Create a new sub-
directory in the appropriate folder. If your test is closely related to another test case
you can skip this step and instead add it to one of the existing subdirectories.

2. Create your own test controlfile. The filename should start with
Test followed by the name of the subdirectory it is located in, e.g.
controlfiles/artscomponents/doit/TestDOIT.arts.

If the subdirectory contains more than one test controlfile, append a short descrip-
tive text to the end of the filename like controlfiles/artscomponents/
montecarlo/TestMonteCarloGaussian.arts.

3. Copy all required input files into the subdirectory. Input data that is shared among
several test cases should be placed in controlfiles/testdata.

4. Add an entry for your test case in controlfiles/CMakeLists.txt.

1.5 SVN issues

The arts project is controlled by Subversion. This section describes some basic SVN com-
mands. For more information see the extensive SVN documentation:

http://svnbook.red-bean.com/

1.5.1 How to check out arts

1. Go to a temporary directory.

2. Run: svn co https://arts.mi.uni-hamburg.de/svn/rt/arts/trunk
arts

1.5.2 How to update (if you already have a copy)

1. Go to the top ARTS directory (called simply arts).

http://svnbook.red-bean.com/
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2. Run: svn update

IMPORTANT! Always update, before you start to make changes to the program,
especially after a longer pause. If you edit an outdated copy, it will be a lot more
work to bring your changes into the current copy of the program.

1.5.3 How to commit your changes

1. You should make sure that the program compiles and runs without obvious errors
before you commit.

2. If you have created a new source file, make it known to SVN by running the command
svn add <my file> in the directory where the file resides.

In general, when you run svn update, it will warn you about any files it doesn’t
know by marking them with a ?. Files that are created during the compilation process,
but should not be part of the package are ignored by SVN. You can view the list of
ignored files for the current directory with svn propget svn:ignore .. The
list can be edited with svn propedit svn:ignore ..

3. Have you added the documentation for your new features?

4. Open the file ChangeLog in the top level ARTS directory with your favorite editor.

With Emacs, you can very easily add an entry by typing either

M-x add-change-log-entry

or C-x 4 a.

Specify the new version number and describe your changes.

These keystrokes work also while you are editing some other file in Emacs. Thus
it is best to write your ChangeLog entry already while you work on a file. When-
ever you make a change to a file, there should be a ChangeLog Entry!

5. Make sure that you have saved all your files. Go to the top level ARTS directory and
run: svn commit.

6. This will pop up an editor. Use the mouse to cut and paste the ChangeLog message
also to this editor window. Safe the file and exit the editor. If you made changes
in different directories, another editor will pop up, already containing your message.
Save again and exit. Do this until no more editors come up. (Note: This works well
if you set

export EDITOR=xedit

in your shell startup file.

With smart editors there can be problems, because they might refuse to safe your file
if you haven’t made changes to it. With xedit you just have to push the save button
twice to override.

7. Tell the other developers about it. The best way to do this is to send an email to
arts dev.mi@lists.uni-hamburg.de.
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1.5.4 How to move your arts working directory

In general it is no problem to move your working directory. Only when you are using
a build directory that is located outside the ARTS source tree, you have rerun cmake
PATHTOARTS in that directory.

1.6 Debugging (use of assert)

The idea behind assert is simple. Suppose that at a certain point in your code, you expect
two variables to be equal. If this expectation is a precondition that must be satisfied in order
for the subsequent code to execute correctly, you must assert it with a statement like this:

assert(var1 == var2);

In general assert takes as argument a boolean expression. If the boolean expression is
true, execution continues. Otherwise the abort system call is invoked and the program
execution is stopped. If a bug prevents the precondition from being true, then you can
trace the bug at the point where the precondition breaks down instead of further down in
execution or not at all. The assert call is implemented as a C preprocessor macro, so it
can be enabled or disabled at will.

In ARTS, you don’t have to do this manually, as long as your source file includes
arts.h either directly or indirectly. Instead, assertions are turned on and off with the
global NDEBUG preprocessor macro, which is set or unset automatically by the cmake
build configuration. Assertions are enabled in the default cmake build configuration
(-DCMAKE BUILD TYPE=RelWithDebInfo). They are turned off in the release con-
figuration (-DCMAKE BUILD TYPE=Release).

If your program is stopped by an assertion failure, then the first thing you should do is
to find out where the error happens. To do this, run the program under the GDB debugger.
First invoke the debugger:

gdb arts

You have to give the full path to the ARTS executable. Then set a breakpoint at the assertion
failure:

(gdb) break assert fail

(Note the two leading underscores!) Now run the program:

(gdb) run

Instead of just exiting, under the debugger the program will be paused when the asser-
tion fails, and you will get back the debugger prompt. Now type:

(gdb) where

to see where the assertion failure happened. You can use the print command to look at
the contents of variables and you can use the up and down commands to navigate the stack.
For more information, see the GDB documentation or type help at the prompt of GDB.

For ARTS, the assertion failures mostly happen inside the Tensor / Matrix / Vector
package (usually because you triggered a range check error, i.e., you tried to read or write
beyond array bounds). In this case the up command of GDB is particularly useful. If you
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give this a couple of times you will finally end up in the part of your code that caused the
error.

Recommendation: In Emacs there is a special GDB mode. With this you can very
conveniently step through your code.
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Chapter 2

The workspace

This chapter deals with the main components of ARTS: Workspace variables (WSVs) and
workspace methods (WSMs). Furthermore, it explains the use of agendas, a special group
of WSVs.

2.1 Implementation files

The most important files are:

• workspace.cc:
Definition and documentation of WSVs.

• methods.cc:
Definition and documentation of WSMs. The implementations of WSMs reside in
files named m something.cc.

• agendas.cc:
Definition and documentation of agendas.

It is very likely that you will have to edit these. Less likely, but possibly, you also have to
edit:

• groups.cc:
Definition of WSV groups.

When ARTS is built, a number of source code files are generated automatically. They
are listed here in the order in which they are generated:

• auto workspace.h:
Generated from groups.cc.

• auto md.h, auto md.cc:
Generated from auto workspace.h, agendas.cc, groups.cc, and
methods.cc.

History
110622 Updated by Oliver Lemke.
020605 Created by Stefan Buehler.
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This is achieved by a set of simple C++ programs:

• make auto workspace h.cc

• make auto md h.cc

• make auto md cc.cc

The meaning of the names should be self-explanatory. There is one program for each file
to be generated. The generation of the auto files happens automatically when you do a
make. Therefore, never edit any of these files.

Next, there are some files that contain the internal implementation of WSVs and WSMs.
These are:

• wsv aux.h:
Implementation of class WsvRecord, which stores the lookup information for one
WSV, plus auxiliary stuff for the workspace.

• methods.h, methods aux.cc:
Implementation of class MdRecord, which stores the lookup information for one
WSM.

Finally, there are some files that contain the internal implementation of agendas. These
are:

• agenda class.h, agenda class.cc:
Implementation of class MRecord, which stores runtime information for one WSM,
and class Agenda, which stores an agenda.

• agenda record.h, agenda record.cc:
Implementation of class AgRecord, which is used to store agenda lookup informa-
tion.

As mentioned above, you will not have to modify any of the implementation files, they
are listed here just for reference. Normally, you only have to modify workspace.cc,
methods.cc, and agendas.cc.

2.2 Workspace Variables or WSVs

All important variables in ARTS are WSVs. This means that they can be manipulated by a
list of WSMs, which is specified in the ARTS controlfile. There exists a predefined list of
possible WSVs. This list defines the workspace. One can think of each WSV as a ‘slot’ in
the workspace: The WSV can be either set, or unset. Set means that the WSV has a well-
defined content, unset means that it has no well-defined content. At the start of an ARTS
job all WSVs are unset.

WSVs are defined in the file workspace.cc. A typical definition looks like this:

wsv_data.push_back
(WsvRecord
( NAME( "f_grid" ),

DESCRIPTION
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(
"The frequency grid for monochromatic pencil beam\n"
"calculations.\n"
"\n"
"Usage: Set by the user.\n"
"\n"
"Unit: Hz"
),
GROUP( "Vector" )));

All WSV definitions have the same three elements:

1. The name, exactly the same name has to be used in the code.

2. The description, which is normally much longer than in the example here. It must
fully describe the WSV, its purpose, and its normal usage. See file workspace.cc
for instructions how to write the documentation.

3. The group to which the WSV belongs. You can think of a group as something similar
to a C++ data type. The WSV in the example belongs to the group Vector. The
allowed groups are defined in file groups.cc.

See Section 1.4 for explicit instructions how to add a new WSV to ARTS.

2.3 Workspace Methods or WSMs

WSMs manipulate WSVs to produce other WSVs. There are three kinds of WSMs:

1. Specific WSMs.

2. Generic WSMs.

3. Agenda WSMs.

As in the case of WSVs, there is a central place in ARTS where information on the available
WSMs is stored. This place is the file methods.cc. It contains a record for each WSM.
Here is an example:

md_data_raw.push_back
( MdRecord

( NAME( "r_geoidSpherical" ),
DESCRIPTION
(
"Sets the geoid to be a perfect sphere.\n"
"\n"
"The radius of the sphere is selected by the generic argument r.\n"

),
AUTHORS( "Patrick Eriksson" ),
OUT( "r_geoid" ),
GOUT(),
GOUT_TYPE(),
GOUT_DESC(),
IN( "atmosphere_dim", "lat_grid", "lon_grid" ),
GIN( "r" ),

http://www.radiativetransfer.org/docserver-stable/all/Vector
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GIN_TYPE( "Numeric" ),
GIN_DEFAULT( NODEF ),
GIN_DESC( "Radius of the geoid sphere."),
));

All WSM definitions have the same elements:

1. The NAME, exactly as in the code.

2. The DESCRIPTION. This must fully describe the WSM, its purpose, and its normal
usage. See file methods.cc for instructions how to write the documentation.

3. The OUT. This is a list of WSV names. All these WSVs are set by this WSM.

4. The GOUT. This is a list descriptive names for the generic outputs.

5. The GOUT TYPE. This is a list of WSV group names. This defines the group to
which the generic output arguments must belong (see below).

6. The GOUT DESC, a list of short descriptions for the generic outputs.

7. The IN. This is a list of WSV names. All these WSVs are required as input by this
WSM. This means they must have been set before.

8. The GIN, a list of descriptive names for the generic inputs.

9. The GIN TYPE. This is a list of WSV group names. This defines the group to which
the generic input arguments must belong.

10. The GIN DEFAULT, a list of default values for the generic inputs. NODEF means that
the generic input has no default and the user has to set it in the control file.

11. The GIN DESC, a list of short descriptions for the generic inputs.

2.3.1 Specific WSMs
md_data_raw.push_back

( MdRecord
( NAME( "p_gridFromGasAbsLookup" ),

DESCRIPTION
(
"Sets *p_grid* to the frequency grid of *abs_lookup*.\n"
),
AUTHORS( "Patrick Eriksson" ),
OUT( "p_grid" ),
GOUT(),
GOUT_TYPE(),
GOUT_DESC(),
IN( "abs_lookup" ),
GIN(),
GIN_TYPE(),
GIN_DEFAULT(),
GIN_DESC()
));
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For this type of WSM the output and input is fixed. Fields GIN and GOUT are empty.
The example above belongs in this category. It sets the WSV p grid, using the WSV
abs lookup as input.

To call this method in the controlfile, you just have to write p gridFromGasAbsLookup.

2.3.2 Generic WSMs

This class of WSMs is more powerful, because it can be applied to any WSV that belongs
to the right group. A good example is:

md_data_raw.push_back
( MdRecord

( NAME( "VectorSetConstant" ),
DESCRIPTION
(
"Creates a vector and sets all elements to the specified value.\n"
"\n"
"The vector length is determined by *nelem*.\n"
),

AUTHORS( "Patrick Eriksson" ),
OUT(),
GOUT( "v" ),
GOUT_TYPE( "Vector" ),
GOUT_DESC( "Variable to initialize." ),
IN( "nelem" ),
GIN( "value" ),
GIN_TYPE( "Numeric" ),
GIN_DEFAULT( NODEF ),
GIN_DESC( "Vector value." )
));

As you probably have guessed, this WSM resizes the output vector to have nelem elements
and sets all elements to the given value. You would use it as follows:

IndexSet(nelem, 10)
VectorCreate(myvector)
VectorSetConstant(myvector, nelem, 0)

This would create the WSV myvector and then fill it with 10 elements set to 1.
Note that output arguments always come first, input arguments last. Try arts -d
VectorSetConstant to get more information on this method. (See Section 1.2.3 in
ARTS User Guide for information on the built-in documentation.)
For basic types it is allowed to pass values instead of variables directly to the WSM. In that
case, the above example would look like this:

VectorCreate(myvector)
VectorSetConstant(myvector, 10, 0)

http://www.radiativetransfer.org/docserver-stable/all/p_grid
http://www.radiativetransfer.org/docserver-stable/all/abs_lookup
http://www.radiativetransfer.org/docserver-stable/all/p_gridFromGasAbsLookup
http://www.radiativetransfer.org/docserver-stable/all/nelem
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2.3.3 Agenda WSMs

2.4 Agendas

2.4.1 Introduction

Agendas are a special incarnation of a WSM. At runtime an arbitrary number of WSMs
can be added to an agenda. On invocation, the agenda will execute its methods one after
the other. The inputs and outputs defined for the agenda must be satisfied by the invoked
WSMs. E.g., if an agenda has f grid in its list of output WSVs, a WSM which generates
f grid must be added to the agenda in the control file.

Agendas run their methods in a separate scope. Although WSMs invoked by an agenda
have full access to all workspace variables, only the WSVs defined as output of the agenda
will keep their values after the agenda execution. All other WSVs retain the values from
before the agenda run.

Even though it is possible to execute agendas directly from the control file with the
AgendaExecute method, the more common and intended use case is the internal invocation
by other WSMs. This adds a considerable amount of flexibility to arts. The iyEmissionStan-
dard method for example calculates (besides other components) the emission term. Without
the means of an agenda, it would only be possible to use always the same method for the
emission calculation. By the use of an agenda the user can choose between different meth-
ods to calculate the emission and plug them into the emission agenda in the control file:

AgendaSet( blackbody\_radiation\_agenda ){
blackbody\_radiationPlanck

}

http://www.radiativetransfer.org/docserver-stable/all/f_grid
http://www.radiativetransfer.org/docserver-stable/all/f_grid
http://www.radiativetransfer.org/docserver-stable/all/AgendaExecute
http://www.radiativetransfer.org/docserver-stable/all/iyEmissionStandard
http://www.radiativetransfer.org/docserver-stable/all/iyEmissionStandard


Chapter 3

Vectors, matrices, tensors, and arrays

This section describes how vectors and matrices are implemented in ARTS and how they
are used. Furthermore it describes how arrays of arbitrary type can be constructed and used.

3.1 Implementation files

The Matrix and Vector classes described below reside in the files:

• matpackI.h

• make vector.h

• matpackI.cc

• make vector.cc

Tensors of order 3 to 7 reside in the files:

• matpackIII.h

• matpackIV.h

• matpackV.h

• matpackVI.h

• matpackVII.h

The template class Array (also described below) is implemented in the files:

• array.h

• make array.h

History
030807 Sparse added by Mattias Ekström.
030109 Documentation for using jokers without Range added by Stefan Buehler.
020516 Tensors added by Stefan Buehler.
011018 Created and written by Stefan Buehler.

http://www.radiativetransfer.org/docserver-stable/all/Matrix
http://www.radiativetransfer.org/docserver-stable/all/Vector
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The Sparse class is described in the file:

• matpackII.h

The file test matpack.cc contains test cases and usage examples. For Sparse there
is a separate test file, test sparse.cc.

3.2 Vectors

The class Vector implements the mathematical concept of a vector. (Surprise, surprise.)
This means that:

• A Vector contains a list of floating point values of type Numeric.

• A Vector can be multiplied with another Vector (scalar product), or with a Matrix.

• Sub-ranges of a Vector can easily be accessed, and used as if they were Vectors.

• Resizing a Vector is expensive and should be avoided.

3.2.1 Constructing a Vector

You can construct an object of class Vector in any of these ways:

Vector a; // Create empty Vector.
Vector b(3); // Create Vector of length 3, if

// created like this it will contain
// arbitrary values.

Vector c(3,0.0); // Create Vector of length 3, and
// fill it with 0.

Vector d=c; // Make d a copy of c.

Vector e(1,5,1); // 1, 2, 3, 4, 5
Vector f(1,5,.5); // 1, 1.5, 2, 2.5, 3
Vector g(5,5,-1); // 5, 4, 3, 2, 1

The last three examples all use the same constructor, which takes the three arguments
‘start’, ‘extent’, and ‘stride’. It will create a Vector containing ‘extent’ elements, starting
with ‘start’, with a step of ‘stride’.

There also exists a special sub-class of Vector that can be initialized explicitly. This
must be a special class in order to avoid ambiguities with the standard constructors. Usage:

MakeVector a(1.0,2.0,3.0); // Creates a vector of length 3
// containing the values
// 1.0, 2.0, and 3.0.

You can use MakeVectors just like Vectors, except that the constructors are different.
Otherwise you can mix them freely with Vectors.

http://www.radiativetransfer.org/docserver-stable/all/Sparse
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3.2.2 VectorViews

An object of class VectorView is, like the name says, just another view on an existing
Vector. It does not have its own data. This has the important consequence that it cannot be
resized, since that would mess up the original Vector that the view is referring to. You can
create VectorViews from Vectors using the index operator ‘[]’, the class Range, and the
special joker object. Examples:

MakeVector x(1,2,3,4,5,6,7);
VectorView a = x; // Now a refers to the

// whole of x;
VectorView b = x[Range(joker)]; // Same effect.
VectorView c = x[Range(0,2)]; // Take 2 elements of x,

// starting at the
// beginning,
// in this case: 1,2.

VectorView d = x[Range(0,3,2)]; // In this case: 1,3,5.
VectorView e = x[Range(3,joker)]; // In this case: 4,5,6,7.

As you can see, most useful ways to create VectorViews involve the Range class. The
general constructor to this class takes three arguments, ‘start’, ‘extent’, and ‘stride’. This
means that you will select ‘extent’ elements from the Vector, starting with index ‘start’, with
a step-width of stride. Note that indices are 0-based, so 0 refers to the first element. The last
argument, ‘stride’, can be omitted, in that case the default of 1 is assumed. As a special case,
‘extent’==joker means ‘to the end’, and calling Range with only one argument joker
means ‘all elements’.

Usually, you will not have to use VectorView explicitly, because you can use expressions
like:

Vector a(1,5,1); // a = 1,2,3,4,5
Vector b = a[Range(1,3)]; // b = 2,3,4

However, VectorView and the related class ConstVectorView are extremely use-
ful as the argument types of functions operating on Vectors. You should define your func-
tions like this:

void silly_function(VectorView a, // Output argument
ConstVectorView b // Input argument

// (read only)
)

{
// Do some silly stuff with a and b.

}

Note that there must not be any ‘&’ after VectorView or ConstVectorView. In other
words they have to be passed by value, not by reference. This is ok, since they do not contain
the actual data, so that passing by value is efficient. Passing VectorViews by reference is
forbidden.

You should use these kind of arguments for all input Vectors, and also for the output if
you have a function that does not resize the output Vector. This has the great advantage that
you can call the function with Vector sub-ranges, e.g.,
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Vector a(1,5,1); // a = 1,2,3,4,5
Vector b(3); // Set size of b.
silly_function(b,a[Range(0,3)]); // Call fuction with

// sub-range of a.

An exception to this rule are workspace methods, which use conventional argument
types const Vector& for input and Vector& for output.

3.2.3 What you can do with a Vector (or VectorView)

All examples below (except for the first) assume that a is a Vector, MakeVector, or Vec-
torView.

Resize (only for Vector, not for VectorView!):

a.resize(5);

This makes a a 5 element vector. The new Vector is not initialized (i.e., the contents will be
unpredictable). Also, note that the previous content will be completely lost. Appending to
a Vector is not possible.

Get the number of elements:

cout << a.nelem();

Sum up all elements:

cout << a.sum();

Element access:

cout << a[3]; // Print 4th element.
a[0] = 3.5; // Assign 3.5 to first element.

Note that we use 0-based indexing! Furthermore note that the operator ‘[]’ can be also
used with Range, as explained above.

Copying Vectors:

Vector b;
b = a;

In this case the size of b will be adjusted to that of a automatically. Maybe you have noticed
that there is a way to formulate the example above in even shorter fashion:

Vector b = a;

The result is exactly the same. Note, though, that in this case b is constructed from a, not
copied (see section about constructing Vectors above).
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Copying in connection with views:

This one is a bit tricky. Obviously, the size of views can not be adjusted, because a view
is just some selection of the underlying object. The ‘=’ operator in this case copies the
contents, so the sizes of the left-hand and right-hand argument must match. VectorView
internally uses assertions to make sure of this. So, if you get an assertion failure one reason
could be that you forgot to make the target the correct size. Here is an example:

b[Range(5,5,-1)] = a[Range(3,5)]; // Copy 5 elements from
// a to b, reversing
// the order and starting
// with index 3 in a.

Great, isn’t it?

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

Vector a(1,3,1), b(3,1); // a = 1,2,3; b = 1,1,1
a *= 2; // a = 2,4,6

// Similarly, /=, +=, -=
a += b; // a = 3,5,7

// Similarly, -=, *=, /=
a += a; // a = 6,10,14

// So a can appear on both sides.

All these operate element-wise. Note, that there are no return versions of these operators
(i.e., expressions like b = a+1 are not possible). This is again for efficiency reasons. It
is currently an active area of research in programming techniques how to make this kind of
expression efficient. None of the available solutions works, so ARTS has to live without it.

Maximum, minimum and mean:

cout << max(a);
cout << min(a);
cout << mean(a);

Scalar product:

cout << a*a;

This is an exception to the rule not to have return versions of operators. The reason is
quite obvious: The return value is only a scalar.

Arbitrary single-argument math functions:

Vector b(a.nelem());
transform(b,sin,a); // b = sin(a)
transform(b,cos,b); // b = sin(b)

// So b can appear on both sides.
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The transform function operates on each element of a with the function you specify and
puts the result in b. Note that the order of the arguments is swapped compared to the old
function trans that we had in the pre-Matpack era.

3.3 Matrices

The class Matrix implements the mathematical concept of a matrix. (Who would have
guessed this?) This means that:

• A Matrix contains floating point values of type Numeric.

• The values are arranged in rows and columns and can be accessed by indices. The
first index is the row, the second the column. In other words, we use row-major order,
similar to C, Matlab, and most math textbooks. Note, however, that some languages
like FORTRAN and IDL use column-major order.

• A Matrix can be multiplied with a Vector, or with another Matrix.

• A sub-range of a Matrix in both dimensions (submatrix) can easily be accessed, and
used as if it was just a normal matrix.

• Resizing a Matrix is expensive and should be avoided.

3.3.1 Constructing a Matrix

You can construct an object of class Matrix in any of these ways:

Matrix a; // Create empty Matrix.
Matrix b(3,4); // Create Matrix with 3 rows

// and 4 columns. When
// created like this it will contain
// arbitrary values.

Matrix c(3,4,0.0); // Similar, but
// fill it with 0.

Matrix d=c; // Make d a copy of c.

That is all. More fancy constructors, like for Vector, do not exist for Matrix. There is
also no equivalent to the MakeVector class.

3.3.2 MatrixViews

A MatrixView is a view on an existing Matrix, in the same way as a VectorView is a
view on an existing Vector. Like a VectorView, a MatrixView cannot be resized and does
not contain the actual data. A view is generated by using Ranges:

Matrix x(10,20); // Create 10x20 matrix.
MatrixView a = x; // Now a refers to the

// whole of x;
MatrixView b = x(Range(joker),Range(joker));

// Same effect.
MatrixView c = x[Range(0,2),Range(0,2)];

// 2x2 sub-matrix.

http://www.radiativetransfer.org/docserver-stable/all/Numeric
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You probably get the idea. Note that the second argument of Range gives the number of
elements to take, not the index of the last element. See the section about Vectors for more
examples how to use Range. You can use joker, and also the third argument of Range to
select only every nth row, or column, or reverse the order of the rows or columns.

In analogy to the Vector case, you should use the two classes MatrixView and
ConstMatrixView as function arguments. Please refer to the discussion in the Vec-
tor section for details. As in the case of VectorViews, all arguments of these types should be
passed by value, not by reference. Also, similar to the Vector case, workspace methods are
the exception, because they have to use the conventional const Matrix& or Matrix&
as input/output arguments.

3.3.3 What you can do with a Matrix (or MatrixView)

All examples below (except for the first) assume that a is a Matrix or MatrixView.

Resize (only for Matrix, not for MatrixView!):

a.resize(5,10);

This makes a a 5x10 Matrix (5 rows, 10 columns). The new Matrix is not initialized (i.e.,
the contents will be unpredictable). Also, note that the previous content will be completely
lost.

Get the number of rows or columns:

cout << a.nrows();
cout << a.ncols();

Refer to a row or column:

Vector x = a(0,Range(joker)); // First row.
Vector y = a(Range(joker),a.ncols()-1); // Last column.

Of course, you can use more complicated Range expressions to refer to only parts of a
row or column. However, the case that you want all elements of a given dimension is so
much more common than the more sophisticated uses of the Range class, that it is worth to
introduce a simplified notation for this case. Therefore, you are allowed to omit the Range
and just write:

Vector x = a(0,joker); // First row.
Vector y = a(joker,a.ncols()-1); // Last column.

Technically, expressions of this kind return the type VectorView. This means, they
can be used in all cases where an object of that type is expected, for example with the
function defined in Section 3.2.2:

silly_function(a(0,Range(joker)),
a(1,Range(joker))); // Call silly_function

// with first and
// second row of a.
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Element access:

cout << a(3,4); // Print that element.
a(0,0) = 3.5; // Assign 3.5 to the top-left element

Note that we use 0-based indexing! Furthermore note that the operator ‘()’ can be also
used with one or two Range arguments, as explained above. To summarize:

• (Index,Index) returns Numeric (element access).

• (Index,Range) or (Range,Index) returns VectorView (row or column access).

• (Range,Range) returns MatrixView (sub-matrix access).

You may find it unlogical, that Matrix uses ‘()’ for indexing, whereas Vector uses ‘[]’.
However, using ‘[]’ for Matrix is not possible, since it can have only one argument. On the
other hand, using ‘()’ for Vector element access seemed not a good idea, since that would
break with the established use of ‘[]’ for element access in C and C++.

Copying Matrices:

Matrix b;
b = a;

As in the case of Vectors, the ‘=’ operator adjusts the size of the target automatically.

Copying in connection with views:

As in the case of Vectors, the ‘=’ operator copies only the contents for views, so the dimen-
sions must match. An attempt to justify this behavior has been made above in the Section
about Vector. As for Vector, you can use ‘=’ with complicated expressions. Here is a more
elaborate example:

b(Range(0,3),Range(0,4)) =
a(Range(10,3),Range(3,4,-1)); // Copy a row 10-12,

// column 0-3
// to b row 0-2,
// column 0-3, reversing
// the order of columns.

Note that in this case the dimensions must match exactly, as explained in the Section about
Vector.

If you do not understand the use of Range here, refer to Section 3.2.2.

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

You can use the operators ‘+=’, ‘-=’, ‘*=’, and ‘/=’, which operate element-vise, just as for
Vector.



3.3 MATRICES 27

Maximum, minimum and mean:

cout << max(a);
cout << min(a);
cout << mean(a);

These operations act on the complete matrix. Hence, the output is a scalar value.

Arbitrary single-argument math functions:

The function transform works just like for Vector.

Transpose:

Matrix b = transpose(a); // Make b the transpose of a.

The function transpose creates a MatrixView, for which rows and columns are in-
terchanged. Note, that only the way the data is accessed is changed, not the data itself. So
Matrix a in the example above is not changed. For this reason, transposing is very efficient.
You can use transpose(a) instead of a in any matrix expression practically without
additional cost. (This is not strictly true, after all, the view has to be generated and passed.
But that cost should be negligible except for very small matrices.)

Matrix multiplication:

// Matrix-Vector:
Vector b(a.nrows()), c(a.ncols());
mult(b,a,c); // b = a * c

// Matrix-Matrix:
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult(d,a,e); // d = a * e

Note, that the result is put in the first argument, consistent with the general ARTS policy,
but different from the old MTL based multiplication function. Furthermore note, that as you
can see from the first example, a Vector is always considered to be a 1-column Matrix.

Important: The matrices or vectors that you give for the three arguments must not
overlap, or you will get garbage. In particular, this means that

mult(x,y,x); // x = y * x FORBIDDEN!!!

does not work. No, even worse: It works, but it gives the wrong result. The reason for this
behavior is that the result is constructed in the first argument variable. If that is also an input
variable it will change while it is multiplied, which will lead to a different result. There is
no efficient way to detect overlap, so the only way to allow input and output arguments to
be identical would be to use another internal dummy variable to store the result. However,
this would be much less efficient.

Another thing: You can use transpose, of course. These two examples should obviously
give the same result:

// Define b and c as in first example above.
mult(c,transpose(a),b); // c = a’ * b

// Vector-Matrix:
mult(transpose(c),transpose(b),a); // c’ = b’ * a
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3.4 Tensors

ARTS has tensors with rank 3 to 7. They are called Tensor3, Tensor4, Tensor5,
Tensor6, Tensor7, and work very much like matrices, just with more dimensions. Some
properties:

• A Tensor contains floating point values of type Numeric.

• The rank of a tensor means the number of dimensions, so a Tensor4 has 4 dimensions.
Tensors of different rank are different classes. That means, the rank is fixed at compile
time and cannot be changed at runtime. We will use rank and dimension as synonyms.

• The different dimensions are named:

– Library

– Vitrine

– Shelf

– Book

– Page

– Row

– Column

For example, Tensor3 b(2,4,3) defines a third order tensor with 2 pages, 4
rows, and 3 columns. Note that the column dimension is always last. (Incidentally, a
Matrix behaves exactly like a second order tensor, except that it has some additional
features.)

• A sub-range of a tensor in all dimensions (sub tensor) can easily be accessed, and
used as if it was just a normal tensor.

• More importantly, you can easily access lower dimensional ‘slices’ of a tensor.

• Resizing a tensor is expensive and should be avoided.

3.4.1 Constructing a tensor

You can construct an object of a tensor class like this:

Tensor7 a; // Create empty tensor of rank 7
Tensor3 b(2,4,3); // 2 pages, 4 rows, 3 columns
Tensor3 c(2,4,3,0.0); // Similar, but

// fill it with 0.

Tensor3 d=c; // Make d a copy of c.

3.4.2 Tensor views

Tensor views work exactly like matrix and vector views. Example:

Tensor4 a(10,20,5,4);
Tensor3View b = a(3,Range(1,3),joker,joker);

http://www.radiativetransfer.org/docserver-stable/all/Numeric
http://www.radiativetransfer.org/docserver-stable/all/Tensor4
http://www.radiativetransfer.org/docserver-stable/all/Matrix
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If you have read the previous sections carefully, it should be clear what this expression does.
This is what is meant by slicing: You can easily create a view of a tensor that picks out

an object of lower dimension. Note that you can use either an Index or a Range argument1

for any of the dimensions. The dimensionality of the result will adjust accordingly, as in the
example above.

Everything that was said about matrix and vector views holds also here. In particular,
please always use views as function arguments.

3.4.3 What you can do with a tensor (or tensor view)

All examples below (except for the first) assume that a is a Tensor7 or Tensor7View.

Resize (only for tensors, not for views):

a.resize(5, 10, 4, 5, 3, 6, 8);

This makes a the requested size. The new tensor is not initialized (i.e., the contents will be
unpredictable). Also, note that the previous content will be completely lost.

Get the extent of the various dimensions:

Index nl = a.nlibraries();
Index nv = a.nvitrines();
Index ns = a.nshelves();
Index nb = a.nbooks();
Index np = a.npages();
Index nr = a.nrows();
Index nc = a.ncols();

Which of these functions are available depends on the dimension of your tensor. For
example, nlibraries() is only available for Tensor7. Note, that I took care that the
first letters of the dimension names are unique, which is very convenient if you prefer short
names for your variables that refer so some dimension of a tensor.

Slicing:

Vector x = a(0,2,1,8,3,4,joker);
// Select row 4
// on page 3
// in book 8
// on shelf 1
// in vitrine 2
// in library 0
// and copy it to the Vector x.

Any Range or Index expression is allowed in any of the arguments, of course.

Element access:

cout << a(3,4,0,0,0,0,0); // Print that element.
a(0,0,0,0,0,0,0) = 3.5; // Assign 3.5 to this element.

1Using just joker is equivalent to using Range(joker), as explained in Section 3.3.

http://www.radiativetransfer.org/docserver-stable/all/Index
http://www.radiativetransfer.org/docserver-stable/all/Tensor7
http://www.radiativetransfer.org/docserver-stable/all/Index
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Copying tensors:

Works exactly like copying matrices. Size of output argument is adjusted for Tensors, but
must already have the correct size for TensorViews.

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

You can use the operators ‘+=’, ‘-=’, ‘*/’, and ‘/=’, which operate element-vise, just as for
Vector.

Maximum and minimum:

cout << max(a);
cout << min(a);

Arbitrary single-argument math functions:

The function transform works just like for Vector.

3.4.4 Making things appear larger than they are

Assume that you have written a function that performs some calculation for a Tensor5:

void my_function(Tensor5View x);

Can you call this function with a Tensor4? Yes, you can:

Tensor4 a;
Tensor5View b = a; // The extent of the first

// dimension of b will be 1.
my_function(b); // Call the function.

In general, you can always create a view that is one dimension bigger than what you
have. The leading dimension then has extent 1. There is one important exception: If you
interpret a Vector as a Matrix, the trailing dimension will be 1, not the leading dimension.
This is necessary, because the vector has to act like a column vector, so that matrix-vector
products work in the normal way. Of course you can use telescoping to blow up anything
to Tensor7:

Numeric b = 3.1415; // Just any number here.
Tensor7View bt7 =

Tensor6View(
Tensor5View(

Tensor4View(
Tensor3View(

MatrixView(
VectorView(b)

)
)

)

http://www.radiativetransfer.org/docserver-stable/all/Tensor5
http://www.radiativetransfer.org/docserver-stable/all/Tensor4
http://www.radiativetransfer.org/docserver-stable/all/Vector
http://www.radiativetransfer.org/docserver-stable/all/Matrix
http://www.radiativetransfer.org/docserver-stable/all/Tensor7
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)
); // All dimensions of bt7 will be 1!

This kind of conversion works also implicitly. So, instead of the first example, you
could have simply written:

my_function(a);

The purpose of this feature is to avoid having to make special versions of auxiliary
functions for all different tensor dimensions. Use it wisely! There is very little runtime
overhead for this, since the data itself is not copied.

3.4.5 Summary

This is all. In particular, we have no tensor products, since they are not needed. So, tensors
are mostly used to store things, notably atmospheric field and so on. There is a set of
sophisticated interpolation routines, though, which are described separately in Chapter 5.

3.5 Arrays

The template class Array can be used to make arrays out of anything. I do not know a
good definition for ‘array’, but I guess anybody who has written a computer program in
any programming language is familiar with the concept. Of course, it is rather similar to
the concept of a Vector, just missing all the mathematical functionality like Matrix-Vector
multiplication and sub-range access.

The implementation of our Array class is based on the STL class std::vector,
whereas the implementation of our Vector class is done from scratch. So the two imple-
mentations are completely independent. Nevertheless, I tried to make Array behave con-
sistently with Vector, as much as possible. There are a number of important differences,
though, hopefully sufficiently explained in this part. A short summary of important differ-
ences:

• An Array can contain elements of any type, whereas a Vector always contains ele-
ments of type Numeric.

• No mathematical functionality for Array (no sub-ranges (nothing like VectorView);
no +=, -=, *=, /=; no scalar product; no transform function; no mult function; no
transpose function).

• On the other hand, resizing (for example adding to the end) of an Array is ok. (See
the push back method below.) It is still rather expensive, though, at least for large
Arrays.

3.5.1 Constructing an Array

You can construct an object of an Array class like this:

Array<Index> a; // Empty Array of class Index.

Array<String> b(5); // String Array with 5
// elements. Without initialization,

http://www.radiativetransfer.org/docserver-stable/all/Vector
http://www.radiativetransfer.org/docserver-stable/all/Vector
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// elements contain random values.
Array<String> c(5,"x"); // The same, but fill with "x".

Array<Index> d=a; // Make d a copy of a;

There are already a lot of predefined Array classes. The naming convention for them
is: ArrayOfIndex, ArrayOfString, etc.. Normally you should use these predefined
classes. But if you want to define an Array of some uncommon type, you can do it with
‘<>’, as in the above examples.

As for Vector, there is a special sub-class of Array that can be initialized explicitly.
Usage:

MakeArray<String> a("ARTS",
"is",
"great"); // Creates an array of String

// with these 3 elements.

3.5.2 What you can do with an Array

All examples below assume that a is an ArrayOfString.

Resize:

a.resize(5);

This adjusts the size of a to 5. Resizing is more efficiently implemented than for Vector,
but still expensive.

Get the number of elements:

cout << a.nelem(); // Just as for Vector.

In particular, note that the return type of this method is Index, just as for Vector. This
is an extension compared to std::vector, which just has a method size() that returns the
positive integer type size t.

Element access:

cout << a[3]; // Print 4th element.
a[0] = "Hello"; // Assign string "Hello" to first element.

In other words, this works just like for Vector.

Copying Arrays:

This works also the same as for Vector. The size of the target must match! In this respect,
I have modified the behavior with respect to the underlying std::vector, which has different
copy semantics.

Assigning a scalar of the base type:

a = "Hello"; // Assign string "Hello" to all elements.

http://www.radiativetransfer.org/docserver-stable/all/Index
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Append to the end:

a.push_back("Hello"); // Adds this new element at the
// end of a.

This can be an expensive operation, especially for large Arrays. Therefore, use it with
care. Actually, the push back method comes from the std::vector class that Array
is based on. You can do a lot more with std::vector, all of which also works with
Array. However, to explain the Standard Template Library is beyond the scope of this
text. You can read about it in C++ or even dedicated STL textbooks.

3.6 Sparse matrices

The class Sparse implements the mathematical concept of a matrix, same as Matrix does,
but the data is stored in a different manner. Sparse offers a memory saving storage when
most of the matrix is filled with zeros. This means that:

• A Sparse contains floating point values of type Numeric.

• The values are arranged in rows and columns in the same ways as for ordinary matri-
ces, in row-major order.

• A Sparse can be multiplied with a Vector, a Matrix or with another Sparse.

• There exist no views for Sparse.

• Resizing a Sparse is expensive and should be avoided.

To calculate the maximum number of non-zero elements for efficient storage, take the
product of number of columns and number of rows, subtract the number of columns plus
one and then divide by two, (nnz ≤ 0.5× (ncols× nrows− (ncols+ 1)).

3.6.1 Constructing a Sparse

You can construct an object of class Sparse in any of these ways:

Sparse a; // Create empty Sparse.
Sparse b(3,4); // Create Sparse with 3 rows

// and 4 columns. When
// created like this it will
// contain only zeros, i.e.
// be an empty Sparse.

Sparse d=c; // Make d a copy of c.

That is all. As for Matrix there exist no more fancy constructors, like an equivalent to
the MakeVector class.

3.6.2 What you can do with a Sparse

All examples below assume that a is a Sparse.

http://www.radiativetransfer.org/docserver-stable/all/Numeric
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Identity matrix:

a.make_I(10,10);

This sets a to be the identity matrix of size 10x10 (10 rows and 10 columns). Using this
function is much faster than setting the diagonal elements to one by yourself. The number
of rows and columns doesn’t have to match each other. In the case that they don’t, the rule
that each row and column only will have only one position occupied by a one is applied.
That is, in the case there are more rows than columns, the last rows will be empty.

Resize:

a.resize(5,10);

This makes a a 5x10 Sparse (5 rows, 10 columns). Note that the previous content will be
completely lost. The new Sparse will be empty.

Get the number of rows, columns or non-zero elements:

cout << a.nrows();
cout << a.ncols();
cout << a.nnz();

Element access:

There are two different ways to access individual elements. One used for read only and
one for read and write. The distinction is necessary since the read and write method creates
elements if they don’t already exist. Note that we use 0-based indexing. For reading only
use:

cout << a.ro(3,4); // Print that element. If it
// it doen’t exist a zero will
// be printed.

cout << a(0,0); // Short version of the above.

For reading and writing, such as assigning values to elements, use:

a.rw(0,0) = 1.5; // Assigns the value 1.5 to the
// first row and first column.

cout << a.rw(0,0); // Also returns the value of the
// first row and first column,
// if the element doesn’t exist
// it will be created and set
// to zero.

Copying Matrices:

Sparse b;
b = a;

As in the case of Vectors, the ‘=’ operator adjusts the size of the target automatically.
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Transpose:

The function transpose works a bit differently for Sparse than for Vector and Matrix.
This is due to the fact that we don’t have any views for Sparse. Thus, transpose for
a Sparse creates a new Sparse variable that contains the transpose of the original Sparse,
whereas transpose for a Matrix just creates a transposed view of the original Matrix.

The target variable for the transposed Sparse has to have the right dimensions before the
function is called.

Sparse b(a.ncols(),a.nrows());
transpose(b,a); // Make b the transpose of a.

// Note the argument order!

Matrix multiplication:

// Sparse-Vector
Vector b(a.nrows()), c(a.ncols());
mult(b,a,c); // b = a * c

// Sparse-Matrix
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult(d,a,e); // d = a * e

// Sparse-Sparse
Sparse f(a.nrows(),5), g(a.ncols(),5);
mult(f,a,g); // f = a * g

The result is put in the first argument, consistent with the Matrix class. Note that for the
Sparse – Matrix multiplication the output is a Matrix. Important: As for Matrix, the
matrices or vectors that you give for the three arguments must not overlap, or you will
get garbage.
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Chapter 4

Gridded Fields

This section describes how gridded fields are implemented in ARTS and how they are used.
Gridded fields consist of a data object like a Vector, Matrix, or Tensor and a grid for each
dimension of its data. For example, a GriddedField1 consists of one grid and a Vector,
whereas a GriddedField3 contains three grids and a Tensor3. Grids can be either numeric,
like a pressure grid, or strings, like channel names.

4.1 Implementation files

The GriddedField1, GriddedField2, GriddedField3, GriddedField4 classes and their com-
mon base class GriddedField described below reside in the files:

• gridded fields.h

• gridded fields.cc

4.2 Design

4.2.1 The abstract base class GriddedField

The abstract base class GriddedField implements the properties all gridded fields
have in common. These are mostly the methods to create, set, and access the grids. A
GriddedField is never instantiated directly.

4.2.2 Inheritance

The GriddedFieldX classes use indirect inheritance to combine a data object with the
grids, see Figure 4.1.

History
2010-09-28 Oliver Lemke: Updated for implementation changes.
2010-04-12 Created and written by Oliver Lemke.

http://www.radiativetransfer.org/docserver-stable/all/GriddedField1
http://www.radiativetransfer.org/docserver-stable/all/Vector
http://www.radiativetransfer.org/docserver-stable/all/GriddedField3
http://www.radiativetransfer.org/docserver-stable/all/Tensor3
http://www.radiativetransfer.org/docserver-stable/all/GriddedField1
http://www.radiativetransfer.org/docserver-stable/all/GriddedField2
http://www.radiativetransfer.org/docserver-stable/all/GriddedField3
http://www.radiativetransfer.org/docserver-stable/all/GriddedField4
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GriddedFieldVector Matrix

GriddedField1 GriddedField2

Figure 4.1: UML diagram of gridded field inheritance.

4.3 Constructing Gridded Fields

4.3.1 Creation

Each GriddedFieldX offers two constructors. One default constructor that creates an
unnamed gridded field and a second constructor that takes a string with the name of the
gridded field as an argument.

GriddedField1 gfone("I’m a GriddedField1");
GriddedField2 gftwo;

gftwo.set_name ("I’m a GriddedField2");

4.3.2 Initializing the grids

Once a gridded field has been created, we can start setting up the grids. There are two
different types of grids, a numeric grid and a string grid. In the following example we set
up two gridded fields: A GriddedField1 with a numeric grid and a GriddedField2 with a
numeric grid for the rows and a string grid for the columns. Each grid can be assigned a
name to describe its contents or unit.

Vector gfonegrid(1,5,1); // gfonegrid = [1,2,3,4,5]
gfone.set_grid(0, gfonegrid); // Set grid for the vector elements.

Vector gftwogrid0(1,5,1); // gftwogrid0 = [1,2,3,4,5]
MakeArray<String> gftwogrid1("Chan1", "Chan2", "Chan3");

gftwo.set_grid(0, gftwogrid0); // Set grid for the matrix rows.
gftwo.set_grid(1, gftwogrid1); // Set grid for the matrix columns.

gfone.set_grid_name (0, "Pressure");

gftwo.set_grid_name (0, "Pressure");
gftwo.set_grid_name (1, "Channel");

4.3.3 Initializing the data

The data of a GriddedFieldX can be accessed through its data member. For a Grid-
dedField1 data is a Vector, for a GriddedField2 a Matrix, for a GriddedField3 a Tensor3,

http://www.radiativetransfer.org/docserver-stable/all/GriddedField1
http://www.radiativetransfer.org/docserver-stable/all/GriddedField2
http://www.radiativetransfer.org/docserver-stable/all/GriddedField1
http://www.radiativetransfer.org/docserver-stable/all/GriddedField1
http://www.radiativetransfer.org/docserver-stable/all/Vector
http://www.radiativetransfer.org/docserver-stable/all/GriddedField2
http://www.radiativetransfer.org/docserver-stable/all/Matrix
http://www.radiativetransfer.org/docserver-stable/all/GriddedField3
http://www.radiativetransfer.org/docserver-stable/all/Tensor3
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and so on.
The following code shows how to fill the gridded fields from the previous example with

data:

Vector avector(1,4,0.5); // avector = [1,1.5,2,2.5]

gfone.data = avector;

Matrix amatrix(5,3,4.); // amatrix = [[4,4,4],[4,4,4],...]

gftwo.data = amatrix;

4.3.4 Consistency check

After initializing or changing either the grids or the data, it can happen that the size of the
grids does not match the size of the data anymore. Each gridded field provides a conve-
nience function which can be called to perform a consistency check.

if (!gfone.checksize())
cout << gfone.get_name()

<< ": Sizes of grid and data don’t match" << endl;

// This should fail!
if (!gftwo.checksize())

cout << gftwo.get_name()
<< ": Sizes of grids and data don’t match" << endl;

The complete source code of the examples from this chapter can be found in
src/test gridded fields.cc.
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Chapter 5

Interpolation

There are no general single-step interpolation functions in ARTS. Instead, there is a set of
useful utility functions that can be used to achieve interpolation. Roughly, you can separate
these into functions determining grid position arrays, functions determining interpolation
weight tensors, and functions applying the interpolation. Doing an interpolation thus re-
quires a chain of function calls:

1. gridpos (one for each interpolation dimension)

2. interpweights

3. interp

Currently implemented in ARTS is mulitlinear interpolation in up to 6 dimensions. (Is the
6D case called hexa-linear interpolation?) The necessary functions and their interaction will
be explained in this chapter.

5.1 Implementation files

Variables and functions related to interpolation are defined in the files:

• interpolation.h

• interpolation.cc

• test interpolation.cc

The first two files contain the declarations and implementation, the last file some usage
examples.

5.2 Green and blue interpolation

There are two different types of interpolation in ARTS:

History
100204 Added documentation of grid checking functions by Stefan Buehler.
020528 Created by Stefan Buehler.
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Green

Blue

Figure 5.1: The two different types of interpolation. Green (dotted): Interpolation to a new
grid, output has same dimension as input, in this case 2D. Blue (dashed): Interpolation to a
sequence of points, output is always 1D.

Green Interpolation: Interpolation of a gridded field to a new grid.

Blue Interpolation: Interpolation of a gridded field to a sequence of positions.

Figure 5.1 illustrates the different types for a 2D example.
The first step of an interpolation always consists in determining where your new points

are, relative to the original grid. You can do this separately for each dimension. The posi-
tions have to be stored somehow, which is described in the next section.

5.3 Grid checking functions

Before you do an interpolation, you should check that the new grid is in-
side the old grid. (Or only slightly outside.) You can use the convenient
function chk interpolation grids for this purpose, which resides in file
check input.cc. The function has the following parameters:

const String& which_interpolation A string describing the
interpolation for which
the grids are intended.

ConstVectorView old_grid The original grid.
ConstVectorView new_grid The new grid.
const Numeric& extpolfac The extrapolation fraction.

See gridpos function for
details. Has a default
value, which is consistent
with gridpos.

There is also a special version for the case that the new grid is just a scalar. What the
function does is check if old and new grid for an interpolation are ok. If not, it throws a
detailed runtime error message.

The parameter extpolfac determines how much extrapolation is tolerated. Its default
value is 0.5, which means that we allow extrapolation as far out as half the spacing of the
last two grid points on that edge of the grid.

The chk interpolation grids function is quite thorough. It checks not only the
grid range, but also the proper sorting, whether there are duplicate values, etc.. It is not
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completely cheap computationally. Its intended use is at the beginning of workspace meth-
ods, when you check the input variables and issue runtime errors if there are any problems.
The runtime error thrown also explains in quite a lot of detail what is actually wrong with
the grids.

5.4 Grid positions

A grid position specifies where an interpolation point is, relative to the original grid. It
consists of three parts, an Index giving the original grid index below the interpolation point,
a Numeric giving the fractional distance to the next original grid point, and a Numeric giving
1 minus this number. Of course, the last element is redundant. However, it is efficient to
store this, since it is used many times over. We store the two numerics in a plain C array of
dimension 2. (No need to use a fancy Array or Vector for this, since the dimension is fixed.)
So the structure GridPos looks like:

struct GridPos {
Index idx; /*!< Original grid index below

interpolation point. */
Numeric fd[2]; /*!< Fractional distance to next point

(0<=fd[0]<=1), fd[1] = 1-fd[0]. */
};

For example, idx=3 and fd=0.5 means that this interpolation point is half-way between
index 3 and 4 of the original grid. Note, that ‘below’ in the first paragraph means ‘with a
lower index’. If the original grid is sorted in descending order, the value at the grid point
below the interpolation point will be numerically higher than the interpolation point. In
other words, grid positions and fractional distances are defined relative to the order of the
original grid. Examples:

old grid = 2 3
new grid = 2.25
idx = 0
fd[0] = 0.25

old grid = 3 2
new grid = 2.25
idx = 0
fd[0] = 0.75

Note that fd[0] is different in the second case, because the old grid is sorted in de-
scending order. Note also that idx is the same in both cases.

Grid positions for a whole new grid are stored in an Array<GridPos> (called
ArrayOfGridPos).

5.5 Setting up grid position arrays

There is only one function to set up grid position arrays, namely gridpos:

void gridpos( ArrayOfGridPos& gp,
ConstVectorView old_grid,
ConstVectorView new_grid
const Numeric& extpolfac=0.5 );

http://www.radiativetransfer.org/docserver-stable/all/Index
http://www.radiativetransfer.org/docserver-stable/all/Numeric
http://www.radiativetransfer.org/docserver-stable/all/Numeric
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Some points to remember:

• As usual, the output gp has to have the right dimension.

• The old grid has to be strictly sorted. It can be in ascending or descending order. But
there must not be any duplicate values. Furthermore, the old grid must contain at least
two points.

• The new grid does not have to be sorted, but the function will be faster if it is sorted
or mostly sorted. It is ok if the new grid contains only one point.

• The beauty is, that this is all it needs to do also interpolation in higher dimensions:
You just have to call gridpos for all the dimensions that you want to interpolate.

• Note also, that for this step you do not need the field itself at all!

• If you want to use the returned gp object for something else than interpolation, you
should know that gridpos guarantees the following:
For the ascending old grid case:

old_grid[tgp.idx]<=tng || tgp.idx==0

And for the descending old grid case:

old_grid[tgp.idx]>=tng || tgp.idx==0

• Finally, note that parameter extpolfac plays the same role as explained above in
Section 5.3.

5.6 Interpolation weights

As explained in the ‘Numerical Recipes’ [Press et al., 1997], 2D bi-linear interpolation
means, that the interpolated value is a weighted average of the original field at the four
corner points of the grid square in which the interpolation point is located. For simplicity,
we label the four corner points counterclockwise, starting from the lower left point (Figure
5.2). Then the interpolated value is given by:

y(t, u) = (1− t) ∗ (1− u) ∗ y1
+ t ∗ (1− u) ∗ y2
+ t ∗ u ∗ y3
+ (1− t) ∗ u ∗ y4

= w1 ∗ y1 + w2 ∗ y2 + w3 ∗ y3 + w4 ∗ y4 (5.1)

where t and u are the fractional distances between the corner points in the two dimensions,
yi are the field values at the corner points, and wi are the interpolation weights.

(By the way, I have discovered that this is exactly the result that you get if you first
interpolate linearly in one dimension, then in the other. I was playing around with this a bit,
but it is the more efficient way to pre-calculate the wi and do all dimensions at once.

How many interpolation weights one needs for a multilinear interpolation depends on
the dimension of the interpolation: There are exactly 2n interpolation weights for an n
dimensional interpolation. These weights have have to be computed for each interpolation
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Figure 5.2: The grid square for 2D interpolation. The numbers 1. . . 4 mark the corner points,
IP is the interpolation point, t and u are the fractional distances in the two dimensions.

point (each grid point of the new grid, if we do a ‘green’ type interpolation. Or each point
in the sequence, if we do a ‘blue’ type interpolation).

This means, calculating the interpolation weights is not exactly cheap, especially if one
interpolates simultaneously in many dimensions. On the other hand, one can save a lot by
re-using the weights. Therefore, interpolation weights in ARTS are stored in a tensor which
has one more dimension than the output field. The last dimension is for the weight, so this
last dimension has the extent 4 in the 2D case, 8 in the 3D case, and so on (always 2n).

In the case of a ‘blue’ type interpolation, the weights are always stored in a matrix, since
the output field is always 1D (a vector).

5.7 Setting up interpolation weight tensors

Interpolation weight tensors can be computed by a family of functions, which are all called
interpweights. Which function is actually used depends on the dimension of the input
and output quantities. For this step we still do not need the actual fields, just the grid
positions.

5.7.1 Blue interpolation

In this case the functions are:

void interpweights( MatrixView itw,
const ArrayOfGridPos& cgp );

void interpweights( MatrixView itw,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( MatrixView itw,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( MatrixView itw,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );
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In all cases, the dimension of itw must be consistent with the given grid position arrays
and the dimension of the interpolation (last dimension 2n). Because the grid position arrays
are interpreted as defining a sequence of positions they must all have the same length.

5.7.2 Green interpolation

In this case the functions are:

void interpweights( Tensor3View itw,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( Tensor4View itw,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( Tensor5View itw,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( Tensor6View itw,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

void interpweights( Tensor7View itw,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );

In this case the grid position arrays are interpreted as defining the grids for the inter-
polated field, therefore they can have different lengths. Of course, itw must be consistent
with the length of all the grid position arrays, and with the dimension of the interpolation
(last dimension 2n).

5.8 The actual interpolation

For this final step we need the grid positions, the interpolation weights, and the actual fields.
For each interpolated value, the weights are applied to the appropriate original field values
and the sum is taken (see Equation 5.1). The interp family of functions performs this
step.

5.8.1 Blue interpolation
void interp( VectorView ia,

ConstMatrixView itw,
ConstVectorView a,
const ArrayOfGridPos& cgp);
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void interp( VectorView ia,
ConstMatrixView itw,
ConstMatrixView a,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( VectorView ia,
ConstMatrixView itw,
ConstTensor3View a,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( VectorView ia,
ConstMatrixView itw,
ConstTensor4View a,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( VectorView ia,
ConstMatrixView itw,
ConstTensor5View a,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( VectorView ia,
ConstMatrixView itw,
ConstTensor6View a,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

5.8.2 Green interpolation
void interp( MatrixView ia,

ConstTensor3View itw,
ConstMatrixView a,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( Tensor3View ia,
ConstTensor4View itw,
ConstTensor3View a,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( Tensor4View ia,
ConstTensor5View itw,
ConstTensor4View a,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
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const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( Tensor5View ia,
ConstTensor6View itw,
ConstTensor5View a,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp( Tensor6View ia,
ConstTensor7View itw,
ConstTensor6View a,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

5.9 Examples

5.9.1 A simple example

This example is contained in file test interpolation.cc.

void test05()
{

cout << "Very simple interpolation case\n";

Vector og(1,5,+1); // 1, 2, 3, 4, 5
Vector ng(2,5,0.25); // 2.0, 2,25, 2.5, 2.75, 3.0

cout << "Original grid:\n" << og << "\n";
cout << "New grid:\n" << ng << "\n";

// To store the grid positions:
ArrayOfGridPos gp(ng.nelem());

gridpos(gp,og,ng);
cout << "Grid positions:\n" << gp;

// To store interpolation weights:
Matrix itw(gp.nelem(),2);
interpweights(itw,gp);

cout << "Interpolation weights:\n" << itw << "\n";

// Original field:
Vector of(og.nelem(),0);
of[2] = 10; // 0, 0, 10, 0, 0

cout << "Original field:\n" << of << "\n";



5.9 EXAMPLES 49

// Interpolated field:
Vector nf(ng.nelem());

interp(nf, itw, of, gp);

cout << "New field:\n" << nf << "\n";
}

Ok, maybe you think this is not so simple, but a large part of the code is either setting up
the example grids and fields, or output. And here is how the output looks like:

Very simple interpolation case
Original grid:

1 2 3 4 5
New grid:

2 2.25 2.5 2.75 3
Grid positions:

1 0 1
1 0.25 0.75
1 0.5 0.5
1 0.75 0.25
1 1 0

Interpolation weights:
1 0

0.75 0.25
0.5 0.5
0.25 0.75

0 1
Original field:

0 0 10 0 0
New field:

0 2.5 5 7.5 10

5.9.2 A more elaborate example

What if you want to interpolate only some dimensions of a tensor, while retaining others?
— You have to make a loop yourself, but it is very easy. Below is an explicit example for a
more complicated interpolation case. (Green type interpolation of all pages of a Tensor3.)
This example is also contained in file test interpolation.cc.

void test04()
{

cout << "Green type interpolation of all "
<< "pages of a Tensor3\n";

// The original Tensor is called a, the new one n.

// 10 pages, 20 rows, 30 columns, all grids are: 1,2,3
Vector a_pgrid(1,3,1), a_rgrid(1,3,1), a_cgrid(1,3,1);
Tensor3 a( a_pgrid.nelem(),

a_rgrid.nelem(),
a_cgrid.nelem() );

a = 0;
// Put some simple numbers in the middle of each page:
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a(0,1,1) = 10;
a(1,1,1) = 20;
a(2,1,1) = 30;

// New row and column grids:
// 1, 1.5, 2, 2.5, 3
Vector n_rgrid(1,5,.5), n_cgrid(1,5,.5);
Tensor3 n( a_pgrid.nelem(),

n_rgrid.nelem(),
n_cgrid.nelem() );

// So, n has the same number of pages as a,
// but more rows and columns.

// Get the grid position arrays:
ArrayOfGridPos n_rgp(n_rgrid.nelem()); // For rows.
ArrayOfGridPos n_cgp(n_cgrid.nelem()); // For columns.

gridpos( n_rgp, a_rgrid, n_rgrid );
gridpos( n_cgp, a_cgrid, n_cgrid );

// Get the interpolation weights:
Tensor3 itw( n_rgrid.nelem(), n_cgrid.nelem(), 4 );
interpweights( itw, n_rgp, n_cgp );

// Do a "green" interpolation for all pages of a:

for ( Index i=0; i<a.npages(); ++i )
{

// Select the current page of both a and n:
ConstMatrixView ap = a( i,

Range(joker), Range(joker) );
MatrixView np = n( i,

Range(joker), Range(joker) );

// Do the interpolation:
interp( np, itw, ap, n_rgp, n_cgp );

// Note that this is efficient, because interpolation
// weights and grid positions are re-used.

}

cout << "Original field:\n";
for ( Index i=0; i<a.npages(); ++i )

cout << "page " << i << ":\n"
<< a(i,Range(joker),Range(joker)) << "\n";

cout << "Interpolated field:\n";
for ( Index i=0; i<n.npages(); ++i )

cout << "page " << i << ":\n"
<< n(i,Range(joker),Range(joker)) << "\n";

}

The output is:
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Green type interpolation of all pages of a Tensor3
Original field:
page 0:

0 0 0
0 10 0
0 0 0

page 1:
0 0 0
0 20 0
0 0 0

page 2:
0 0 0
0 30 0
0 0 0

Interpolated field:
page 0:

0 0 0 0 0
0 2.5 5 2.5 0
0 5 10 5 0
0 2.5 5 2.5 0
0 0 0 0 0

page 1:
0 0 0 0 0
0 5 10 5 0
0 10 20 10 0
0 5 10 5 0
0 0 0 0 0

page 2:
0 0 0 0 0
0 7.5 15 7.5 0
0 15 30 15 0
0 7.5 15 7.5 0
0 0 0 0 0

5.10 Higher order interpolation

Everything that was written so far in this chapter referred to linear interpolation, which uses
two neighboring data points in the 1D case. But ARTS also has a framework for higher
order polynomial interpolation. It is defined in the two files

• interpolation poly.h

• interpolation poly.cc

We define interpolation order O as the order of the polynomial that is used. Linear
interpolation, the ARTS standard case, corresponds toO = 1. O = 2 is quadratic interpola-
tion, O = 3 cubic interpolation. The number of interpolation points (and weights) for a 1D
interpolation is O + 1 for each point in the new grid. So, linear interpolation uses 2 points,
quadratic 3, and cubic 4.

As a special case, interpolation order O = 0 is also implemented, which means ‘nearest
neighbor interpolation’. In other words, the value at the closest neighboring point is chosen,
so there is no real interpolation at all. This case is particularly useful if you have a field that
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may be interpolated in several dimensions, but you do not really want to do all dimensions
all the time. WithO = 0 interpolation and a grid that matches the original grid, interpolation
can be effectively ‘turned off’ for that dimension.

Note, that if you use even interpolation orders, you will have an unequal number of
interpolation points ‘to the left’ and ‘to the right’ of your new point. This is an argument
for preferring O = 3 as the basic higher order polynomial interpolation, instead of O = 2.

Overall, higher order interpolation works rather similarly to the linear case. The main
difference is that grid positions for higher order interpolation are stored in an object of type
GridPosPoly, instead of GridPos. A GridPosPoly object contains grid indices and
interpolation weights for all interpolation points. For each point in the new grid, there are
O + 1 indices and O + 1 weights.

The reason why we store all interpolation point indices, and not only the index of the
first point, is to allow correct handling of circular interpolation, for example in scattering
phase function φ angle. If the angle goes from 0 to 360◦, then points just below 360 should
be used in interpolations to points just above 0, so the indices to use are not contiguous in
memory. Functions to handle this are not yet implemented, but this should be a relatively
simple matter.

In contrast to GridPos, GridPosPoly stores weights w rather than fractional dis-
tances fd. For the linear case:

w[0] = fd[1]
w[1] = fd[0]

So the two concepts are almost the same. Because the w are associated with each
interpolation point, they work also for higher interpolation order, whereas the concept of
fractional distance does not.

The weights are calculated according to section 3.1, eq. 3.1.1 of [Press et al., 1997].
These are for the 1D case. For 2D and higher dimensional cases, the weights of the individ-
ual dimensions have to be multiplied, just as in the linear interpolation case.

Instead of gridpos, you have to use the function gridpos poly for higher order
interpolation. It works exactly like gridpos, but has an additional argument that gives the
interpolation order O.

After setting up the GridPosPoly object with gridpos poly, you have to call
interpweights and interp, exactly as in the linear case. (The actual functions used
are not the same, since the name is overloaded. The interpweights and interp
functions for use with GridPosPoly are implemented in interpolation poly.cc.)
So, a complete interpolation chain involves:

gridpos_poly
interpweights
interp

For O = 1 the result of the interpolation chain will be the same as for the lin-
ear interpolation routines. Below is a simple complete example, taken from the file
test interpolation.cc in the arts source directory:

void test08()
{

cout << "Very simple interpolation case for the "
<< "new higher order polynomials.\n";
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Vector og(1,5,+1); // 1, 2, 3, 4, 5
Vector ng(2,5,0.25); // 2.0, 2,25, 2.5, 2.75, 3.0

cout << "Original grid:\n" << og << "\n";
cout << "New grid:\n" << ng << "\n";

// To store the grid positions:
ArrayOfGridPosPoly gp(ng.nelem());

Index order=2; // Interpolation order.

gridpos_poly(gp,og,ng,order);
cout << "Grid positions:\n" << gp;

// To store interpolation weights:
Matrix itw(gp.nelem(),order+1);
interpweights(itw,gp);

cout << "Interpolation weights:\n" << itw << "\n";

// Original field:
Vector of(og.nelem(),0);
of[2] = 10; // 0, 0, 10, 0, 0

cout << "Original field:\n" << of << "\n";

// Interpolated field:
Vector nf(ng.nelem());

interp(nf, itw, of, gp);

cout << "New field (order=" << order << "):\n" << nf << "\n";

cout << "All orders systematically:\n";
for (order=1; order<5; ++order)

{
gridpos_poly(gp,og,ng,order);
itw.resize(gp.nelem(),order+1);
interpweights(itw,gp);
interp(nf, itw, of, gp);

cout << "order " << order << ": ";
for (Index i=0; i<nf.nelem(); ++i)

cout << setw(8) << nf[i] << " ";
cout << "\n";

}
}

5.11 Summary

Now you probably understand better what was written at the very beginning of this chapter,
namely that doing an interpolation always requires the chain of function calls:

1. gridpos or gridpos poly (one for each interpolation dimension)
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2. interpweights

3. interp

If you are interested in how the functions really work, look in file interpolation.cc
or interpolation poly.cc. The documentation there is quite detailed. When you
are using interpolation, you should always give some thought to whether you can re-use
grid positions or even interpolation weights. This can really save you a lot of computation
time. For example, if you want to interpolate several fields — which are all on the same
grids — to some position, you only have to compute the weights once.



Chapter 6

Integration functions

A radiative transfer model which takes into account the effect of scattering involves integra-
tion of certain quantities over the angles of observation. For example, from Section 18.1.2
in ARTS User Guide it is clear that computing scattering cross-section and scattering inte-
gral term requires integration over zenith and azimuth directions. There are a wide range of
methods that can be used for numerical integration. They can be used depending on various
factors starting from how accurate the result should be to the behaviour of the function. The
one which is implemented in ARTS is the trapezoidal integration method.

6.1 Implementation files

The integration functions can be found in the files:

• math funcs.h

• math funcs.cc

The implementation function AngIntegrate trapezoidis discussed in the second
file.

6.2 Trapezoidal Integration

Trapezoidal Integration method comes under the Newton-Cotes formulas where integra-
tion of a function is approximated by the area under the curve described by the function.
Trapezoidal integration assumes that the area under the curve is trapezoid.

Trapezoidal rule :∫ x2

x1
f(x)dx =

1

2
h(f1 + f2) +O(h3f

′′
) (6.1)

This is a two-point formula (x1 and x2). It is exact for polynomials upto and including
degree 1, i.e., f(x) = x. O(h3f

′′
) signifies how far is the true answer from the estimate.

History
220802 Created and written by Sreerekha T.R.
220103 Included mathematical description for implemented integration

method(CE).
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If we use eq. 6.1 N − 1 times, to do the integration in the intervals (x1, x2), (x2, x3),
..., (xN−1, xN ), and then add the results, we obtain extended formula for the integral from
x1 to xN .

Extended Trapezoidal rule :∫ xN

x1
f(x)dx =

1

2
h [f1 + 2(f2 + f3 + ...+ fN−1) + fN ] +O

[
(b− a)3f ′′

N2

]
(6.2)

The last term tells how much the error will be decreased by taking more number of
steps.

6.3 Solid Angle Integration

In our scattering problem, we are often encountered with a double integration of functions
over zenith and azimuth angles (see ARTS User Guide, Chapter 18). One way to achieve
double integration is to use repeated one-dimensional trapezoidal integration. This is effec-
tive of course only if the boundary is simple and the function is very smooth. If the function
is strongly peaked and if know where it occurs, integral should be broken into smaller re-
gions so that the integrand is smooth in each. Another thing is to take into account the
symmetry of the function as well as the boundary. For example in our case, if the radiation
is symmetric about the azimuth, the integration in that direction returns constant value of
2π and we need to do only integration over zenith directions.

The general form of a solid angle integration is

S =

∫
4π
f(ω)dω (6.3)

In spherical coordinates we can write:

S =

∫ π

0

∫ 2π

0
f(θ, φ) sin θ dθdφ (6.4)

A double integration can be splitted into two single integrations:

S =

∫ π

0

(∫ 2π

0
f(θ, φ) sin θdφ

)
dθ (6.5)

=

∫ π

0
g(θ)dθ (6.6)

If we have to integrate a vector, we can apply this method componentwise.
To solve the integral numerically we discretize θ and φ and obtain two angular grids (

[θ0, θ1, · · · , θn] and [φ0, φ1, · · · , φm]). Then we can first calculate g(θj) for all θj unsing the
trapezoidal method.

g(θj) =
m∑
i=1

sin θj
f(θj , φi) + f(θj , φi+1)

2
· (φi+1 − φi) (6.7)

The final step is to sum up all g(θj), again applying the trapezoidal method.

S =
n∑
j=1

g(θj) + g(θj+1)

2
· (θj+1 − θj) (6.8)
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If the radiation is symmetric about the azimuth we just calculate:

Ssym = 2π

∫ π

0
f(θ) sin(θ)dθ (6.9)

Unsing the trapezoidal method this can be written as:

Ssym = 2π
n∑
j=1

h(θj) + h(θj+1)

2
· (θj+1 − θj) (6.10)

where h(θ) = sin θ · f(θ).

The function AngIntegrate trapezoid takes as input the integrand and the an-
gles over which the integration has to be done. For example in this case it can be the zenith
and azimuth angle grid.

Numeric AngIntegrate_trapezoid(MatrixView Integrand,
ConstVectorView za_grid,
ConstVectorView aa_grid)

The integrand has the same number of rows as zenith angle grid and columns as azimuth
angle grid. The inner loop does trapezoidal integration of the integrand over all azimuth
angles and the result is stored in a Vector res1[i]. Note that the integrand at every point has
to be multiplied with sin (za grid[i] * DEG2RAD) since we are integrating over
solid angles. The outer loop does an integration of res1[i] over all zentih angles. The result
of this is returned back to the calling function.
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Chapter 7

Linear algebra functions

Solving the vector radiative transfer equation requires the computation of linear equation
systems and the matrix exponential. This section describes the functions which are imple-
mented in ARTS and it gives instructions how these functions can be used, also for other
purposes than the radiative transfer calculations.

7.1 Implementation files

All the functions described below can be found in the files:

• lin alg.h

• lin alg.cc

The template class Array and the classes Matrix and Vector are used, therefore the linear
algebra functions require the files:

• matpackI.h

• make vector.h

• array.h

• matpackI.cc

• make vector.cc

• array.cc

Furthermore logical functions contained in

• logic.h

• logic.cc

are used to check the dimensions of input matrices for various functions.

History
020502 Created and written by Claudia Emde.

http://www.radiativetransfer.org/docserver-stable/all/Matrix
http://www.radiativetransfer.org/docserver-stable/all/Vector
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7.2 Linear Equation Systems

For solving a set of linear equations

Ax = b (7.1)

the LU decomposition method is implemented.A slightly modified version of the algorithm
described in [Press et al. [1997]] is used here. An alternative method is the Gauss-Jordan
elimination, but this method is three times slower than the LU decomposition method [Press
et al. [1997], p.36]. The LU decomposition method reqires two functions, ludcmp and
lubacksub, which will be decribed below.

The following example for a three dimensional equation sytem demonstrates how to solve
a linear equation sytem of the type (7.1):

• Create matrix A, vector b:
A = Matrix(3,3);
A(1,1) = 4;
A(2,1) = 3;
· · ·
b = Vector(3);
b(1) = 7;
· · ·

• Initialize solution vector x and two other variables needed for storing intermediate
results:
x = Vector(3);
LU = Matrix(3,3);
indx = ArrayOfIndex(3);

• Call LU decomposition function (see Section 7.2.1):
ludcmp(LU, indx, A);

• Call LU backsubstitution function (see Section 7.2.2):
lubacksub(x, LU, b, indx);

• Print the solution vector:
cout << x;

7.2.1 LU Decomposition

A LU decomposition is a procedure for decomposing a square matrix A with dimension n
into a product of a lower triangular matrix L (has elements only on the diagonal elements
and below) and an upper triangular matrix U (has elements only on the diagonal and above):

L ·U = A (7.2)

For a 3 x 3 matrix equation 7.2 would look like this: l11 0 0
l21 l22 0
l31 l32 l33

 ·
 u11 u12 u13

0 u22 u23
0 0 u33

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33
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The decomposition can be used to rewrite the linear set of equations (7.1) in the following
way:

A · x = (L ·U) · x = L · (U · x) = b (7.3)

First

L · y = b (7.4)

is solved for the vector y which can be done by forward substitution (see section 7.2.2).
Then

U · x = y (7.5)

is solved again by backsubstitution. The advantage in breaking up one linear set into two
successive ones is that the solution of a triangular set of equations is quite trivial.

The function ludcmp requires a square matrix of arbitrary dimension n as input and
performs the LU decomposition. It returns one matrix which contains both matrices, L and
U. For the lower triangular matrix L the diagonal elements are chosen to be 1, then the
other elements of L and U are determined. This is possible, as the LU decomposition is
an under determined equation sytem with n2 equations for n2 + n unknowns. The output
matrix does not include the diagonal of L, in the three-dimensional case it has the following
elements: u11 u12 u13

l21 u22 u23
l31 l32 u33


This special arrangement of the LU decomposition is named Crout’s algorithm and a matrix
arranged in this form is named Crout matrix in this context.

Another output variable of the function ludcmp is an index vector which contains in-
formation about pivoting which is absolutely essential for the stability of Crout’s algorithm.
Here partial pivoting, i.e. interchange of rows is implemented. That means that not A is
decomposed into LU -form but a rowwise permutation of A. If the index vector contains for
example the elements (2, 1, 0) the first and the last row of a three dimensional matrix would
be exchanged.

7.2.2 Forward- and Backsubstitution

An equation system of the form a11 a12 a13
0 a22 a23
0 0 a33

 ·
 x1
x2
x3

 =

 b1
b2
b3


can be solved very easy. The last element, here x3, is already isolated, namely

x3 = b3/a33 (7.6)

As x3 is known x2 can be calculated using the second row of the eqautions. Then, finally, x1
can be calculated as well using the first row. This procedure is called backsubtitution. The
same method applied for an equation system including a lower triangular matrix is named
forward substitution.

The function lubacksub does forward and backward substitution to solve the equa-
tion system described in 7.2.1. As input it requires the output variables of ludcmp which
are the Crout matrix and the index vector. Output of the function is the solution vector x to
the equation system.
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7.2.3 More Applications of the LU Decomposition

• Inverse of a matrix:
To compute (K)−1 · b, which is a part of the solution to the vector radiative transfer
equation (Equation 18.10 in ARTS User Guide) the LU decomposition method can be
used. The following equations show, that the problem is equivalent to solving a linear
equation system of the type 7.1.

K−1 · b = x (7.7)

⇔ K · x = b (7.8)

• To solve the equation system

A ·X = B (7.9)

where A, B and X are matrices of dimension n, the LU decomposition functions can
be applied as well. Assume that A and B are known and you want to solve for X. First
you should do a LU decomposition of A and then backsubstitute with the columns of
B and you get the columns of X as solution vectors.

7.3 Matrix Exponential Function

A very important function for solving differential equations is the matrix exponential:

eAs =
∞∑
k=0

(As)k

k!
(7.10)

In principle it could be computed using the Taylor power series but this method is not
efficient. MOLER and VAN LOAN have shown for the simple example [Moler and Loan
[1979]]

A =

(
−49 24
−64 31

)

that convergence is obtained not until 59 terms. And if a relative accuracy of only 10−5 is
taken, the method even leads to a wrong result due to rounding errors.

7.3.1 Padé Approximation

One of the better algorithms for computing the matrix exponential is the Padé approximation
which is also shortly described in [Moler and Loan [1979]] and outlined in the book “Matrix
Computations” by Golub and Loan [1991]. The method uses perturbation theorie as well
as the so called Padé functions. It is possible to derive an algorithm which calculates

F = eA+E (7.11)

where

‖E‖∞ ≤ δ‖A‖. (7.12)
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The accuracy of the computation given by δ can be chosen. The parameter q has to be the
smallest non-negative integer such that ε(q, q) ≤ δ where

ε(p, q) = 23−(p+q)
p!q!

(p+ q)!(p+ q + 1)!
. (7.13)

The following table shows values of epsilon for different values of q.

q ε(q,q)
1 0.1667
2 6.9444 · 10−4

3 1.2401 · 10−6

4 1.2302 · 10−9

5 7.7667 · 10−13

6 3.3945 · 10−16

The algorithm is implemented in the function matrix exp. Input to this function is the
matrix A and the parameter q. As output it gives the matrix F which is defined above.
The following example shows how to use the matrix exp function:

• Initialize A and assign values:
Matrix A(3,3);
A(1,1) = 45;
A(1,2) = 3;
· · ·

• Initialize F:
Matrix F(3,3);

• Give a paramater for the accuracy:
Index q=6;

• Call the matrix exponential function:
matrix exp(F,A,q);

• Print the result:
cout << "exp(A) = " << F;



64 LINEAR ALGEBRA FUNCTIONS



Part I

Bibliography and Appendices





Bibliography

Golub, G. H., and C. F. V. Loan, Matrix computations, Johns Hopkins series in the mathe-
matical sciences ; 3, 2nd ed., Hopkins Univ. Press, 1991.

Moler, C. B., and C. F. V. Loan, Nineteen dubious ways to compute the exponential of a
matrix, SIAM Review, 20, 801–836, 1979.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in C, 2nd ed.,
Cambridge University Press, 1997.



68 BIBLIOGRAPHY



Part II

Index





Index

agendas, 13
ARTS files

agenda class.cc, 14
agenda class.h, 14
agenda record.cc, 14
agenda record.h, 14
agendas.cc, 13
array.cc, 59
array.h, 19, 59
arts.h, 4
arts/INSTALL, 1
arts/README, 1
auto md.cc, 13
auto md.h, 7, 13
auto workspace.h, 13
ChangeLog, 3, 9
check input.cc, 42
config.h, 2
controlfiles, 8
controlfiles/artscomponents, 8
controlfiles/artscomponents/ monte-

carlo/TestMonteCarloGaussian.arts,
8

controlfiles/artscomponents/doit/TestDOIT.arts,
8

controlfiles/CMakeLists.txt, 8
controlfiles/instruments, 8
controlfiles/testdata, 8
gridded fields.cc, 37
gridded fields.h, 37
groups.cc, 6, 13, 15
interpolation.cc, 41, 54
interpolation.h, 41
interpolation poly.cc, 51, 54
interpolation poly.h, 51
lin alg.cc, 59
lin alg.h, 59
logic.cc, 59
logic.h, 59
m general.cc, 7

m general.h, 7
make array.h, 19
make auto md cc.cc, 14
make auto md h.cc, 14
make auto workspace h.cc, 14
make vector.cc, 19, 59
make vector.h, 19, 59
math funcs.cc, 55
math funcs.h, 55
matpackI.cc, 19, 59
matpackI.h, 19, 59
matpackII.h, 20
matpackIII.h, 19
matpackIV.h, 19
matpackV.h, 19
matpackVI.h, 19
matpackVII.h, 19
methods.cc, 7, 13, 15
methods.h, 14
methods aux.cc, 14
src/CMakeLists.txt, 8
Test, 8
test interpolation.cc, 41, 48, 49, 52
test matpack.cc, 20
test sparse.cc, 20
workspace.cc, 6, 13, 14
wsv aux.h, 14
xml io array types.cc, 7
xml io basic types.cc, 7
xml io compound types.cc, 7
xml io instantiation.h, 7

Blue Interpolation, 42

data types
Agenda, 14
AgRecord, 14
Array, 31
ArrayOfIndex, 32
ArrayOfString, 32
ConstMatrixView, 25



72 INDEX

ConstVectorView, 21
GridPos, 43
Index, 2
Matrix, 24
MatrixView, 24
MdRecord, 14
MRecord, 14
Numeric, 2, 20
Range, 21
Sparse, 33
Tensor3, 28
Tensor4, 28
Tensor5, 28
Tensor6, 28
Tensor7, 28
Vector, 20
VectorView, 21
WsvRecord, 14

Green Interpolation, 42

internal ARTS functions
chk interpolation grids, 42
define md data, 7
gridpos, 41, 43
interp, 41, 46
interpweights, 41, 45
push back, 33
transform, 27, 30
transpose, 27

Interpolation, 41
Interpolation weights, 44

workspace methods, 13
workspace variables, 13
WSMs, 13
WSVs, 13


	The art of developing ARTS
	Organization
	The ARTS build system
	Configure options

	Conventions
	Numeric types
	Container types
	Terminology
	Global variables
	Files
	Version numbers
	Header files
	Documentation
	File comment
	Function comment
	Generic multi-line comment
	Generic single-line comment


	Extending ARTS
	How to add a workspace variable
	How to add a workspace variable group
	How to add a workspace method
	How to add a source code file
	How to add a test case

	SVN issues
	How to check out arts
	How to update (if you already have a copy)
	How to commit your changes
	How to move your arts working directory

	Debugging (use of assert)

	The workspace
	Implementation files
	Workspace Variables or WSVs
	Workspace Methods or WSMs
	Specific WSMs
	Generic WSMs
	Agenda WSMs

	Agendas
	Introduction


	Vectors, matrices, tensors, and arrays
	Implementation files
	Vectors
	Constructing a Vector
	VectorViews
	What you can do with a Vector (or VectorView)
	Resize (only for Vector, not for VectorView!):
	Get the number of elements:
	Sum up all elements:
	Element access:
	Copying Vectors:
	Copying in connection with views:
	Assigning a scalar:
	Mathematical operators:
	Maximum, minimum and mean:
	Scalar product:
	Arbitrary single-argument math functions:


	Matrices
	Constructing a Matrix
	MatrixViews
	What you can do with a Matrix (or MatrixView)
	Resize (only for Matrix, not for MatrixView!):
	Get the number of rows or columns:
	Refer to a row or column:
	Element access:
	Copying Matrices:
	Copying in connection with views:
	Assigning a scalar:
	Mathematical operators:
	Maximum, minimum and mean:
	Arbitrary single-argument math functions:
	Transpose:
	Matrix multiplication:


	Tensors
	Constructing a tensor
	Tensor views
	What you can do with a tensor (or tensor view)
	Resize (only for tensors, not for views):
	Get the extent of the various dimensions:
	Slicing:
	Element access:
	Copying tensors:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Arbitrary single-argument math functions:

	Making things appear larger than they are
	Summary

	Arrays
	Constructing an Array
	What you can do with an Array
	Resize:
	Get the number of elements:
	Element access:
	Copying Arrays:
	Assigning a scalar of the base type:
	Append to the end:


	Sparse matrices
	Constructing a Sparse
	What you can do with a Sparse
	Identity matrix:
	Resize:
	Get the number of rows, columns or non-zero elements:
	Element access:
	Copying Matrices:
	Transpose:
	Matrix multiplication:



	Gridded Fields
	Implementation files
	Design
	The abstract base class GriddedField
	Inheritance

	Constructing Gridded Fields
	Creation
	Initializing the grids
	Initializing the data
	Consistency check


	Interpolation
	Implementation files
	Green and blue interpolation
	Grid checking functions
	Grid positions
	Setting up grid position arrays
	Interpolation weights
	Setting up interpolation weight tensors
	Blue interpolation
	Green interpolation

	The actual interpolation
	Blue interpolation
	Green interpolation

	Examples
	A simple example
	A more elaborate example

	Higher order interpolation
	Summary

	Integration functions
	Implementation files
	Trapezoidal Integration
	Solid Angle Integration

	Linear algebra functions
	Implementation files
	Linear Equation Systems
	LU Decomposition
	Forward- and Backsubstitution
	More Applications of the LU Decomposition

	Matrix Exponential Function
	Padé Approximation


	I Bibliography and Appendices
	II Index

