integrate_water_vapor

typhon.physics.integrate_water_vapor(vmr, p, T=None, z=None, axis=0)[source]

Calculate the integrated water vapor (IWV).

The basic implementation of the function assumes the atmosphere to be in hydrostatic equilibrium. The IWV is calculated as follows:

\[\mathrm{IWV} = -\frac{1}{g} \int q(p)\,\mathrm{d}p\]

For non-hydrostatic atmospheres, additional information on temperature and height are needed:

\[\mathrm{IWV} = \int \rho_v(z)\,\mathrm{d}z\]
Parameters:
  • vmr (float or ndarray) – Volume mixing ratio,

  • p (float or ndarray) – Pressue [Pa].

  • T (float or ndarray) – Temperature [K] (see z).

  • z (float or ndarray) – Height [m]. For non-hydrostatic calculation both T and z have to be passed.

  • axis (int) – Axis to integrate along.

Returns:

Integrated water vapor [kg/m**2].

Return type:

float