All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

| 2c-ice | a-train | abs lookup | absorption | active | aerosol | aerosols | age of air | aggregation | airs | albedo | algorithm | amsos | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astronomy | astrophysics | asymmetry | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | bachelor thesis | backscattering | basics | bayes | bias | biomass | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | cliccs | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud ice mission | cloud optical thickness | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | cloud top pressure | cloudice mission | clouds | cloudsat | clustering | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | collocations | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cost 723 qjrms | cross-calibration | cth | cumulus | dardar | data assimilation | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dlr-smiles | dmsp | documentation | doppler | droplet size | dynamics | earth | earthcare | ec earth | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emde | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | fuzzy inference system | fuzzy logic | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | gravitational lensing | greenhouse effect | ground-based | groundbased | habil | hadley circulation | hail | hamburg | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | hydrometeors | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | infrared sounder | instruments | inter-calibration | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | john | jupiter | kalpana | kessler scheme | lblrtm | licentiate thesis | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | master thesis | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | methane ocean | metop | mhs | microphysics | microwave | microwave humidity | microwave radiometry | milz | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | moon | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbital drift correction | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | passive | patmos-x | phase function | phd thesis | planetary evolution | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometer | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | radiosonde corrections | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | retrievals | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | sreerekha | ssm/i | ssm/t | ssmis | ssmt2 | stability | stars | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | synergy | task2 | tempera | temperature | terra | thermodynamics | time series | titan | tkuhn | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | uthmos | utls | validation | vater vapor | venus | visualization | volcanic ash | walker | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:zeeman

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      2016 Back to top

    1. Larsson, R., M. Milz, P. Rayer, R. Saunders, W. Bell, A. Booton, S. A. Buehler, P. Eriksson, and V. O. John (2016), Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line modelAtmos. Meas. Tech., doi:10.5194/amt-9-841-2016.
    2. 2015 Back to top

    3. Navas-Guzmán, F., N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson (2015), Zeeman effect in atmospheric O2 measured by ground-based microwave radiometryAtmos. Meas. Tech., 1863–1874, doi:10.5194/amt-8-1863-2015.
    4. 2014 Back to top

    5. Larsson, R. (2014), A note on modelling of the oxygen spectral cross-section in the Atmospheric Radiative Transfer Simulator — Zeeman effect combined with line mixing in Earth's atmosphereInt. J. Remote Sensing, 35(15), 5845–5853, doi:10.1080/01431161.2014.945002.
    6. Larsson, R., S. A. Buehler, P. Eriksson, and J. Mendrok (2014), A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)J. Quant. Spectrosc. Radiat. Transfer, 133, 445–453, doi:10.1016/j.jqsrt.2013.09.006.
    7. 2013 Back to top

    8. Larsson, R., R. Ramstad, J. Mendrok, S. A. Buehler, and Y. Kasai (2013), A Method for Remote Sensing of Weak Planetary Magnetic Fields: Simulated Application to MarsGeophys. Res. Lett., 40(19), 5014–5018, doi:10.1002/grl.50964.

    Books and Book Contributions

      Theses

        2014 Back to top

      1. Larsson, R. (2014), Modeling the Zeeman Effect in Planetary Atmospheric Radiative Transfer, Licentiate thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Division of Space Technology, ISSN: 1402-1757, ISBN: 978-91-7439-914-1.

      Technical Reports and Proposals

        2014 Back to top

      1. Larsson, R. (2014), The Zeeman effect implementation for SSMIS in ARTS v. RTTOV, EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF).

      Articles in Conference Proceedings and Newsletters

        Internal Reports

          External references

          1. Berdyugina, S. V. and S. K. Solanki (2002), The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields — I. Theoretical spectral patterns in the Zeeman regimeA&A, 385, doi:10.1051/0004-6361:20020130.
          2. Berdyugina, S. V., S. K. Solanki, and C. Frutiger (2003), The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields — II. Synthetic Stokes profiles in the Zeeman regimeA&A, 412, doi:10.1051/0004-6361:20031473.
          3. Berdyugina, S. V., P. A. Braun, D. M. Fluri, and S. K. Solanki (2003), The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields — III. Theoretical spectral patterns in the Paschen-Back regimeA&A, 444, doi:10.1051/0004-6361:20053806.
          4. Burrus, C. A. (1958), Zeeman Effect in the 1- to 3-Millimeter Wave Region: Molecular g Factors of Several Light MoleculesJ. Chem. Phys., 30(4), 976–983, doi:10.1063/1.1730139.
          5. Christensen, H. and L. Veseth (1978), On the high-precision Zeeman effect in O2 and SOJ. Molec. Struct., 72(3), 438–444, doi:10.1016/0022-2852(78)90142-X.
          6. Croom, D. L. (1978), Millimetre Remote Sensing of the Stratosphere and Mesosphere, Appleton Laboratory.
          7. del Toro Iniesta, J. C. (2003), Introduction to Spectropolarimetry, Cambridge University Press, ISBN 0-521-81827-3.
          8. Han, Y., F. Weng, Q. Liu, and Paul van Delst (2007), A fast radiative transfer model for SSMIS upper atmosphere sounding channelsJ. Geophys. Res., 112, D11121, doi:10.1029/2006JD008208.
          9. Han, Y., P. van Delst, and F. Weng (2010), An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channelsJ. Geophys. Res., 115, D15109, doi:10.1029/2010JD013878.
          10. Hartmann, G. K., W. Degenhardt, M. L. Richards, H. J. Liebe, G. A. Hufford, M. G. Cotton, R. M. Belivacqua, J. J. Olivero, N. Kämpfer, and J. Langen (1996), Zeeman splitting of the 61 Gigahertz Oxygen (O2) line in the mesosphereGeophys. Res. Lett., 23(17), 2329–2332, doi:10.1029/96GL01043.
          11. Henry, A. F. (1950), The Zeeman Effect in OxygenPhys. Rev., 80(3), 396–401, doi:10.1103/PhysRev.80.396.
          12. Hill, E. L. (1929), On the Zeeman effect in doublet band spectraPhys. Rev., 34, 1507–1516, doi:10.1103/PhysRev.34.1507.
          13. Hill, R. M. and W. Gordy (1954), Zeeman Effect and Line Breadth Studies of the Microwave Lines of Oxygen, Duke University.
          14. Hufford, G. A. and H. J. Liebe (1989), Millimeter-Wave Propagation in the Mesosphere, NTIA- Report.
          15. Jefferies, J., B. W. Lites, and A. Skumanich (1989), Transfer of line radiation in a magnetic fieldAstrophys. J., 343(1), 920–935, doi:10.1086/167762.
          16. Landi Degl'Innocenti, E. (1976), MALIP - a programme to calculate the Stokes parameters profiles of magnetoactive Fraunhofer linesAstronomy & Astrophysics Suppl. S., 25, 379–390.
          17. Lenoir, W. B. (1967), Propagation of Partially Polarized Waves in a Slightly Anisotropic MediumJ. Appl. Phys., 38(13), 5283–5290.
          18. Lenoir, W. B. (1968), Microwave Spectrum of Molecular Oxygen in the MesosphereJ. Geophys. Res., 73(1), 361–376.
          19. Liebe, H. J. (1981), Modeling attenuation and phase of radio waves in the air frequencies below 1000 GHzRadio Sci., 16(6), 1183–1199.
          20. Meerts, W. L. and L. Veseth (1980), The Zeeman Spectrum of the NO MoleculeJ. Molec. Struct., 82(1), 202–213, doi:10.1016/0022-2852(80)90110-1.
          21. Mizushima, M. (1975), The Theory of Rotating Diatomic Molecules, University of Colorado.
          22. Pardo-Carrion, J. R. (1994), The effect of the Earth's magnetic field on the millimetric and submillimetric O2 lines, DEMIRM/Observatoire de Paris-Meudon, Centro Astronomico de Yebes.
          23. Pardo, J. R., L. Pagani, M. Gerin, and C. Prigent (1995), Evidence of the Zeeman Splitting in the 21→01 Rotational Transition of the Atmospheric 16O18O Molecule from Ground-based MeasurementsJ. Quant. Spectrosc. Radiat. Transfer, 54(6), 931–943.
          24. Pardo, J. R., M. Gerina, C. Prigent, J. Cernicharo, G. Rochard, and P. Brunel (1998), Remote Sensing of the Mesospheric Temperature Profile from Close-to-Nadir Observations: Discussion about the Capabilities of the 57.5–62.5 GHz Frequency Band and the 118.75 GHz Single O2 LineJ. Quant. Spectrosc. Radiat. Transfer, 60(4), 559–571.
          25. Poppe, G. P. M. and C. M J. Wijers (1990), More Efficient Computation of the Complex Error FunctionACM Trans. on Math. Softw., 16(1), 38–46, doi:10.1145/77626.77629.
          26. Rees, D. E., G. A. Murphy, and C. J. Durrant (1989), Stokes profile analysis and vector magnetic fields. II. Formal numerical solutions of the stokes transfer equationsAstrophys. J., 339, 1093-1106, doi:10.1086/167364.
          27. Rosenkranz, P. W. and D. H. Staelin (1988), Polarized thermal microwave emission from oxygen in the mesosphereRadio Sci., 23(5), 721–729.
          28. Rosenkranz, P. W. (1990), Oxygen Line Emission as a measure of Temperature in the Upper Stratosphere and Mesosphere, University of Maryland.
          29. Sampoorna, M., K. N. Nagendra, and H. Frisch (2007), Generalized Voigt functions and their derivativesJ. Quant. Spectrosc. Radiat. Transfer, 104(1), 71–85, doi:10.1016/j.jqsrt.2006.08.011.
          30. Sandor, B. J. and R. T. Clancy (1997), Mesospheric observations and modeling of the Zeeman split 233.9 GHz 18O16O lineGeophys. Res. Lett., 24(13), 1631–1634.
          31. Schadee, A. (1978), On the Zeeman effect in electronic transitions of diamotic moleculesJ. Quant. Spectrosc. Radiat. Transfer, 19, 517–531, doi:10.1016/0022-4073(78)90020-1.
          32. Schwartz, M. J., W. G. Read, and W. Van Snyder (2005), Polarized Radiative Transfer for Zeeman-Split Oxygen Lines in the EOS MLS Forward ModelIEEE T. Geosci. Remote.
          33. Schwartz, M. J., W. G. Read, and W. Van Snyder (2006), EOS MLS Forward Model Polarized Radiative Transfer for Zeeman-Split Oxygen LinesIEEE T. Geosci. Remote, 44(5), 1182–1191, doi:10.1109/TGRS.2005.862267.
          34. Stähli, O., A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson (2013), Microwave radiometer to retrieve temperature profiles from the surface to the stratopauseAtmos. Chem. Phys. Discuss., 6, 2857–2905, doi:10.5194/amtd-6-2857-2013.
          35. Tinkham, M. and M. W. P. Strandberg (1955), Theory of the fine structure of the molecular Oxygen ground state and the measurement of its paramagnetic spectrumPhys. Rev., 97(4), 937–966.
          36. Veseth, L. (1976), Theory of high-precision Zeeman effect in diatomic moleculesJ. Molec. Struct., 63(2), 180–192, doi:10.1016/0022-2852(76)90004-7.
          37. Veseth, L. (1977), Relativistic Corrections to the Zeeman Effect in Diatomic MoleculesJ. Molec. Struct., 66(2), 259–271, doi:10.1016/0022-2852(77)90216-8.
          38. Zaghloul, M. R. and A. N. Ali (2011), Algorithm 916: Computing the Faddeyeva and Voigt FunctionsACM Trans. on Math. Softw., 38(2), 15:1–15:22, doi:10.1145/2049673.2049679.
          39. Zeeman, P. (1897), On the Influence of Magnetism on the Nature of the Light Emitted by a SubstanceAstrophys. J., 5, 332–347, doi:10.1086/140355.