Analyse der flugzeuggestützten Hydrometeorpfad-Retrievals während der COSMICS Kampagne

Autor: Henning DORFF

1. Betreuer
Prof. Dr. Stefan BUEHLER

2. Betreuer
Dr. Manfred BRATH

Matrikelnummer: 6554653

Thema: Analyse der flugzeuggestützten Hydrometeorpfad-Retrievals während der COSMICS Kampagne
Inhaltsverzeichnis

1 Einleitung 1

2 Grundlagen 4
 2.1 Hydrometeorpfade 4
 2.2 Wechselwirkungen von elektromagnetischer Strahlung an Hydrometeoren 5
 2.3 ISMAR und MARSS 6
 2.4 Das Forschungsflugzeug der FAAM 10
 2.5 Die COSMICS-Kampagne 10

3 Daten und Methodik 11
 3.1 Retrieval 11
 3.2 Zusätzliche Daten 12
 3.3 Vorgehensweise der Auswertung 15

4 Resultate der Flüge 17
 4.1 Flug B894 17
 4.1.1 Wetterlage 17
 4.1.2 Retrievalergebnisse 20
 4.1.3 Meteorologische Diskussion der Hydrometeorpfad-Retrievals 23
 4.2 Flug B895 31
 4.2.1 Wetterlage 31
 4.2.2 Retrievalergebnisse 34
 4.2.3 Meteorologische Diskussion der Hydrometeorpfad-Retrievals 36
 4.3 Flug B897 45
 4.3.1 Wetterlage 45
 4.3.2 Retrievalergebnisse 47
 4.3.3 Meteorologische Diskussion der Hydrometeorpfad-Retrievals 49
 4.4 Beziehungen zwischen den Hydrometeoren 59

5 Zusammenfassung und Ausblick 64

6 Anhang 67
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Übersicht der Flüge der COSMICS-Kampagne</td>
<td>2</td>
</tr>
<tr>
<td>2 Lage der Radiometer ISMAR und MARSS an dem Forschungsflugzeug</td>
<td>10</td>
</tr>
<tr>
<td>3 Bodenwetterkarte von Nordwesteuropa für den 11. März 2015 um 12:00 UTC</td>
<td>17</td>
</tr>
<tr>
<td>4 ICON-Hydrometeorpfade über Nordeuropa für den 11. März 2015 um 12:00 UTC</td>
<td>18</td>
</tr>
<tr>
<td>5 MODIS-Aufnahmen um 11:00 und 12:40 UTC vom 11. März 2015</td>
<td>19</td>
</tr>
<tr>
<td>6 Histogramme der relativen Größenverteilungen der HMP für Flug B894</td>
<td>21</td>
</tr>
<tr>
<td>7 Retrievalergebnisse von Flug B894</td>
<td>22</td>
</tr>
<tr>
<td>8 Vertikale Temperatur- und Feuchteprofile aus ICON für Flug B894</td>
<td>24</td>
</tr>
<tr>
<td>9 Profile der relativen Feuchte über Eis und der Hydrometeoren, Flug B894</td>
<td>26</td>
</tr>
<tr>
<td>10 Geographische Verteilung der IWP und SWP vor der Nordostküste Schottlands während Flug B894</td>
<td>28</td>
</tr>
<tr>
<td>11 Helligkeitstemperaturmessungen von ISMAR und MARSS bei Flug B894</td>
<td>29</td>
</tr>
<tr>
<td>12 Geographische Verteilung des PWV aus ICON für 10:30 UTC</td>
<td>31</td>
</tr>
<tr>
<td>13 MODIS-Aufnahmen vom 13. März 2015</td>
<td>33</td>
</tr>
<tr>
<td>14 Retrievalergebnisse von Flug B895</td>
<td>35</td>
</tr>
<tr>
<td>15 Vertikale Feuchteprofile aus Dropsondenmessungen von Flug B895</td>
<td>37</td>
</tr>
<tr>
<td>16 Wolkenoberkantenhöhen aus MODIS-Level-2-Daten und ICON für Flug B895</td>
<td>38</td>
</tr>
<tr>
<td>17 Geographische Verteilung der Hydrometeorpfade für Flug B895</td>
<td>40</td>
</tr>
<tr>
<td>18 T_b-Werte der 18 Radiometerkanäle von 9:25 bis 10:35 UTC bei Flug B895</td>
<td>41</td>
</tr>
<tr>
<td>19 ICON-Vertikalprofile für Flug B895</td>
<td>43</td>
</tr>
<tr>
<td>20 Helligkeitstemperaturen ober- und unterhalb des Flugzeugs bei Flug B895</td>
<td>44</td>
</tr>
<tr>
<td>21 Bodendrückkarte für den 18. März 2015 12:00 UTC</td>
<td>46</td>
</tr>
<tr>
<td>22 MODIS-Aufnahmen für 12:40 UTC und 14:20 UTC, Flug B897</td>
<td>47</td>
</tr>
<tr>
<td>23 Retrievalergebnisse von Flug B897</td>
<td>48</td>
</tr>
<tr>
<td>24 MODIS-Aufnahmen mit eingezeichneten Dropsondenabwürfen von Flug B897</td>
<td>50</td>
</tr>
<tr>
<td>25 Geographische Verteilung der HMP für 12:30 UTC während Flug B897</td>
<td>51</td>
</tr>
<tr>
<td>26 Temperaturprofile aus ICON und Dropsonden für Flug B897</td>
<td>52</td>
</tr>
<tr>
<td>27 Profile der Hydrometeoren in kg/m³ entlang der Flugroute von B897</td>
<td>54</td>
</tr>
<tr>
<td>28 Geographische Verteilung der Hydrometeorpfade um 13:30 UTC um Island</td>
<td>55</td>
</tr>
<tr>
<td>29 Helligkeitstemperaturen zwischen 13:15 und 13:45 UTC von Flug B897</td>
<td>57</td>
</tr>
<tr>
<td>30 Korrelationen zwischen IWP und SWP in ICON und Retrieval für Flug B894</td>
<td>60</td>
</tr>
<tr>
<td>31 Korrelationen zwischen den Hydrometeoren für Flug B897</td>
<td>62</td>
</tr>
<tr>
<td>32 Partikelgrößenverteilungen von Eispartikeln</td>
<td>67</td>
</tr>
<tr>
<td>33 Verteilung des PWV Wasserdampfgehaltes über Nordwesteuropa während Flug B894</td>
<td>68</td>
</tr>
<tr>
<td>34 in-situ-Messungen des Gesamtwassergehalts einer Nevzorovprobe für Flug B894</td>
<td>69</td>
</tr>
<tr>
<td>35 Rohdaten des LIDAR für Flug B894 im Zeitraum von 10:18-10:30 UTC</td>
<td>69</td>
</tr>
</tbody>
</table>
Werteverteilungen der Hydrometeorpfade für Flug B895 .. 70
ICON-Prognose der vertikalen Wasserdampfsäule bis zur mittleren Flughöhe um 12:00 UTC während Flug B897 ... 71
Histogramme der Größenverteilungen der Hydrometeorpfade und dem integrierten Wasserdampf aus dem Retrieval und dem ICON-Modell für Flug B894 .. 72
Vertikale Feuchteprofile der abgeworfenen Dropsonden von Flug B897. 73
Korrelation zwischen IWP und SWP für Flug B895 ... 74

Tabellenverzeichnis

1 Verwendete ISMAR- und MARSS-Kanäle während COSMICS-Kampagne 9
2 Übersicht der verwendeten Auswertungsdaten für jeden untersuchten Flug 15
3 Mittelwerte der HMP und des PWV für den Flug B894 aus Retrieval und ICON-Prognosen. ... 20
1 Einleitung

Zu Beginn wird in Kapitel 2 das nötige Hintergrundwissen über Hydrometeoren, die atmosphärische Streuung und die Radiometer vermittelt. Darauffolgend werden die für die Auswertung zur Verfügung stehenden Daten näher charakterisiert, sowie die Lösungsstrategie der Arbeit erläutert. In der anschließenden Analyse werden die Hydrometeorpfad-Retrieval u.a. mit Daten des deutschen Wettervorhersagemodells (ICON) verglichen. Um die Retrievalergebnisse auf ihre Plausibilität zu untersuchen, werden weitere meteorologische Messdaten in Betracht gezogen.

2 Grundlagen

Im Anschluss werden wichtige physikalische Größen definiert und das erforderliche Hintergrundwissen über die Radiometer ISMAR und MARSS und das Retrieval für ein angemessenes Verständnis der Arbeit vermittelt.

2.1 Hydrometeorpfade

\[
\text{LWP} = \int_{0}^{\infty} \rho_{\text{Luft}} \cdot r_{L} \, dz
\]

Dabei ist \(\rho_{\text{Luft}} \) die Dichte der feuchten Luft und \(r_{L} \) das Mischungsverhältnis von Flüssigwasser. Aus Datenreihen von Satellitenmessungen gelten für den \(\text{LWP} \) in den mittleren Breiten Durchschnittswerte von knapp 0,1 kg/m² (O’Dell et al., 2008).

Von weiterer wichtiger Bedeutung ist der Eiswasserpfad, englisch „ice water path“ (IWP), der sich nach analoger Definition wie der \(\text{LWP} \) ergibt. Laut Moyna et al. (2010) sind circa 20 Prozent der Erde mit hohen Wolken bedeckt, in denen die Strahlungseffekte an Eispartikeln einen essentiellen Einfluss auf Wetter- und Klimaerscheinungen haben. \(\text{IWP} \)-Datenprodukte von globalen Klimamodellen geben Auskunft über den Eiswasserinhalt auf einer langjährigen Zeitskala. Bei einer Betrachtung von Modellergebnissen der zonalen Mittelwerte des \(\text{IWP} \) über die letzten 100 Jahre fallen jedoch große Unterschiede zwischen den einzelnen Modellen auf. In den mittleren Breiten der Nordhemisphäre ergeben sich zonale Mittelwerte des \(\text{IWP} \) zwischen 50-150 g/m², wobei die Maximalwerte in 60° Nord auftreten. Gleichzeitig liegen hier auch die höchsten Unsicherheiten von ±50 g/m² (Eliasson et al., 2011).

Aus den abgeleiteten Partikelgrößenverteilungsfunktionen ist ersichtlich, dass Schnee und Eis ebenso wie Regen und Flüssigwasser überwiegend in unterschiedlichen Größenordnungen verteilt sind. Es kann daher sinnvoll sein, die bisher dargestellten Hydrometeorpfade durch Regenwasserpfade RWP und Schneewasserpfade SWP zu ergänzen. Sie sind in ihrer Definition analog zu LWP und IWP für ausfällbaren Regen und Schnee.

2.2 Wechselwirkungen von elektromagnetischer Strahlung an Hydrometeoren

Wasserdampf gilt als Treibhausgas der Atmosphäre und absorbiert in verschiedenen Frequenzbereichen elektromagnetische Strahlung. Dabei bezeichnet Absorption die Umwandlung der Energie elektromagnetischer Strahlung in thermische Energie.

Bei Transfer der terrestrischen Strahlung durch die Atmosphäre können außerdem Wechselwirkungen mit Hydrometeoren auftreten, die über Streuung Eigenschaften der elektromagnetischen Strahlung verändern. Bei Streuung werden das elektrische und magnetische Feld der Strahlungswelle innerhalb des Ausbreitungsmediums durch ein Objekt so verändert, dass sich in Folge eine Richtungsänderung der elektromagnetischen Strahlungswelle einstellt (Bohren & Huffman, 1983).

Aufgrund ihrer dielektrischen Eigenschaften können Hydrometeore zu Streuung der ein treffenden Strahlung in der Atmosphäre führen. Die Wassermoleküle besitzen gegenüber der trockenen Atmosphärenluft eine andere Permittivität und Permeabilität und können das elektromagnetische Feld der Strahlung so verändern, dass die Strahlung gestreut wird. Die mikrophysikalischen Streuprozesse stehen dabei in engem Zusammenhang zur Partikelgröße, die häufig in einem massenäquivalenten Durchmesser \(D_{me} \) angegeben wird. Nach der Mie-Theorie entstehen Streuprozesse vorwiegend dann, wenn die Wellenlänge der ein treffenden Strahlung in gleicher Größenordnung wie der Partikeldurchmesser \(D_{me} \) des Streuobjektes ist. Dabei treten für Hydrometeore Streuprozesse vom infraroten über den Submillimeter- bis zum Mikrowellenbereich auf (Bass et al., 2010).

So wechselwirken Eiswolken mit elektromagnetischer Strahlung im Submillimeter-Wellenlängenbereich. Ihre Wechselwirkungen durch elektromagnetische Streuprozesse in der Atmosphäre werden in Abhängigkeit von der Eismasse, Eispartikelgröße und Wolkenhöhe beeinflusst. (Buehler et al., 2007). Durch Messungen der Strahlungsintensität macht sich die Fernerkundung die Streuwechselwirkungen an Hydrometeoren zu Nutze, um quantitative Rückschlüsse über den Wolkenwassergehalt der Atmosphäre ziehen zu können. Da die Streueffizienz in direktem Zusammenhang zu dem Verhältnis aus Partikelgröße und Frequenz der Strahlung steht, können mit verschiedenen Frequenzen Partikelgrößenverteilungen abgeleitet werden (Jiménez et al., 2007).

Dabei können Instrumente, die im sichtbaren und infraroten Frequenzbereich agieren, Aussagen über dünne Eiswolken treffen. Für kleine Eispartikeldurchmesser unter 50 \(\mu \text{m} \) ergeben sich dort die stärksten Strahlungsinteraktionen durch Streuung, die am Instrument durch eine Veränderung der Strahlungsintensität messbar sind. Hingegen für Frequenzen Mikrowellenradiometern unter 200 GHz reagiert die Strahlung empfindlich auf Eispartikel mit einem Durchmesser größer als 500 \(\mu \text{m} \). Solche Eispartikel treten vorwiegend in tiefer
konvektiver Bewölkung auf. Mit diesen Messungen können nur die oberen und unteren Bereiche der Partikelgrößenverteilungen von Eispartikeln in der Atmosphäre untersucht werden. Der große Anteil an der Gesamteismasse stammt allerdings von Eispartikeln mit einem Durchmesser zwischen 50 und 500 \(\mu m \) (Eliasson et al., 2011). Innerhalb des Submillimeter-Wellenlängenbereichs können physikalische Effekte durch die mittelgroßen Eispartikel mit einem effektiven Durchmesser von 100 bis 1000 \(\mu m \) gemessen werden (S. Buehler et al., 2007).

Die Radiometer ISMAR und MARSS messen im Submillimeterbereich bzw. hoch frequenten Mikrowellenbereich die eintreffende Strahlung. In diesem Wellenlängenbereich interagieren u.a. Eispartikel zwischen 200 und 1000 \(\mu m \) durch Streuprozesse mit der elektromagnetischen Strahlung, sodass weitere Bereiche des Spektrums aufgelöst werden können. Für das nötige Verständnis innerhalb dieser Arbeit sollen beide Instrumente erklärt werden.

2.3 ISMAR und MARSS

Mit ihren Kanälen messen die Radiometer die Intensität, bzw. die Helligkeitstemperatur \(T_b \) der eintreffenden Strahlung in festen Frequenzbereichen. Die Helligkeitstemperatur ist die Temperatur, die ein schwarzer Körper haben müsste, um den entsprechenden spektralen Strahlungsfluss pro Raumwinkel \(\frac{W}{m^2 \cdot sr \cdot Hz} \) zu emittieren. Somit ist \(T_b \) ein Maß für die Intensität der Strahlung. Durch Inversion der Planckfunktion \(B_\lambda \) gilt für die Helligkeitstempe-
peratur aus Petty (2006):

\[T_b = B_\lambda^{-1} \left[\epsilon B_\lambda(T) \right] \]

(2.2)

Da Wolken im Submillimeter-Wellenlängenbereich näherungsweise als schwarze Körper angenommen werden können, ist die Emissivität von Wolken \(\epsilon \approx 1 \). Bei Wolken entspricht die gemessene \(T_b \) demnach der physikalischen Umgebungstemperatur der Schicht, aus der die Strahlung stammt. Bei einem höheren Wassergehalt der Atmosphäre, wird die Atmosphäre optisch dicker. Das bedeutet, dass emittierte Strahlung der unteren Atmosphärenschichten bereits von den oberen Atmosphärenschichten absorbiert oder gestreut wird und somit nur Strahlung aus den oberen Atmosphärenschichten auf die Radiometer treffen. Da dann die gemessene Strahlung aus Schichten mit einer anderen Umgebungstemperatur stammt, ergeben sich somit am Radiometer Veränderungen der Helligkeitstemperatur \(\Delta T_b \) gegenüber einem wolkenfreien Himmel. Bei Vorhandensein von Eis ist der Wert von \(\Delta T_b \) proportional zum \(IWP \). Tabelle 1 zeigt die während der COSMICS-Kampagne verwendeten Kanäle von ISMAR und MARSS auf dem Messflugzeug der FAAM.

Der 664 GHz-Kanal befindet sich ebenfalls wie der 243 GHz-Kanal in einem atmosphärischen Fensterbereich. Beide Kanäle sind vertikal und horizontal polarisiert und können so Aussagen über Partikelformen aus verschiedenen Höhen treffen (Buehler et al., 2012).

Insofern eignen sich also die Kanäle im nahen Mikrowellenbereich des MARSS für die Ableitung von Flüssigwasser- und Regenwasserpfaden und die Kanäle des ISMAR zur Ermittlung von Eis- und Schneewasserpfaden. Bezüglich des ISMAR reagieren die niedrigeren Frequenzen nur auf hohe Werte des \(IWP \) und höhere Frequenzen reagieren auch bereits auf niedrigere Werte des \(IWP \) (Fox et al. (2014) und Jiménez et al. (2007)).

Tabelle 1: Verwendete ISMAR- und MARSS-Kanäle während COSMICS-Kampagne

<table>
<thead>
<tr>
<th>Kanal #</th>
<th>Frequenz in GHz</th>
<th>Duale Seitenbänder in GHz</th>
<th>Polarisation</th>
<th>Spektralbereich</th>
<th>Instrument der FAAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89,9</td>
<td>± 1,1</td>
<td>V</td>
<td>Fenster</td>
<td>MARSS 1</td>
</tr>
<tr>
<td>2</td>
<td>± 1,1</td>
<td>U</td>
<td>O2</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>± 1,5</td>
<td>U</td>
<td>O2</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>118,75</td>
<td>± 2,1</td>
<td>U</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>± 3,0</td>
<td>U</td>
<td>O2</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>± 5,0</td>
<td>U</td>
<td>O2</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>157,08</td>
<td>± 2,6</td>
<td>V</td>
<td>Fenster</td>
<td>MARSS 2</td>
</tr>
<tr>
<td>8</td>
<td>± 1</td>
<td>U</td>
<td>H2O</td>
<td>MARSS 3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>183,31</td>
<td>± 3</td>
<td>U</td>
<td>H2O</td>
<td>MARSS 4</td>
</tr>
<tr>
<td>10</td>
<td>± 7</td>
<td>U</td>
<td>H2O</td>
<td>MARSS 5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>243,2</td>
<td>± 2,5</td>
<td>V & H</td>
<td>Fenster</td>
<td>ISMAR</td>
</tr>
<tr>
<td>12</td>
<td>± 1,5</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>325,15</td>
<td>± 3,5</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
</tr>
<tr>
<td>14</td>
<td>± 9,5</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>± 1,4</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>± 3,0</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>± 7,2</td>
<td>U</td>
<td>H2O</td>
<td>ISMAR</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>664</td>
<td>± 4,2</td>
<td>V & H</td>
<td>Fenster</td>
<td>ISMAR</td>
</tr>
</tbody>
</table>

2.4 Das Forschungsflugzeug der FAAM

2.5 Die COSMICS-Kampagne

3 Daten und Methodik

Im Folgenden werden die für die Auswertung der COSMICS-Kampagne verwendeten Daten vorgestellt. Des Weiteren wird die konkrete Durchführung der Datenauswertung im Hinblick auf die meteorologische Analyse der HMP erläutert. Dabei stellen die T_b-Messungen der verschiedenen ISMAR- und MARSS-Kanäle die Rohdaten der Arbeit dar. Aufgrund der in Kapitel 2.2 beschriebenen Wechselwirkungen der Hydrometeore mit der einfallenden Strahlung treten Veränderungen der gemessenen Helligkeitstemperaturen ΔT_b in den Kanälen auf, sobald Hydrometeore vorhanden sind. Aus den verschiedenen Kanalmessungen können unterschiedliche Rückschlüsse über die Hydrometeore in der Atmosphäre getroffen werden.

3.1 Retrieval

Mithilfe eines Retrieval-Algorithmus von M. Brath wurden aus den gemessenen Helligkeitstemperaturen T_b der 18 ISMAR- und MARSS-Kanäle während der COSMICS Kampagne die HMP entlang der Flugroute abgeleitet. Dieses Retrieval basiert auf einem neuronalen Netzwerk. In einem solchen neuronalen Netzwerk werden auf verschiedenen Prozessebenen aus Inputgrößen mit Transformationsfunktionen die Outputgrößen ermittelt (Jiménez et al., 2007). Konkret sind hier mit dem Input die gemessenen T_b der Radiometer und mit dem Output die vier ermittelten Hydrometeorpfade (LWP, IWP, RWP und SWP) gemeint. Für diese Transformation sind Trainingsdaten erforderlich, aus denen das Retrieval lernt. Sie stammen aus zufällig ausgewählten, atmosphärischen Profilen des ICON-Modells für die Tage von Flug B894, B895 und B897 aus einem geographischen Gebiet von 50° bis 75° Nord und 30° West bis 5° Ost.

Darauf hinaus beinhaltet das Retrieval neben den vier HMP auch die vertikal integrierte Wasserdampfsäule (engl. precipitable water vapor PWV) der Atmosphäre. Sie ist definiert als:

$$PWV = \int_0^\infty \rho_w(z) dz$$

(3.3)

Dabei bezeichnet ρ_w die höhenabhängige Dichtefunktion des Wasserdampfes. Wasserdampf ist das Treibhausgas der Erdatmosphäre mit den höchsten zeitlichen und
räumlichen Schwankungen. Laut Petty (2006) schwanken die mittleren Werte des vertikal integrierten Wasserdampfgehaltes \(PWV \) entlang der Breitengrade zwischen 1 kg/m\(^2\) in den trockenen Polargebieten und bis zu 60 kg/m\(^2\) in den feuchten Tropen. Der Wasserdampfgehalt definiert die absolute Feuchte der Atmosphäre.

Innerhalb von ICON wird die Quantifizierung der Hydrometeore mit Partikelgrößenverteilungsfunktionen beschrieben. Sie geben für einen jeweiligen Partikeldurchmesser \(D \) die Anzahl des Hydrometeors \(n(D) \) an. Die Größenverteilungen der Flüssigwasser- und Eispartikel werden mit modifizierten Gammaverteilungen (MGD) charakterisiert. Vertiefende Erläuterungen zu MGD finden sich in Petty & Huang (2011). Im dort genutzten 1-Momenten-Schema besitzen diese Verteilungsfunktionen einen massenspezifischen Freiheitsgrad, während die weiteren Koeffizienten fest gesetzt sind. Für Berechnungen der MGD von Eispartikeln mit dem 1-Momenten-Schema zeigt sich, dass das Partikelgrößenspektrum selbst für einen höheren Eiswassergehalt \(IWC \) von 0,1 g/m\(^3\) hauptsächlich durch Partikel mit einem maximalen Durchmesser von unter 100 \(\mu m \) geprägt wird. Eine Illustration der Berechnungen findet sich im Anhang.

Nun ist der Eiswasserpfad \(IWP \) definiert als das Höhenintegral über den \(IWC \). Bezüglich des \(IWP \)-Retrieval bedeuten die Berechnungen im 1-Momenten-Schema insofern, dass der \(IWP \) bei betrachteten Radiometerkanälen keine aus den Helligkeitstemperaturen physikalische ableitbare Größe sein kann. So wechselwirken nach Buehler et al. (2007) erst Partikel mit einem Durchmesser von über 100 \(\mu m \) mit Wellenlängen im Submillimeterbereich durch Streuung. Dementsprechend muss das \(IWP \)-Retrieval aus dem \(SWP \)-Retrieval mithilfe von Parametrisierungen ermittelt werden. Im weiteren Verlauf der Arbeit wird das \(IWP \)-Retrieval zwar mit dem ICON verglichen, es ist jedoch wichtig zu beachten, dass nur größere Eispartikel, zugehörig des \(SWP \), bei Streuprozessen im Submillimeterbereich zu messbaren \(\Delta T_b \) führen können. Die Größenverteilung von Regenwassertropfen wird über die Marshall & Palmer-Verteilung beschrieben und für Schneewasser verwendet das ICON die Parametrisierungen aus Field et al. (2007).

Neben einer Betrachtung der Retrievalergebnisse und den Rohdaten der \(T_b \)-Messungen sind für die meteorologische Analyse der \(HMP \)-Retrievals vor allem zusätzliche Daten nötig. Im Folgenden werden die diese verwendeten Daten zur Auswertung der \(HMP \)-Retrievals vorgestellt. Des Weiteren wird die konkrete Durchführung der Datenauswertung im Hinblick auf die meteorologische Analyse der \(HMP \) skizziert.

3.2 Zusätzliche Daten

Wie in Kapitel 2.5 erwähnt, lagen für elf der zwölf Flüge ISMAR-/ und MARSS-Daten vor, wovon drei ausgewählte Flüge näher betrachtet werden. Für die meteorologische Analyse der \(HMP \)-Retrievals sind zusätzliche Daten erforderlich. Aus ihnen lassen sich weitere Informationen über die meteorologischen Randbedingungen ableiten. Die in der Arbeit verwendeten Daten- und Messquellen sollen hier vorgestellt werden. Sie stammen aus unterschiedlichen meteorologischen Bereichen:
Satellitenfernerkundung:

Prognosenmodellierung:
In Vorhersagemodellen werden meteorologische Größen an Gitterpunkten, die den Globus aufspannen, berechnet. Für die drei ausgewählten Flüge liegen ICON-Daten vor. Das ICON ist das Wettervorhersagemodell des Deutschen Wetterdienstes. Die hier genutzten ICON-Modellprognosen weisen ein Ikosaeder-Gitter mit einer mittleren Auflösung von 9,86 km auf. Dieses horizontale Gitter ist in 90 Höhenschritten von 10 m bis 75 km aufgespannt (Reinert et al., 2016). Die Daten liegen für einen geographischen Ausschnitt von 50° bis 75° Nord und von 30° West bis 5° Ost vor. ICON berechnet die Feldgrößen für jede halbe Stunde. Die ICON-Daten starten um 00:00 UTC des Flugtages und reichen bis +30 Stunden. Somit ergeben sich 61 Zeitschritte. Bereits im Kapitel 2.1 wurde geschildert, dass die verwendeten ICON-Prognosedaten bezüglich der Eispartikelgrößenverteilung auf einem 1-Momenten-Schema basieren.
Dropsonden:

Flight Logs:

in-situ-Flugzeugdaten

3.3 Vorgehensweise der Auswertung

Für die Plausibilitätsprüfung des Retrievals wird versucht, die in Kapitel 3.2 genannten Datenquellen nicht isoliert voneinander zu betrachten, sondern eine kompakte Zusammenstellung zu entwickeln. Erst die Kombination aller Daten ermöglicht es, die meteorologische Situation während der Flugexkursionen hinreichend zu erfassen. Schließlich haben die Daten jedes Messverfahrens ihre Genauigkeitsgrenzen.

Um die meteorologischen Rahmenbedingungen während eines Fluges festzustellen, ist erst eine Einordnung in die Großwetterlage notwendig. Sie gibt Hinweise über die zu erwartenden Größenordnungen der HMP. Dafür werden Daten verwendet, die für ein großes geographisches Gebiet die Wetterlage charakterisieren. Hierzu eignen sich neben Bodendruckkarten, großflächige Prognosen aus ICON beispielweise zur Lokalisierung von Fronten, sowie die MODIS-Satellitendaten.

Im räumlichen Sinne wird diese Einschränkung dadurch begrenzt, dass bereits für das Retrieval die 3,5-minütigen Mittelwerte der T_b-Messung verwendet wurden. Vereinfacht gesagt beschreibt das Retrieval bei einer mittleren Fluggeschwindigkeit von etwa 600 km/h also die gemittelten HMP entlang einer Flugstrecke von knapp 35 km. Gleichzeitig ist allerdings die zeitliche Auflösung von ICON sehr gering. So liegen Modellprognosen nur für alle 30 Minuten vor. Wegen dieser zeitlich und räumlich geringen Auflösung wurden die ICON-Feldgrößen auf den Flugpfad zeitlich und räumlich linear interpoliert.

\[
HMP(t) = \sum_{i=0}^{max} \frac{HMC(z_i) + HMC(z_{i+1})}{2} \cdot (z_{i+1} - z_i)
\]

Dabei ist HMC(z_i) der Gehalt eines Hydrometeors (vom englischen Hydrometeor Content) in einer Höhe z_i. z_0 meint den untersten ICON-Höhenschritt und z_{max} ist der Höhenschritt des ICON, der sich am nächsten zur aktuellen Flugzeughöhe am Zeitpunkt t befindet. Aus dem Vergleich dieser HMP der ICON-Daten mit den HMP über die gesamte Atmosphärensäule können bereits erste Aussagen darüber getroffen, in welchen Höhen ICON die Hydrometeore prognostiziert. Dies kann entscheidend für die Analyse der HMP-Retrievals sein, da das Retrieval nur die Hydrometeorpfade unterhalb des Flugzeuges beschreibt. Nach ähnlichen Vorgehen wurden die integrierten Wasserdampfsäulen aus ICON und den Dropsondenmessungen ermittelt, worauf in Kapitel 4.2 noch einmal spezieller eingegangen wird.

Da die Retrievalergebnisse auf den T_b-Messungen der Radiometer basieren, können Betrachtungen der rohen Messdaten weitere Erkenntnisse liefern. Nach diesem Konzept werden nun die drei Flüge und ihre Retrievalergebnisse untersucht.
4 Resultate der Flüge

4.1 Flug B894

4.1.1 Wetterlage

Auf der Bodenwetterkarte für 12:00 UTC sind die Drucksysteme über Nordeuropa zu sehen. Sie zeigt eine auf der Nordhemisphäre typische winkelförmige Westwetterlage (Bott, 2012). Durch ein steuerndes Tief mit Kern östlich von Island werden feuchte Luftmassen zonal über den Atlantik Richtung europäischen Kontinent transportiert. Aus dem Tiefdruckkern ragt eine langgestreckte Kaltfront heraus, die bis zur französischen Atlantikküste reicht.
Vorderseitig dieser Kaltfront wird eine etwa 700 km lange Warmfront über Großbritannien dargestellt. Im Vergleich zur Bodenwetterkarte für 6:00 UTC (hier nicht gezeigt) wird deutlich, wie die Warmfront von der Kaltfront eingeholt wurde. Gegen 12 Uhr UTC überströmten beide Fronten das schottische Festland, wobei ein blockierendes Hoch über Dänemark und Norddeutschland für eine langsame Ausbreitung der Fronten sorgt.

Abbildung 4 zeigt die geographische Verteilung der Hydrometeorpfade über Nordeuropa, berechnet von ICON für 12:00 UTC. Auch hier ist die langgestreckte Kaltfront sehr gut ersichtlich, besonders zu erkennen an hohen Werten der Schneewasserpfade. Ihre Lage ist deckungsgleich mit der Wetterkarte des MetOffice.

Abbildung 4: Prognostizierte Hydrometeorpfade bis zu der mittleren Flughöhe in 7,42 km über Nordeuropa für den 11. März 2015 um 12:00 UTC.

Richtung Nordosten gelangte die Kaltfront nachmittags in kältere Gebiete. Je nördlicher sich die Front verlagerte, desto weniger Flüssigwasser wurde von ICON prognostiziert. Dafür erhöhen sich die Werte des Schneewasserpfades im Niederschlagsgebiet der Kaltfront auf ihrem Weg Richtung Nordosten. Sobald sich die Front östlich der britischen Insel befand, sind laut ICON keine flüssigen Hydrometeoren in der Front vorhandene und voraussichtlich über Phasenumwandlungen in gefrorene Hydrometeoren übergegangen, was die Intensivierung des Schneefallgebietes erklären könnte.
Ein weiterer guter Indikator zur Lokalisierung einer Kaltfront ist der Wasserdampfgehalt der Atmosphäre, da dieser mit Erreichen der Front abrupt ansteigt und in der sogenannten Rückseitenwetterlage einer Kaltfront wieder rapide abnimmt (Bott, 2012). Im Anhang findet sich die geographische Verteilung des \(PWV \) über Europa zum Ende des Fluges um 12:00 UTC. So prognostiziert ICON ein sehr langsames Voranschreiten der Front. Auch nach Ende der Radiometermessungen um 12:00 UTC erreichte die Kaltfront nicht die Flugroute. ICON prognostizierte die Front östlich der britischen Inseln erst ab 14:00 UTC.

Abbildung 5: Vom MODIS gemessene reflektierte solare Intensität der Strahlung mit einem Wellenlängenbereich von 841-876 nm (MODIS-Band 2) für den 11. März 2015 um 11:00 und 12:40 UTC mit eingezeichneter Flugstrecke bis zur Uhrzeit der Aufnahme.

Über Schottland und Nordirland ist die Frontbewölkung zu erkennen, wobei sich ein bedecktes Wolkenband westlich der Flugroute befindet. Die Aufnahmen verdeutlichen einerseits die langsame Verlagerung der Front, wobei erst gegen Ende der Messungen eine dichte Frontbewölkung das Flugzeug erreichte. Andererseits veranschaulicht MODIS eine Verdichtung der Bewölkung von 11:00 bis 12:40 UTC. Da die Schneewasserpfade laut ICON mit Verlagerung der Front nach Osten zugenommen haben, ist davon auszugehen, dass sich die Kaltfront über Großbritannien weiter verstärkt hat.

4.1.2 Retrievalergebnisse

Tabelle 3: Mittelwerte der HMP und des PWV für den Flug B894 aus Retrieval und ICON-Prognosen.

<table>
<thead>
<tr>
<th>Hydrometeorpfade</th>
<th>Retrieval</th>
<th>ICON</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWP in kgm⁻²</td>
<td>1,29 · 10⁻⁴</td>
<td>0,00</td>
</tr>
<tr>
<td>IWP in kgm⁻²</td>
<td>6,31 · 10⁻²</td>
<td>1,10 · 10⁻²</td>
</tr>
<tr>
<td>RWP in kgm⁻²</td>
<td>1,61 · 10⁻⁵</td>
<td>9,07 · 10⁻¹⁰</td>
</tr>
<tr>
<td>SWP in kgm⁻²</td>
<td>5,16 · 10⁻²</td>
<td>1,12 · 10⁻²</td>
</tr>
<tr>
<td>PWV in kgm⁻²</td>
<td>6,03</td>
<td>5,31</td>
</tr>
</tbody>
</table>

Für die beschriebene Wetterlage liegen die Retrievalgrößen SWP und IWP in einer realistischen Größenordnung, sind jedoch im Mittel etwa um einen Faktor 5 bis 6 höher als die des ICON. Mittlere Retrievalwerte für LWP und RWP sind in einer niedrigen Größenordnung, in der die Genauigkeit des Retrievals nicht mehr gewährleistet ist. ICON geht im Mittel nicht von existenten Flüssigwasserpfaden aus. Die Größenverteilung der HMP-Retrievals im Vergleich zu den ICON-Prognosen soll nun veranschaulicht werden.

Für den IWP hingegen liefert das Retrieval überwiegend Werte zwischen 10⁻⁴ kg/m² und 1 kg/m². Das ICON wiederum prognostiziert vorwiegend niedrigere Werte des Eiswasserpfades zwischen 10⁻⁵ und 10⁻¹ kg/m². Beim SWP ähneln sich die Verteilungen bei höheren Werten > 10⁻³ kg/m², wobei das Retrieval auch größere Werte des Schneewasserpfades mit mehr als 10⁻¹ kg/m² annimmt. Dabei liegen die Verteilungen beider Datenquellen für IWP und SWP in realistischen Größenordnungen, die für das Vorhandensein von Schneewolken sprechen. Es scheint jedoch, als würde das Retrieval von einer feuchteren Atmosphäre ausgehen als das ICON-Modell.

Diese Behauptung wird durch die Größenverteilung des PWV unterstützt. Nach dem Retrieval beträgt der vertikal integrierte Wasserdampfgehalt zwischen 6 und 7 kg/m² ein. ICON rechnet mit niedrigeren Werten zwischen 5 und 6 kg/m². Mithilfe des Wasserdampfgehaltes kann die atmosphärische Feuchte während des Fluges quantifiziert werden, wobei beide Datenquellen eine eher trockene Atmosphäre annehmen.

Auch mit Beachtung der Advektion scheinen laut ICON keine flüssigen Hydrometeore entlang des Flugpfades in der Atmosphäre vorgekommen zu sein. Wiederum für die festen Hydrometeore zeigen sich qualitative Übereinstimmungen zwischen Retrieval und ICON-Modell. Zwischen 10:15 und 11:00 UTC ähneln sich die tendenziellen Verläufe der SWP stärker als beim IWP, wobei aber auch für den SWP die Werte von Retrieval und ICON in zwei verschiedenen Größenordnungen liegen. Nach einem Maximum vorhandener Schnee- und Eismassen gegen 10:45 UTC fallen die Werte von SWP und IWP kurz vor 11:00 UTC bei beiden Datenquellen auf ein Minimum ab. Anschließend ergibt sich ein Ansteigen der HMP von Schnee und Eis im ICON-Modell und dem Retrieval, wobei beide Datenquellen ein ausgeprägtes Maximum gegen 11:15 UTC simulieren. Im ICON ergeben sich für 11:15 UTC Maximalklippen der Pfad der gefrorenen Partikel von bis zu $100 \, \text{g/m}^2$. Zu diesem Zeitpunkt übersteigen die Retrieval-Werte von Schnee und Eis den Unsicherheitsbereich des ICON und reichen bis knapp $600 \, \text{g/m}^2$ (bzw. $10^{-0.5} \, \text{kg/m}^2$).

Ursächlich könnten die ausgeprägten Maxima der HMP von 11:15 UTC aus einem Überflug von Wolken entstanden sein, wobei diese Wolken von ICON unterschätzt wurden oder als solche nicht genau lokalisiert werden konnten. Außerdem prognostiziert ICON oberhalb des Flugzeuges teilweise Vorkommen der Hydrometeore, was durch die großen Differenzen zwischen dem ermittelten IWP bis zur momentanen Flugzeughöhe und dem IWP über die gesamte Atmosphärensäule z.B. gegen 10:20 UTC deutlich wird. Die Feststellungen aus Kapitel 4.1.2 werden im anschließenden Kapitel aus meteorologischer Betrachtungsweise analysiert.

4.1.3 Meteorologische Diskussion der Hydrometeorpfad-Retrievals

Aus Westen kommend passierte das Flugzeug gegen 10:00 UTC die Front und befand sich um 10:30 UTC voraussichtlich in wolkennembrinem Gebiet. ICON simulierte für 10:30 UTC die Frontbewölkung westlich des Flugzeuges (hier nicht gezeigt). Nach einer ersten 180° Schleife näherte sie sich wieder der Front und flog ein Stück frontenparallel. Um 11:00 UTC flog das Flugzeug ein weiteres Mal südöstlich aus der Frontbewölkung. Die Hydrometeorpfade von Retrieval und ICON zeigen passend ein Minimum. Nach einer weiteren Schleife wurde tiefer in die Front eingedrungen und bis 59° Nord Radiometermessungen vorgenommen. Es werden ansteigende Hydrometeorpfade des Retrievals berechnet und Maximalwerte über 500 g/m2 gegen 11:15 angegeben. Der große Unsicherheitsbereich in Abbildung 7 ist auf die Grenzwetterlage zurückzuführen.

Aus den ICON-Prognosen der geographischen Verteilung der Hydrometeore zeigte sich, dass erst rückseitig der Kaltfront Flüssigwasser auftrat und nicht mehr die Flugstrecke im Messzeitraum erreicht wurde. Hingegen traten in den Regionen vorderseitig der Kaltfront Schneee- und Eiswasserpfade mit Werten über 400 g/m2 auf, welche laut ICON auch von der Flugroute gestreift wurden. Sollte in dieser Bewölkung kein Flüssigwasser enthalten gewesen sein, kann es zwei plausible Gründe geben: Entweder traten diese Wolken nur in höheren, kälteren Atmosphärenschichten auf, oder aber selbst in tiefen Höhenschichten waren die Temperaturen bereits zu niedrig, als dass dort Phasenübergänge von Eispartikeln in den flüssigen Aggregatzustand möglich gewesen wären.
Die prognostizierten Temperaturprofile entlang der Flugstrecke könnten Aufschluss darüber geben, weshalb ICON kein Flüssigwasser im Gegensatz zum Retrieval annimmt. Darüber hinaus berechnet das ICON-Modell Vertikalprofile der spezifischen Feuchte \(q \) in der Atmosphäre. Durch Multiplikation mit der Luftdichte \(\rho_{\text{Luft}} \) kann die absolute Feuchte \(\rho_w \) und daraus mithilfe der Gasgleichung der Wasserdampfpartialdruck \(e \) berechnet werden. Nun ist die relative Feuchte über Eis \(RH_{\text{Eis}} \) definiert als das Verhältnis von \(e \) zum Sättigungsdampfdruck über Eis \(e_s \). Da \(e_s(T) \) in guter Näherung eine reine Funktion von der Temperatur \(T \) ist, wurde er mit den Parametrisierungen von Murphy & Koop (2005) aus den \(T \)-Profilen des ICON berechnet. Somit wurden Vertikalprofile von \(RH_{\text{Eis}} \) ermittelt. Durch die größeren zwischenmolekularen Bindungskräfte von Eismolekülen können diese schlechter als Wassermoleküle entweichen und zu Wasserdampf übergehen. Folglich stellt sich bei weniger Wasserdampf in der Atmosphäre bereits ein gesättigter Gleichgewichtszustand der Phasenübergänge ein und der Sättigungsdampfdruck über Eis ist damit niedriger als über Wasser. Mit einer steigenden \(RH_{\text{Eis}} \) nimmt die Wahrscheinlichkeit für existente Eispartikel in der Atmosphäre zu. Eine hohe relative Feuchte ist eine notwendige Bedingung für die Wolkenbildung. Hohe \(RH \)-Werte sind damit Indikator für das Vorkommen von Wolken (Wang, 2013). Eine Untersuchung der Existenz möglicher Eiswolken ist mit der \(RH_{\text{Eis}} \) konservativer als mit der relativen Feuchte über Wasser \(RH \), da per Definition \(RH_{\text{Eis}} \) immer höher als die relative Feuchte über Wasser ist.

Demzufolge gibt Abbildung 8 nun die vertikalen, auf die Flugroute interpolierten Profile der Temperatur und relativen Feuchte über Eis \((RH_{\text{Eis}}) \) für den Zeitraum der ISMAR/MARSS-Messungen an. Häufig bestehen Wolken auch bei Temperaturen unter 0°C aus unterkühlten Wassertropfen. Nach Wang (2013) bestehen Wolken mit einer Wahrscheinlichkeit von unter 50% rein aus Wassertropfen, sobald die Temperatur unter \(-10^\circ\text{C}\) sinkt. Bei Abbildung 8a wurde folglich die Skalierung des Konturplots so gewählt, dass Temperaturen, bei denen die Wassertropfen wahrscheinlicher als Eiskristalle sind, eine rote Farbe aufweisen und die blauen Bereiche für wahrscheinlichere Eisvorkommen sprechen.

Nach ICON herrschten unterhalb einer Höhe von 3,75 km Umgebungstemperaturen, für die
Flüssigwasserwolken wahrscheinlich gewesen wären. Die Feuchtprofile hingegen verdeutlichen, dass in diesen Höhen die Atmosphäre zu trocken ist. Erst ab Höhen von 6-7 km prognostiziert das ICON eine hohe Luftfeuchtigkeit. Signifikant ist zudem die Sättigung der Atmosphäre oberhalb des Flugzeuges, wobei die Atmosphäre während Flug B894 auf verschiedenen Ebenen zwischen 7 und 8,75 km Höhe durchflogen wird. Die T-RH-Profile erklären zwar die ICON-Prognosen nicht existenter flüssiger Hydrometeore in der Atmosphäre, sie können aber nicht als unabhängige Quelle für die Analyse der Retrievalgenauigkeit dienen. Schließlich ist ICON ein in sich konsistentes Vorhersagemodell.

Die Retrievalergebnisse der gefrorenen Hydrometeoren aus Abbildung 7 zeigten im Vergleich zum ICON höhere Werte. Da sich im ICON auch Unterschiede zwischen den HMP der gesamten Atmosphärensäule und den HMP bis zur Flugzeughöhe ergaben, sollen nun die vertikalen Profile der Hydrometeore genauer untersucht werden. Mit einer Lokalisierung der vertikalen Vorkommnisse von Eis können die ICON-Hydrometeorpfade besser auf ihren Wahrheitsgehalt untersucht werden. Aus den Feuchteprofilen des ICON (Abbildung 8) entsteht bereits die Vermutung, dass sich die realen Eiswolken während des Fluges in einer niedrigeren Höhe befanden, als es vom ICON angenommen wurde. So zeigt Abbildung 9b nun die Vertikalprofile des Eis (IWC)- und Schneewassergehalts (SWC) in kg/m³ für die Flugstrecke aus den ICON-Daten. Dazu wird der prognostizierte Bedeckungsgrad des ICON entlang der Flugroute abgebildet.
Abbildung 9: Auf den Flugpfad interpolierte Bedeckungsgrad der niedrigen, mittleren und hohen Wolken in Prozent sowie die Vertikalprofile des Eis- und Schneewassergehaltes aus den ICON-Prognosedaten in kg/m³ für den Flugpfad von B894.

Nach den Prognosen des ICON wurde die Gesamtbedeckung maßgeblich durch hohe Wolken geprägt und erreichte zwischenzeitlich 100 %. Die Schwankungen im Bedeckungsgrad sind im Einklang mit den Hydrometeorgehalten und der relativen Feuchte. Da mehrmals das gleiche Gebiet überflogen wurde, verdeutlichen die ICON-HMP-Profile eine Verdichtung der Bewölkung und die Intensivierung der Front, wie sie zum einen in den MODIS-Satellitenbildern erkennbar waren und zum anderen aus der geographischen Verteilung der ICON-Hydrometeorpfade angenommen wurden.

Für Zeiten wie 10:20 UTC zeigte sich in Abbildung 7, dass ICON oberhalb des Flugzeuges hohe Eisvorkommen prognostizierte. Vor 11:00 UTC rechnete ICON mit einem höheren Gehalt an großen Eispartikeln (SWC) auf 7-10 km von bis zu 0,1 g/m³. Kleinere Eispartikel (zugehörig dem IWC) werden überwiegend oberhalb des Flugzeuges lokalisiert. Dabei lässt die geringe vertikale Ausdehnung von Eisvorkommen auf Zirren schließen. Nach einer prognostizierten Auflockerung gegen 11:00 UTC nahmen die Eispartikel in der oberen Troposphäre zu. Dabei wird von ICON angenommen, dass das Flugzeug ab 11:10 UTC frontal durch die Wolken flog und sich ab 11:20 UTC oberhalb der Wolken befand. Im Retrieval ergibt sich für die HMP um 11:20 UTC ein ausgeprägtes Maximum. Offenbar
sorgte erst das Eindringen aus wolkenfreiem Gebiet in die Wolke für ein Ansteigen der Hydrometeorpfad-Retrievals und erhöhte sich dadurch, dass die Messungen folgend oberhalb der Zirrusbewölkung durchgeführt wurden.

Die zusätzliche Betrachtung der in-situ Partikelprobemessungen einer auf dem Flugzeug installierten Nevzorovprobe zeichnen mit hohen Werten des Gesamtwassergehaltes von bis zu 0,1 g/m² auf Radiometermessungen auch innerhalb von Eiswolken hin (weiteres im Anhang). Hilfreich erweisen sich in diesem Zusammenhang die in den Flight Logs enthaltenen Rohaufnahmen des flugzeuggestützten LIDAR. Anhand der LIDAR-Profillmessungen kann zum einen die hohe Zirrusbewölkung bestätigt werden, gleichzeitig wurden vom LIDAR keine niedrigen Wolken gemessen. Besonders die Aufnahmen für 10:15 und 10:40 UTC zeigen ein hohes Rückstreuosignal in 7,6 km Höhe direkt unterhalb des Flugzeuges (siehe beispielhaft im Anhang). In diesem Bereich ist von kompakten Eiswolken auszugehen. Auch im Retrieval führten diese Wolken zu einem Anstieg des Eiswasserpades auf bis zu $10^{-1.5}$ kg/m². Die optisch dicken Zirren führten gelegentlich zu einer Abschirmung, sodass das Rückstreuosignal nur aus den oberen Atmosphärenschichten stammte.

Sowohl für das Retrieval als auch ICON gibt es keine Gewissheit über die Korrektheit ihrer Ergebnisse. Während das Retrieval aus Helligkeitstemperaturmessungen die Pfade ableitet, werden alle Größen des ICON selbst prognostiziert. Hier muss betont werden, dass die HMP keine direkten Messungen, sondern abgeleitete Größen sind.

MODIS-Produkt CWP mit den Daten des ICON-Modell qualitativ verglichen werden, indem die Summe aus prognostiziertem IWP und SWP über gesamte Atmosphärensäule von ICON betrachtet wird. In Abbildung 10 werden nun die Wolkenwasserverteilungen aus den ICON-Prognosen und dem MODIS-Retrieval für 11:00 während des Fluges veranschaulicht.

Abbildung 10: Verteilung der IWP und SWP vor der Nordostküste Schottlands während Flug B894. Abbildung a) zeigt die ICON-Prognosen der Summe aus IWP und SWP für 11:00 UTC. Abbildung b) gibt den CWP aus dem Level2-MODIS-Retrieval für den 11. März 2015 um 11:00 UTC an (Platnick, 2015). Eingezeichnet in rot ist die Flugstrecke bis 11:00 UTC. Radiometermessungen wurden während Flug B894 bis etwa 11:30 UTC vorgenommen.

Über dem Fluggebiet zeigen die MODIS-Daten höhere Eisgehalte als das ICON für 11:00 UTC. Dies ist ein weiteres Indiz dafür, dass ICON die HMP unterschätzt. Auch wenn die MODIS-Daten für die gesamte Atmosphärensäule repräsentativ sind, unterstützen die Daten in kombinierter Betrachtung mit den restlichen Datenquellen, dass in und womöglich unterhalb des Flugzeugs mehr gefrorene Hydrometeore existierten, als es das ICON annimmt. Dies würde für die Richtigkeit der höheren HMP-Werte des Retrievals von M. Brath sprechen. Im Vergleich zwischen MODIS und ICON fallen noch weitere Aspekte auf.

Während ICON nur westlich der Flugroute einen nennenswerten Eiswassergehalt in der Atmosphäre annimmt, ermittelte das MODIS-Retrieval auch in den östlichen Flugschleifen lokal Werte über 100 g/m2 an. Mit Berücksichtigung der Ostverlagerung der Ostfront wird deutlich, dass das Absinken der interpolierten HMP des ICON auf ein Minimum eine Folge der manövrieren Schleifen des Flugzeuges ist. So führte der Kurs gelegentlich aus dem bewölkten Gebiet heraus.

Deutlich erkennbar sind außerdem die unterschiedlichen räumlichen Auflösungen der Datenquellen. Innerhalb der Zirrusbewölkung nimmt das MODIS-Retrieval eine höhere Variabilität der HMP als das ICON an. So berechnen Vorhersagemodelle für jeden Gitterpunkt den Wert der entsprechenden Variable (hier $LWP + SWP$), der sich über eine Gitterfläche gemittelt ergibt. Das MODIS-Retrieval berechnet jedoch für jeden Pixelpunkt mit einer Auflösung von einem Kilometer aus der Messung den Wolkenwasserpfad. Der Abgleich der ICON-Prognosen mit den MODIS-Bildern hebt die Sinnhaftigkeit des
entwickelten ICON- Unsicherheitsbereich hervor. So lokalisiert ICON die vorderseitige Frontbewölkung westlicher als es die MODIS-Produkte zeigen. Dementsprechend ergeben sich nach dem MODIS-Retrieval höhere Eiswasserpfade entlang des Flugpfades an, als ICON.

Ausgehend der Profilmessungen wurde bereits darauf hingewiesen, dass das Flugzeug auch Messungen innerhalb und unterhalb der Zirruswolken aufgenommen hat. Weil das bisherige Retrieval nur Helligkeitstemperaturenmessungen 90° unterhalb des Flugzeuges beinhaltet, werden an dieser Stelle konkret die senkrecht nach oben gerichteten T_b-Messungen betrachtet. In Abbildung 4.1.2 werden außerdem die Rohdaten aller Kanalmessungen (benannt in Tabelle 1) gezeigt, die in das Retrieval eingingen.

Die abwärts gerichteten Messungen zeigen Helligkeitstemperaturen T_b, die innerhalb des Submillimeter-Spektrums in realistischen Größenordnungen liegen (Buehler et al., 2007). Der 89 GHz Kanal misst den gesamten Flug über die niedrigsten Temperaturen, da der Ozean strahlungstechnisch kalt ist. Dies ergibt sich aus seiner geringen Emissivität im Mikrowellenbereich, weshalb dieser Kanal gut für Ermittlungen der Oberflächenemissivität geeignet ist. Aus den Kanalmessungen werden schnell die markanten Zeitpunkte des Retrievals ersichtlich.

Zum einen ist es das Minimum der Hydrometeorpfadretrievals kurz vor 11:00 UTC. Besonders die T_b-Messungen der hochfrequenten Kanäle (664 GHz) im atmosphärischen Fensterbereich steigen dort abrupt an. Ein Helligkeitstemperaturanstieg der Messungen bedeutet also, dass das ISMAR weiter in die untersten Atmosphärenschichten Richtung Boden schauen konnte. Schlussfolgernd nimmt das Retrieval also weniger Hydromeore in der Atmosphäre an. Die Streuung der terrestrischen Strahlung an den Eispartikeln ruft am Radiometer messbare Helligkeitstemperaturdepressionen von einigen Kelvin gegenüber dem wolkenlosen Himmel hervor. Dieses Verhalten wird auch an den Kanälen der Wasserdampfabsorptionslinien (183 und 325 GHz) und im sichtbaren Kanal des ISMARS bei 157 GHz für einige Zeiten beobachtet. Wie bereits beschrieben, haben die Kanäle mit Frequenzen auf
den Absorptionslinien unterschiedliche duale Seitenbänder. Dadurch kann die Atmosphäre in verschiedenen Höhen abgetastet werden, wobei im Allgemeinen Kanäle mit größeren Seitenbändern in der tiefen Atmosphäre messen (Buehler et al., 2012). Je größer also die Seitenbänder, desto weiter von der FAAM entfernt sind die Atmosphärenschichten, aus denen die Strahlungsinformationen stammen. Die Schwankungen der Helligkeitstemperaturen ΔT_h hauptsächlich bei Kanälen für Atmosphärenschichten nah am Flugzeug verdeutlichen, dass das Retrieval die Zirren nah am Flugzeug detektiert. Für einen jeweiligen Kanal zeigt sich das in niedrigeren T_h-Werten.

Das Retrieval-Maximum der Hydrometeorpfade gegen etwa 11:15 UTC zeigt sich in den Rohdaten durch starke ΔT_b. Durch Eispelikeln als optische Streuer stammt die gemessene Strahlung nun mehr aus den höheren Schichten und es ergeben sich niedrigere Helligkeitstemperaturen.

Für die aufwärts gerichteten T_b-Messungen ergibt sich ein physikalisch anderer Zusammenhang. Am Oberrand der Atmosphäre (TOA) ist die aus dem Zenit eintreffende Strahlung durch das solare Spektrum geprägt. Mit einer Helligkeitstemperatur von etwa 6000 K trifft von der Sonne vor allem kurzwellige Strahlung auf die Erde. Im Submillimeterbereich ist die solare Strahlung allerdings nicht messbar (Petty, 2006, Fig. 3.3). Ist oberhalb der Radiometer die Atmosphäre optisch durchsichtig, so messen die Radiometer theoretisch sehr niedrige Helligkeitstemperaturen. Grund ist die kosmische Strahlung. Der Kosmos ist im Submillimeterbereich strahlungstechnisch sehr kalt.

4.2 Flug B895

4.2.1 Wetterlage

Über Schottland ist eine Rückseitenwetterlage zu erkennen. Hinter der Kaltfront wurde hier trockener Luft aus Norden advehiert, was sich mit einem niedrigeren Wasserdampfgehalt entlang des Überflugareals bemerkbar macht. Solche Gebiete sind meist niederschlagsfrei, bevor die ausgedehnte Front eines neuen Tiefs aus Westen herannahlt.

Abbildung 12: Geographische Verteilung des PWV aus ICON für 10:30 UTC. Eingezeichnet in rot ist die zurückgelegte Flugstrecke bis 10:30.

4.2.2 Retrievalergebnisse

Nach vergleichbarem Vorgehen wie für Flug B894 wird nun das Retrieval für den Flug B895 vor der Nordküste Schottlands untersucht.

Ähnlich zum Flug B894 berechnet das Retrieval im Gegensatz zu ICON vorhandenes Flüssig- und Regenwasser. Die Werte der flüssigen Hydrometeorpfade sind aber vorwiegend in Größenordnungen unter \(10^{-5}\) kg/m\(^2\) verteilt. Hingegen für den Eiswasserpfad zeigt die Werteverteilung beider Datenquellen mehr Übereinstimmung.

Das Retrieval geht zwar von einer geringeren Anzahl an Werten mit einer Größenordnung von \(10^{-2}\) kg/m\(^2\) aus, nimmt dafür jedoch auch einen Anteil an Werten für Größenordnungen über \(10^{-2}\) kg/m\(^2\) an. Für den Schneewasserpfad berechnet das Retrieval ebenfalls ein breites Spektrum an Größenordnungen, wobei die Werte im Mittel eine halbe Größenordnung über dem Maximum des ICON liegen. Im Vergleich zu Flug B894 sind nun die Werte der Hydrometeorpfade sowohl bei ICON als auch Retrieval bedeutend kleiner. Der Vergleich des ermittelten PWV der Atmosphäre zwischen ICON und Retrieval zeigt, dass das Retrieval die Atmosphäre als deutlich feuchter einstuft (siehe Größenverteilung im Anhang).

Aus den Messungen der Dropsonden konnten aus ihren Feuchteprofilmessungen der PWV ermittelt werden:
Wie Kapitel 4.1.2 beschrieben, kann von den RH-Profilen der Dropsonden über die vertikale Verteilung des Sättigungsdampfdruck, ermittelt mithilfe des Temperaturprofil, auf den Dampfdruck \(e\) geschlossen werden. Mithilfe der Umstellung der Gasgleichung können so die Wasserdampfdichte als Funktion der Höhe und daraus der integrierte Wasserdampfgehalt berechnet werden. Die ermittelten PWV-Werte aus den Dropsondenprofilen können in erster Näherung als Validierung von ICON und Retrieval für den integrierten vertikalen Wasserdampf dienen. Sie repräsentieren allerdings nur einen kleinen Zeitraum zwischen 10:00 und 10:30 UTC.

Abbildung 14 gibt den zeitlichen Verlauf der Retrievalgrößen im Vergleich zu den interpolierten ICON-Werten an. In Analogie zu Flug B894 sind nicht nur die interpolierten Hydrometeorpfade bis zur momentanen Flugzeughöhe abgebildet, sondern auch die ICON-Hydrometeorpfade für die gesamte Atmosphärensäule.

Für die flüssigen Hydrometeore ergeben sich nur sehr kleine Werte der HMP, sodass vorrangig auf die gefrorenen Hydrometeore eingegangen wird. Beim IWP und SWP fallen die starken Fluktuationen des Retrievals auf. Die ermittelten ICON-HMP-Werte, interpoliert auf die Flugroute, weisen geringere Schwankungen auf. Insbesondere um 9:30 UTC und ungefähr 9:45 UTC ermittelt das Retrieval IWP- und SWP-Werte in einer Größenordnung von bis zu 1 kg/m². Diese hohen Werte treten normalerweise nur in convektiven Gebieten auf. Wiederum die vom ICON als wahrscheinlich angenommenen Werte der HMP reichen maximal bis zu etwa 30 g/m² ≈ 10⁻¹,5 kg/m². Während das ICON zwischen 9:45 UTC und 11:15 UTC weniger fluktuierende Werte der festen Hydrometeorpfade annimmt, schwanken die Retrieval-Ergebnisse wesentlich stärker.
und fallen insbesondere um 10:30 UTC im Vergleich zum ICON bis auf $< 10^{-4}$ kg/m2 ab. Bezüglich der ICON-HMP-Werte, die in den Unsicherheitsbereich des Fluggebietes fallen, stellen die auf den Flugkurs interpolierten ICON-Werte überwiegend die Obergrenze dar.

Insbesondere die hohen Retrievalwerte des IWP am Anfang der Messreihe geben Anlass die Wetterlage auf mögliche hohe Eisvorkommen zu untersuchen. Beispielsweise in den Satellitenbildern müssten konvektive Ereignisse ersichtlich sein. Im späteren Verlauf nehmen die gefrorenen HMP im Mittel typische Werte für eine Zirrusbewölkung von 10 bis 20 g/m2 an (Jiménez et al., 2007). Zwischen 10:30 und 11:00 UTC simuliert das ICON näherungsweise konstante Werte des IWP und SWP über die vertikale Gesamtsäule der Atmosphäre, während die Hydrometeorpfade bis zur aktuellen Flugzeughöhe deutlich absinken. Da auch im Unsicherheitsbereich des ICON ein instantanes Absinken auftritt, ist bereits zu erkennen, dass das Flugzeug hier unter Eiswolken gesunken ist.

4.2.3 Meteorologische Diskussion der Hydrometeorpfade-Retrievals

Hinsichtlich der Analyse der Retrievalergebnisse für Flug B895 ist ein Überblick der meteorologischen Zustände innerhalb des dünnen Zirruswolkenstreifens (zu sehen in Abbildung 13b) nötig. Mithilfe der Profilmessungen der Dropsonden können Informationen über den vertikalen Zustand der Atmosphäre ermittelt werden. Abbildung 15 zeigt die Feuchteprofile aus den Dropsondendaten. Dabei messen die Dropsonden selbst nicht die RH$_{Eis}$. Sie wurde aber aus dem Temperaturprofil und den Profilen des Wasserdampfmischungsverhältnis und der relativen Feuchte über Wasser RH_W berechnet. Aus der RH_W und den aus den T-Profilen abgeleiteten Sättigungsdampfdrücken über Wasser e_{sw} und über Eis $e_{ Eis}$ kann die relative Feuchte über Eis RH_{Eis} berechnet werden nach:

$$RH_{Eis} = \frac{RH_W \cdot e_{sw}}{e_{si}}$$ (4.5)

Die relative Feuchte über Eis ist hier im Bezug auf Eispartikeluntersuchungen in den Zirren repräsentativer, da Eispartikel stabiler als Tropfen sind und damit auch in relativ zu Wasser ungesättigten Gebieten existieren können.

Die Dropsondenprofile zeigen alle einen ähnlichen Verlauf. Auf einem Druckniveau von 800 hPa (etwa 2 km Höhe) befindet sich ein Maximum der relativen Feuchte über Eis mit bis zu 80 %. Die Temperaturprofilmessungen der Dropsonden (hier nicht gezeigt) weisen in dieser Höhe bereits Temperaturen unter 0°C auf. Bei den gemessenen Temperaturen über -10°C ist die Bildung unterkühlter Wassertropfen allerdings wahrscheinlicher als eine Eispartikelevolution.

Oberhalb sehr trockener Atmosphärenschichten von 700 hPa bis 500 hPa steigt das Wasserdampfmischungsverhältnis mit der Höhe wieder an. Außerdem befindet sich ein weiteres Maximum von RH_{Eis} mit bis zu 80 % auf etwa 400 hPa in einer Höhe > 7,0 km in der die Umgebungstemperatur bereits unter -35°C liegt. Die maximale Werte der RH_{Eis} und des Mischungsverhältnisses der oberen Troposphäre wurden um 09:47 UTC gemessen, bzw. die Minimalwerte um 10:21 UTC. Die Dropsondenprofile verifizieren die guten meteorologischen Voraussetzungen für die Bildung von Eiswolken. Offensichtlich förderten die thermischen Randbedingungen die Bildung von Zirren innerhalb des Fluggebietes.

In diesem Kontext weist das Retrieval (Kapitel 4.2.2) ein plausibles Verhalten auf. Es zeigt für den Zeitraum vor 10:00 UTC im Allgemeinen höhere Werte des IWP und SWP an, als gegen 10:20 UTC. Die beiden ausgeprägten Maxima des Retrievals für gefrorene Hydrometeore um 9:40 UTC und 10:15 UTC überlappen sich zeitlich nicht mit einer der Dropsondenmessungen. Somit ist der rapide Abfall der HMP-Retrievals nach 10:15 UTC aus den Dropsondenmessung nicht klar zu ergründen. Das RH_{Eis}-Profil von 10:18

Abbildung 16: Aus einem MODIS-Retrieval ermittelte Level-2-Daten der Wolkenoberkantenhöhe über dem Fluggebiet für 10:40 UTC im Vergleich zum ICON-Output der Höhen der Wolkenoberkanten für 10:30 UTC. Eingezeichnet in rot ist jeweils die Flugroute B895 bis zu der Zeit, auf die sich die Abbildungen beziehen.

Es soll nun genauer auf die räumliche Verteilung der Hydrometeore eingegangen werden. In Abbildung 17 sind die prognostizierten horizontalen Verteilungen der Summe aus SWP und IWP für verschiedene Zeitpunkte während des Fluges dargestellt. Die Hydrometeorpfade wurden bis zu einer mittleren Flughöhe von 8,22 km berechnet, damit einerseits die zeitliche Entwicklung der HMP besser nachvollzogen werden kann, und andererseits damit die Pfade trotzdem möglichst repräsentativ für den Vergleich mit dem Retrieval bleiben.

ICON deutet den distinkten Wolkenstreifen mit erhöhten Werten der gefrorenen Hydrometeore bis maximal 40 g/m² im Süden an. Anhand der Abbildungen 17 a) bis d) kann das charakteristische zeitabhängige Verhalten der interpolierten ICON-HMP für bestimmte Zeitpunkte erklärt werden. Flug B895 wird dafür aus Sicht der von ICON prognostizierten geographischen HMP-Verteilungen beschrieben:

Das Flugzeug drang um kurz nach 9:30 UTC in die Frontenausläufer ein, sodass sich schnell ein Anstieg der Hydrometeorpfade entlang des Flugpfades ergab. Um 10:00 UTC befand sich das Flugzeug am nördlichsten Ende des Eiswolkenstreifens, in dem ein geringerer Eisgehalt simuliert wurde. In Abbildung 14 zeigt sich hier folglich ein Minimum der ICON-HMP. Im Anschluss einer geflogenen Schleife in den südlicheren Bereich des Wolkenstreifens befand sich das Flugzeug um 10:30 UTC über nahezu dem gleichen Punkt wie um 10:00 UTC, wobei sich die Eiswolken etwas Richtung Norden ausgedehnt und intensiviert haben. Aus diesem Grund zeigen die interpolierten ICON-Werte von Abbildung 14 ein etwas niedrigeres Minimum. Um 11:00 drehte das Messflugzeug eine weitere 180° Kurve im Süden der Front, wo ebenfalls Werte der HMP von etwa 30 – 40 g/m² auftreten. Bis knapp 60° Nord wurden weitere Messungen innerhalb der Eiswolken vorgenommen, bevor man um kurz vor 11:30 UTC mit einer weiteren Schleife den Wolkenbereich verlassen hat. Für diesen Zeitraum zeigen die ICON-Werte eine logische Abnahme der Hydrometeore. Anschließend drang das Flugzeug wieder in die Front ein und die Hydrometeorgehalter steigen wieder an.
Abbildung 17: Geographische Verteilung der gefrorenen Hydrometeorpfade in g/m² über dem Fluggebiet bis zu einer mittleren Flughöhe von 8,22 km für verschiedene Zeitpunkte. Zusätzlich eingezeichnet ist der bis zur entsprechenden Zeit absolvierte Flugpfad.

Im Vergleich zu den vorher dargestellten MODIS Aufnahmen ist jedoch ein markanter Unterschied zwischen Modell und Realität erkennbar. Im Nahausschnitt der Satellitenaufnahmen entlang des Gebietes der Dropsondenabwürfe von 10:40 UTC von Abbildung 13b zeigten sich kleinskalige scharfbegrenzte Gebiete mit einer deutlich höheren gemessenen Strahlungsintensität über 100 W/(m² · µ · m · sr). Offensichtlich befanden sich Quellwolken über dem nördlichen Gebiet des Flugpfades. Spätere Überflüge des Satelliten Aqua bestätigen die Stationarität der Quellwolken. Über mehrere Stunden wird die Luft vor Ort gehoben und es entwickelt sich stets neue konvektive Bewölkung. Rückseitig der Kaltfront kann die solare Einstrahlung für lokal hohe Verdunstungsgraten gesorgt haben und in einer leicht labilen Schichtung für Hebung gesorgt haben, die wiederum zur Ausbildung von Quellwolken führte. Diese kleinskaligen Wolken könnten die ausgeprägten Maxima der IWP und SWP-Retrieval
hervorgerufen haben, die in einem sehr kurzen Zeitintervall auftreten. Im ICON-Modell zeigen sich keine Anzeichen für die simulierten Quellwolken in dem Gebiet.
Mit einem Blick in die Input-Daten des Retrieval sollen die ausgeprägten Maxima weiter untersucht werden. Für den Zeitraum von 9:25 bis 10:35 UTC werden dafür in Abbildung 18 die gemessenen Helligkeitstemperaturen der Radiometer betrachtet.

Abbildung 18: Vom Retrieval verwendete T_b der 18 Radiometerkanäle für einen Zeitraum von etwa 9:25 bis 10:35 UTC. Im obersten Graphen sind die Helligkeitstemperaturen der Fensterkanäle von ISMAR und MARSS gezeigt, darunter die T_b-Messungen der MARSS-Kanäle entlang der Absorptionslinie von Sauerstoff und Wasserdampf und zuletzt die Messungen der ISMAR-Kanäle auf den Wasserdampfabsorptionslinien.

Zwischen 9:20 und 9:40 UTC weisen die Kanäle hohe Helligkeitstemperaturen auf und es existieren große Datenlücken. Zu diesem Zeitpunkt drehte das Flugzeug vor einer Küstenspitze Schottlands eine scharfe Kurve, sodass die Scanblickwinkel der Radiometer auf das Land reichten. Zwar wurde versucht die Messungen der Kurvenflüge herauszufiltern, dieser Zeitraum ist jedoch für die Messungen sehr fehleranfällig und die hohen Retrievalwerte sind eher auf Messfehler als auf meteorologische Einflüsse zurückzuführen. Nachfolgend ergeben sich die Datenlücken durch die geflogenen Schleifen, in denen die Radiometer nicht mehr senkrecht nach unten schauen und somit die Messungen nicht für das Retrieval verwendet werden können.

Die vom 664 GHz-Kanal gemessene Strahlung stammt bei wolkenlosem Himmel aus Schichten um 5 km. Bei vorhandenen Hydrometeoren nimmt jedoch die gemessene Helligkeitstemperatur ab, da die Strahlung aus höheren Schichten stammt. Auch die Wasserdampfabsorptions-Kanäle des ISMAR zeigen eine Abnahme von T_b, was für das Vorhandensein von Eis spricht. Nach den Messungen der Kanäle ist es durchaus plausibel, dass lokal Quellwolken auch in niedrigeren Schichten für einen Anstieg der Hydrometeorpfade gesorgt haben, die vom ICON nicht erfasst werden konnten.

Die RH_{Eis}-Profile der ICON-Daten zeigen eine ausgedehnte, feuchte Atmospäre in der oberen Troposphäre auf einem Druckniveau von 400 hPa bis etwa 300 hPa mit Werten von RH_{Eis} von etwa 90 % und mehr. ICON prognostiziert damit die vertikale Feuchteverteilung prinzipiell übereinstimmend zu den in-situ-Messungen der Dropsonden. Entlang des Fluges wird ähnlich zu Flug B894 eine bedeckte Wolkenschicht in der Höhe angenommen. So prognostiziert ICON das Auftreten von Eisteilchen in einer Höhe von 6 bis 9 km. In diesem Höhenbereichen wird von größeren IWC und SWC Mengen über 10^{-2} g/m² ausgegangen, wobei besonders ein Vorkommen der kleinen Eispartikel (IWC) simuliert wird. Es handelt sich um den beschriebenen Zirruswolkenstreifen. Im Vergleich der HMP-Werte von Retrieval und ICON zeigte sich für die ICON-Daten ein großer Wertebereich, aufgrund der angenommenen Unsicherheiten durch Advektion. Entlang des Wolkenstreifens rechnet das ICON allerdings mit relativ homogen verteilten, gefrorenen Hydrometeore. Der breite Unsicherheitsbereich für die Hydrometeorpfade in Abbildung 14 resultiert somit maßgeblich aus der schmalen horizontalen Ausdehnung des Eiswolkenstreifens, nicht jedoch aus einer variablen Struktur der Zirren selbst. Im Überflugsgebiet herrscht analog zu Flug B894 eine Grenzwetterlage, die eine nahezu trockenadiabatische Schichtung im Westen von der feuchten Atmosphäre trennt. Im östlich befindenden Kaltfront trennt.
Abbildung 19: Auf den Flugpfad interpolierte Vertikalprofile der relativen Feuchte über Eis und des Eis- und Schneewassergehaltes aus den ICON-Prognosedaten sowie den interpolierten Bedeckungsgrad. In rot wird die Flugzeughöhe in Abhängigkeit von der Zeit dargestellt.

Charakteristisch für Flug B895 ist das Eindringen des Flugzeuges in den vorher überflogenen Wolkenstreifen. Aus Sicht von ICON flog man zwischen 9:30 und 10:30 UTC auf etwa 9,5 km oberhalb des bewölkten Gebietes der Frontausläufer und leitete dann den Sinkflug.
in die Wolken ein. In 5-Minuten Intervallen wurden innerhalb der Zirren Messungen in verschiedenen Höhenebenen durchgeführt bis sich das Flugzeug um 11:20 UTC unterhalb der Wolkenschicht auf etwa 6,0 km befand.

Die Werte der Hydrometeorpfade von ICON sinken entsprechend ab 10:45 kontinuierlich und fallen um 11:20 rapid auf ein Minimum, sobald sich das Flugzeug auf einer Flughöhe von knapp 6,0 km unterhalb der simulierten Wolkenschicht befand. Dieser rapide Abfall der HMP-Werte wird vom Retrieval etwa 10 Minuten früher berechnet. Zu diesem Zeitpunkt befand sich das Flugzeug noch auf einer Höhe von knapp 7,0 km. Da es zu dieser Zeit keine Anzeichen für Auflockerungen der Bewölkung gibt, deutet das Verhalten des Retrievals darauf hin, dass ICON hier möglicherweise die Höhe der Wolkenunterkante unterschätzt.

Zum Abgleich der Messungen ober-, inner- und unterhalb der Zirrusbewölkung werden kurz die T_b-messungen von ISMAR und MARSS für 180° Nadir- und 0° Zenith-Winkel betrachtet (Abbildung 20).

![Abbildung 20: Helligkeitstemperaturmessungen der Kanäle von ISMAR und MARSS a) oberhalb und b) unterhalb des Luftfahrzeuges während Flug B895.](image)

Die aufwärtsgerichteten passiven Strahlungsmessungen belegen für den Zeitraum von etwa 10:45-11:15 UTC das Eindringen in die Wolke und das anschließende Absinken des Flugzeuges unterhalb der Wolke. In drei Kanälen ergeben sich deutliche Anstiege der gemessenen Helligkeitstemperatur. Einerseits im Sauerstoffabsorptionskanal (118,75 ± 1,1 GHz) und andererseits entlang der Wasserdampfabsorptionslinie für 448 GHz werden höhere T_b gemessen. Für die Kanalseitenbänder des Wasserdampfkanals von ±1,4 GHz werden mit einer Helligkeitstemperatur $T_b = 220 \text{ K}$ unterhalb der Wolke die gleichen Helligkeitstemperaturen gemessen, wie Nadir gegen 10:15 UTC, als sich das Flugzeug an einer ähnlichen Position im südlichen Bereich des Zirrusstreifens befand.
Um 11:15 UTC, als sich das Flugzeug nach Annahme von ICON unterhalb der Wolken-
schicht befand, steigen auch die gemessenen Nadir-Helligkeitstemperaturen in allen Kanälen
auf höhere Werte. Schließlich gelangt nun Strahlung der bodennahen Schichten in die
Radiometer, weil die Atmosphäre optisch dünner wird. Besonders groß ist der Unterschied
für die Absorptionslinien-Kanäle mit kleinen Seitenbändern. Wenn die Atmosphäre optisch
dicht ist, so trifft Strahlung einer Wellenlänge nahe der Absorptionslinien nur aus den ober-
sten Schichten auf die Radiometer. Folglich werden dann niedrige Helligkeitstemperaturen
gemessen, da die Umgebungstemperatur der Strahlungsquelle sehr niedrig ist. Gegen 11:15
UTC war die Luft unterhalb des Flugzeuges allerdings sehr trocken und hat damit für
den Submillimeter-Wellenlängenbereich eine hohe Transmissivität, sodass hohe T_b-Werte
gemessen werden. Die Fensterkanäle wiederum messen den strahlungstechnisch kalten Ozean.

Ab 11:30 UTC wurde ein Steigflug bis auf 9,0 km oberhalb der Wolken eingeleitet. Hier stei-
gen Hydrometeorpfad-Retrievals ebenso wie die prognostizierten HMP-Werte mit ähnlicher
Geschwindigkeit an. Gegen 11:45 UTC zeigen die ICON-Profile eine vertikale Ausdehnung
der feuchten Schichten mit einem ansteigenden SWC bis auf 2,5 km Höhe über Grund. Dies
resultiert aus dem von Osten herannahenden Ausläufer der Kaltfront der Zyklone über Skan-
dinavien, wobei auch niedrige Wolken in das Fluggebiet gelangen. Auch im Retrieval wird ei-
ze tendenzielle Zunahme der Hydrometerepfade angenommen. In Folge der Land-See-Maske
treten hier allerdings Datenlücken auf, weil die FAAM auf ihrem Rückflug Großbritannien
überquert.

4.3 Flug B897

Flug B897, durchgeführt am 18. März 2015, ist der letzte analysierte Flug dieser Arbeit.
Am Flugtag herrschte eine andere meteorologische Situation als für die bisher betrachteten
Flüge B894 und B895. Während die Flüge B894 und B895 außerhalb einer Front über nied-
derschlagsfreiem Gebiet durchgeführt worden, verlief die Flugroute von B897 nach Start in
Keflavik Richtung Nordwestküste Islands und anschließend mit Kurs direkt auf eine Warm-
front südlich von Island. Entlang einer etwa 400 km langen meridionalen Strecke haben die
Radiometer die Helligkeitstemperaturen über der Frontbewölkung gemessen. Dabei wurde
die Strecke von 62°–66 Grad Nord dreimal abgeflogen und danach ausgehend von 62 Grad
Nord der Rückflug nach Keflavik eingeleitet.

4.3.1 Wetterlage

Die überflogene Niederschlagszone stammt von einem Tiefdruckgebiet östlich von Neufund-
land mit einem Kerndruck von etwa 980 hPa. Aus seinem Kern führte eine lange Okklusions-
front. Ausgehend des Okklusionspunktes (Schnittstelle von Warm-, Kalt- und Okklusions-
front) nahm am 18. März 2015 eine bodennahe Warmfront nordöstlichen Kurs auf Island.
Um 12:00 UTC befand sie sich etwa 300 km südwestlich der Küste Islands (Abbildung 21).

ICON simuliert für den Flugtag ein großflächig ausgedehntes Gebiet mit einem hohen vertikal integrierten Wasserdampfgehalt südwestlich von Island. Dieses verlagert sich Richtung Nordosten. Es handelt sich um die Warmfront, die für ein Ansteigen der absoluten Feuchte in der Atmosphäre sorgt (siehe Anhang).

4.3.2 Retrievalergebnisse

Nach einem rapiden Anstieg ab 13:00 UTC Uhr nehmen die flüssigen Hydrometeorpfade ein Maximum gegen 13:30 UTC und stagnieren bis 13:45 UTC auf einem hohen Niveau, welches vom ICON-Modell ähnlich erfasst wird. Dabei stimmen die Größenordnungen von Retrieval und ICON im Allgemeinen überein, wobei das ICON weniger Schwankungen der HMP-Werte angibt. Gegen 14:00 UTC fallen die Retrieval- und ICON-Werte innerhalb weniger Minuten stark ab. Die Werte des Retrievals liegen in einer Größenordnung, in der das Retrieval nicht mehr repräsentativ ist. ICON prognostiziert, dass zu diesem Zeitpunkt keine Tröpfchen in der Atmosphäre auftreten. Im darauf folgenden Zeitraum werden ähnlich hohe Werte in Größenordnungen von 10^{-2} kg/m² bis über 1 kg/m² berechnet.

Dropsondenmessungen unterhalb von ICON und Retrieval.

An dieser Stelle wird wiederholend betont, dass während des Fluges drei Mal die 400 km Strecke entlang der Westküste Islands überflogen wurde. Genannte Maxima des SWP treten also über dem gleichen geographischen Gebiet auf. Das Verhalten des Retrievals wird nun im Hinblick auf die vorherrschende Wetterlage weiter untersucht.

4.3.3 Meteorologische Diskussion der Hydrometeorpfad-Retrievals

Abbildung 24: Nahausschnitt der MODIS-Band2-Aufnahmen für vier verschiedene Zeit-
schritte mit eingezeichneten Fallwegen der bis dato abgeworfenen Dropsonden und Flug-
strecke. Die Nummerierung „DXX“ der Dropsonden der Reihenfolge der Abwürfe.
Es sollen nun die geographischen Verteilungen der prognostizierten HMP-Werte von ICON innerhalb der Warmfront näher betrachtet werden. Abbildung 25 demonstriert die ICON-Hydrometeorpfade bis zur mittleren Flughöhe von B897 in 10,22 km südwestlich von Island um 12:30, zu Beginn der durchgeführten Radiometermessungen, welche in das Retrieval implementiert wurden.

Als sich das Flugzeug um 12:30 an der nördlichsten Position des Messfluges befindet, simuliert ICON zwar keine Hydrometeorpfortkommen, jedoch ist das Flugzeug an der Grenze zu den Wolkenausläufern in hohen Atmosphärenschichten. Kleine Eisteilchen, die dem IWP zugerechnet werden, treten unmittelbar südlich der aktuellen Flugzeugposition auf. Bis mindestens 60° Nord werden Werte bis 200 g/m² prognostiziert. Entlang der Südwestküste Islands ergeben sich hohe Werte des SWP bis weit über 500 g/m². Hier ist die Warmfront bereits vorgedrungen. Nach dem ICON tritt Flüssigwasser erst südwestlich der Eis- und Schneewasservorkommen auf.

Die Gründe für die räumliche Isolation der Vorkommen von Eis- und Flüssigwasser stammen aus der Temperaturverteilung. Bereits bei den anderen Flügen zeigte sich, dass die Temperatur einen maßgeblichen Einfluss darauf hat, ob existenter Wasserdampf in der Atmosphäre an Aerosolen kondensierte oder resublimiert. Wie bereits in Kapitel 4.2.3 argumentiert, sind auch bei Temperaturen bis etwa −10°C noch häufig unterkühlte Wassertropfen in der Atmosphäre anzutreffen. In diesem Zusammenhang wird die vom ICON angenommene räumliche Temperaturverteilung entlang des Flugkurses für den Messzeitraum in Abbildung 26a abge-
bildet. Hier sind Bereiche, in denen aufgrund der Temperatur Flüssigwolken wahrscheinlicher als Eiswolken sind, mit roten Flächen dargestellt. In blauen Bereichen sind bezüglich der Temperatur Eispartikel wahrscheinlicher als Tröpfchen. Dazu werden die vertikalen Temperaturprofile der einzelnen Dropsondenmessungen von Flug B897 in 26b dargestellt.

Dropsonde 2 ist innerhalb des postfrontalen Aufziehens der Zirrusbewölkung. Mit zunehmender Nähe zur Front nehmen die Höhe und die Intensität der Inversion ab und die ganze vertikale Schichtung wird stabiler mit einem schwächeren Temperaturgradienten. Die Dropsondenprofile bestätigen dabei die ICON-Prognosen. Das wärmste Temperaturprofil wurde mit Dropsonde 6 gemessen, die um 13:30 abgeworfen wurde. Bis zu einem Druckniveau von knapp 600 hPa (etwa 4 km Höhe) liegen die Temperaturen über −10°C.

Mit diesem Hintergrundwissen der atmosphärischen Randbedingungen werden nun die prognostizierten Hydrometeor-Profile von ICON in Betracht gezogen, um die Plausibilität des HMP-Retrievals vertiefend zu überprüfen. Dafür werden in Abbildung 27 alle vier Hydrometeor-Profile, die auf den Flugweg interpoliert wurden, dargestellt.

Abbildung 28: Prognostizierte geographische Verteilung der Hydrometeorpfade bis zur mittleren Flughöhe von 10,22 km für 13:30 UTC. Zusätzlich eingezeichnet ist die bis dahin zurückgelegte Flugstrecke des FAAM-Forschungsflugzeuges.

Im Modellszenario von ICON befand sich das Flugzeug um 13:30 UTC südwestlich des Niederschlagsgebietes bzw. südwestlich des Gebietes mit hohen Werten von RWP und SWP. Aus Süden wurden wärmere Luftmassen advehiert, die wenige große Eisteilchen besitzen, wodurch der SWP stark abfiel. Insbesondere Flüssigwassertröpfchen aber auch kleine Eisteilchen unter 100 µm werden wiederum auch in diesem Gebiet simuliert. Die aus Süden anströmenden Luftmassen transportierten weiter viel Feuchtigkeit in den Nordosten Richtung Island. Das instantane Abfallen des Schneewasserpfades entsteht genau am südlichen Wendepunkt, in dem die wärmeren Luftmassen in das Gebiet eindrangen.

Inwieweit diese kleinräumige Austrocknung oberhalb von 4 km wirklich einsetzte, lässt sich mit den verwendeten Daten nur schwer nachvollziehen. Wie bereits geschildert, liefern die Dropsonden zwar in-situ-Messungen des vertikalen Feuchteprofiles, jedoch haben die gemessenen Feuchtigkeitsgrößen der Dropsonden nur eine indirekte Beziehung zu den Hydrometeoren. Die Dropsondendaten von 13:16 und 13:29 UTC liegen in zeitlicher Nähe zur Austrocknung, welche vom ICON ab 13:20 UTC prognostiziert wurde. Der Vergleich beider Profile liefert allerdings keine eindeutigen Erkenntnisse bezüglich der kleinskaligen Austrocknung. So nahm das Wasserdampfmischungsverhältnis des Profils von 13:29 UTC bis zu einem Druckniveau von 700 hPa (etwa 3,0 km) stets um etwa 1 g/kg größere Werte an als im Profil von 13:16 UTC. Jedoch ist die relative Feuchte über Eis in Höhen von 650 bis 600 hPa (≈ 3,5 – 4,0 km) des Profils von 13:16 höher als die des Profils um 13:29 UTC.

4.4 Beziehungen zwischen den Hydrometeorenen

Bei der Analyse der HMP für die verschiedenen Flüge wurden die Hydrometeore überwiegend einzeln für sich betrachtet. Zwischen den einzelnen Hydrometeorenen in der Atmosphäre treten jedoch viele Wechselwirkungen auf. Beispielsweise über Akkreszenz (dem Aufsammeln von kleineren Partikeln) können große Schneeflocken und Regentropfen aus kleinen Eispäritkeln bzw. Flüssigwassertropfchen wachsen. Physikalisch wird das Vorkommen eines Hydrometeors durch Quellen- und Senkenterme beschrieben. Für die Quantifizierung der Umwandlungen von Eis in Schnee, Flüssigwasser in Regen und umgekehrt dienen im 1-Momenten-Schema empirische massenspezifische Parametrisierungen. So gilt für die zeitliche Änderung des massenspezifischen Anteils von Schnee \(\frac{\delta q_s}{\delta t} \) durch Autokonversion (der Umwandlung von Eisteilchen zu Schneepartikeln) in Anlehnung an Doms et al. (2011):

\[
\frac{\delta q_s}{\delta t} = \max\{c(q_i - q_0^i), 0\} \quad (4.6)
\]

Dabei ist \(c \) ein Koeffizient und \(q_0^i \) ein massenspezifischer Schwellwert oberhalb dessen, die Umwandlung von Eispäritkeln zu Schneepartikeln auftritt. Numerisch werden also über empirische Schwellwerte die Verteilungen und die Wechselwirkungen zwischen den Hydrometeorenen beschrieben. So wird dieses Konzept auch für andere Übergangsprozesse zwischen den Hydrometeorenen verwendet (Doms et al., 2011).

Auch die verwendeten ICON-Daten, aus denen die Trainingsdaten für das Retrieval stammen, basieren auf dem 1-Momentenschema. Dabei werden Eispäritkel ab einem Durchmesser von mehr als 100 µm bereits dem SWP zugeordnet. Bereits in Kapitel 3.1 wurde erwähnt, dass die Radiometer ISMAR und MARSS nicht sensitiv für sehr kleine Eispäritkel sind. Aus den ISMAR und MARSS-Kanälen weisen die \(T_b \)-Messungen also keinen physikalischen Zusammenhang zu kleinen Eispäritkeln unter 100 µm auf.

Der Spearman Rangkorrelationskoeffizient \(r_s \) gibt an, ob der Zusammenhang zwischen zwei Datengrößen \(x \) und \(y \) mithilfe einer monotonen Funktion \(y(x) \) in Verbindung gebracht werden kann. Sein Wert liegt in einem Wertebereich von -1 bis +1. Zu seiner Berechnung müssen zuerst die Werte von \(x \) und \(y \) ihrer Größe nach sortiert werden. Damit wird jedem Datenwert \(x_i \) und \(y_i \) ein Rang zugeordnet. Der Rang eines Wertes \(r_{g_x} \) der Daten \(x \) gibt also die Position des jeweiligen Wertes \(x_i \) in der sortierten Datenreihe von \(x \). Nach Fahrmeir et al. (2016) wird der Spearman Rangkorrelationskoeffizient allgemein definiert durch:

\[
r_s = \frac{\text{cov}(r_{g_x}, r_{g_y})}{\sigma_{r_{g_x}} \sigma_{r_{g_y}}} \quad (4.7)
\]
Dabei ist $\text{cov}(rg_x, rg_y)$ die Kovarianz der beiden Ränge und σ die Standardabweichung. Sobald kein Wert von x oder y in der Datenreihe doppelt auftritt, kann der r_s auch durch folgende Gleichung berechnet werden:

$$r_s = 1 - \frac{6 \sum (rg(x_i) - rg(x_i))}{n(n^2 - 1)} \quad (4.8)$$

Nach Gleichung 4.8 wurden die Korrelationskoeffizienten in dieser Arbeit berechnet. Da dieser Korrelationskoeffizient nicht den linearen Zusammenhang zweier Wertepaare kennzeichnet, sondern nur auf Monotonie hinweist, kann er auch bei nichtlinearen Zusammenhängen repräsentativ sein. Abbildung 30 zeigt anschaulich die Korrelationen zwischen SWP und IWP aus dem Retrieval (oben) und aus den auf die Flugroute interpolierten ICON-Werte (unten).

Augenscheinlich besteht für Flug B894 ein monotoner mathematischer Zusammenhang zwischen IWP-Retrieval und SWP-Retrieval. Gleichzeitig ist für jedes der Streudiagramme der Wert von r_s angegeben. Die ersichtliche Monotonie zwischen IWP und SWP wird rein mathematisch mit einem sehr hohen Wert von $r_s = 0.994$ sichergestellt. Demzufolge sind für Flug B894 die Retrievalergebnisse von IWP und SWP nahezu perfekt korreliert.

Beim Vergleich zwischen Retrieval und ICON zeigen sich gewisse Unterschiede. Bei ICON flachen für SWP-Werte von 10^3 kg/m2 bis 10^{-2} kg/m2 die Kurven ab. Somit prognostiziert das ICON trotz eines relativ hohen SWP einen wesentlich geringeren IWP mit Werten bis 10^{-8} kg/m2. Dies tritt an Zeitpunkten auf, in denen ICON zwar unterhalb des Flugzeuges von großen SWC ausgeht, jedoch Hydrometeore zugehörig des IWP oberhalb des Flugzeuges lokalisiert werden (siehe dafür Abbildung 9). Es ergibt sich folglich ein geringer Wert der Korrelation von $r_c = 0.826$.

Die hohe Korrelation für das Retrieval ist eine Folge der Parametrisierung des IWP. Offensichtlich besitzen die verwendeten Profile der Retrieval-Trainingsdaten nicht ausreichende Informationen, um im konkreten Fall die Variabilität im IWP zu beschreiben. Auf die Veranschaulichung der Korrelationen der flüssigen Hydrometeorpfade wird für diesen Flug verzichtet, da nach Kapitel 4.1.2 keine flüssigen Hydrometeore des ICON prognostiziert wurden und die Retrievalwerte eine niedrige Größenordnung aufweisen. So wurden während Flug B894 nur Zirren überflogen.

Ähnlich zu Flug B894 stellen sich die Korrelationen für Flug B895 ein. Nach Kapitel 4.2.2 wurden auch hier eine Zirrusbewölkung überflogen und Messungen ober-, inner- und unterhalb der Wolken vorgenommen. Von Flüssigwasservorkommen ist während Flug B895 ebenfalls nicht auszugehen. Der Wert von r_s zwischen den Retrievalwerten von IWP und SWP weist wieder einen sehr hohen Wert von $r_s = 0.969$ auf. In diesem Fall sind auch die ICON-Werte in einem monotonen Zusammenhang mit einem Wert von $r_s = 0.906$.

ICON nimmt jedoch zum einen niedrigere Werte des IWP an und zum anderen unterscheiden sich die Werte des SWP zumeist um mindestens eine Größenordnung. Die Berechnungen des Retrieval zeigen aber eine deutlichere Übereinstimmung mit dem ICON als für Flug B894. Im Anhang sind die Streudiagramme für Flug B895 in Analogie zu Abbildung 30 dargestellt.

Der analysierte Flug B897 zeichnet sich bekanntlich dadurch aus, dass Radiometermessungen oberhalb der Warmfront über einem Niederschlagsgebiet durchgeführt wurden. In diesem Gebiet traten gefrorene wie flüssige Hydrometeore auf. Dementsprechend werden nun auch die Korrelationen der flüssigen Hydrometeore untersucht und in Abbildung 31 mit dargestellt.

Abbildung 31: Streudiagramme jeweils zwischen large mode und small mode von flüssigen und festen Hydrometeoren für das Retrieval und das ICON.

Der monotone Zusammenhang zwischen IWP- und SWP-Retrieval wird mit einem Wert von $r_s = 0.788$ schwächer eingeschätzt als für die vorherigen Flüge. Allerdings zeigt sich nun bei Vorhandensein der flüssigen Hydrometeore auch ein näherungsweise monotoner
Zusammenhang \((r_s = 0.858)\) zwischen \(LWP\) und \(RWP\). Insbesondere für niedrigere Werte der flüssigen \(HMP\) unter \(10^{-3}\) kg/m² ergibt sich ein monotoner Zusammenhang zwischen \(RWP\)- und \(LWP\)-Retrieval. Der Rangkorrelationskoeffizient für die interpolierten ICON-Werte des \(LWP\) und \(RWP\) beträgt \(r_s = 0.609\). Auffallend ist der Sättigungseffekt, der für hohe Werte des \(LWP\) bei ICON und Retrieval auftritt. Für \(LWP\)-Werte größer als \(10^5\) kg/m² stagniert bzw. verringert sich die Menge von Regenwasser in der Atmosphäre. Auch der Rangkorrelationskoeffizient für den ICON-SWP und den ICON-IWP liegt mit \(r_s = 0.680\) niedriger als für das Retrieval.

Zwischen Retrieval und ICON ergeben sich für Flug B897 allerdings deutlichere Übereinstimmungen der Werte als für die ersten beiden Flüge. Unter der Annahme, dass das ICON die Warmfront sehr genau prognostizieren konnte, erfasst das Retrieval quantitativ sehr gut die Masse der einzelnen Hydrometeoren. Mithilfe der Trainingsdaten aus den ICON-Modelloutputs kann das Retrieval die Warmfront gut erfassen.

Im Rahmen der Hydrometeorpfadbetrachtung wurde außerdem der vorherrschende Wasserdampf in der Atmosphäre analysiert. So zeigt der zeitliche Verlauf des Wasserdampfprofils besonders mit dem Verlauf der flüssigen \(HMP\) eine tendenzielle Übereinstimmung. Zwischen der Summe aus \(LWP\) und \(RWP\) und dem \(PWV\) ergibt sich für das Retrieval bei Flug B897 ein Wert von \(r_c = 0.964\). Zwischen den flüssigen Hydrometeorpfaden und dem \(PWV\) ist also eine sehr monotone Beziehung. Für die festen Hydrometeore, genauer der Summe aus \(SWP\) und \(IWP\), ergibt sich nur ein Wert von \(r_c = 0.430\). Von den Wasserdampfprofilen können also weniger Rückschlüsse über die Plausibilität der Eiswasserpfade als über die Flüssigwasserpfade getroffen werden. Dies kann mit der vertikalen Verteilung des Wasserdampfes in der Atmosphäre zusammenhängen. Aus Erkenntnissen von Wang (2013) folgt, dass das mittlere Massenmischungsverhältnis von Wasserdampf in den gemäßigten Breiten zwischen 1 und 2 g/kg in Bodennähe liegt und mit der Höhe sehr schnell abnimmt. So beträgt die Skalenhöhe des Wasserdampfes, definiert als die Höhe in der Wasserdampfgehalt auf \(1/e \approx 37\%\) abgefallen ist, etwa 2 km. Nichtsdestotrotz ist Wasserdampf auch für die höhere Bewölkung notwendig, damit sich überhaupt Wolken bilden können.

Das Verhalten des Retrieval bei einem Vorkommen von Flüssigwasser und Niederschlag sollte an einem weiteren Flug mit auftretendem Niederschlag untersucht werden.
5 Zusammenfassung und Ausblick

In dieser Arbeit wurden die Ergebnisse der Hydrometeorpfad-Retrieval für drei ausgewählte Flüge der COSMICS-Kampagne analysiert. Das Retrieval von M. Brath verwendet als Trainingsdaten zufällig ausgewählte ICON-Profile aus einem Gebiet von Nordwesteuropa für drei Tage im März 2015. Schwerpunkt der Analyse lag auf der Prüfung der HMP-Retrievals in Bezug auf ihre meteorologische Plausibilität. Hierfür war die Zusammenstellung eines vielfältigen Datensatzes von meteorologischen Feldgrößen erforderlich, um die atmosphärischen Randbedingungen während der Flüge zu erfassen.

Für alle Flüge stimmten die Trends der zeitlichen Entwicklung der HMP zwischen ICON und Retrieval überein. Sowohl Retrieval als auch ICON lieferten im Allgemeinen Werte in realistischen Größenordnungen für die vorherrschenden Wetterlagen. Einzig für die flüssigen

Somit kann gezielt untersucht werden, wie sich das Retrieval bei unterkühlten Wassertropfen verhält, und ob es diese von Eis unterscheiden kann.
6 Anhang

Modified Gamma Distribution für Eispartikel

Es sind für verschiedene Werte des Eiswassergehalt IWC die Partikelgrößenverteilungen, berechnet mithilfe des 1-Momenten-Schemas, abgebildet.

Abbildung 32: Partikelgrößenverteilungen von Eispartikeln im 1-Momenten-Schema der MGD für ein breites Spektrum an vorhandenem Eiswassergehalt IWC
Abbildung 33: Prognostizierter vertikal-integrierter Wasserdampfgehalt von der Erdoberfläche bis zur mittleren Flughöhe in 7,42 km während des Fluges B894 am 11. März 2015 um 12:00 UTC. Außerdem ist die Flugroute bis 12:00 eingezeichnet

in-situ-Messung: Nevzorovprobe

Beispielhafte LIDAR-Rohmessungen B894

B895: Histogramm der Größenverteilung der Hydrometeorpfade

Gezeigt sind die Größenverteilungen der Hydrometeorpfade aus dem Retrieval sowie der auf den Flugpfad interpolierten ICON-Prognosen der HMP.
Abbildung 36: Histogramme der Größenverteilungen der Hydrometeorpfade und dem integrierten Wasserdampf aus dem Retrieval und dem ICON-Modell für Flug B895
Abbildung 37: ICON-Prognose der vertikalen Wasserdampfssäule bis zur mittleren Flughöhe um 12:00 UTC während Flug B897
B897: Histogramm der Größenverteilung der Hydrometeorpfade

Abbildung 38: Histogramme der Größenverteilungen der Hydrometeorpfade und dem integrierten Wasserdampf aus dem Retrieval und dem ICON-Modell für Flug B894
Vertikale Feuchteprofilmessungen der Dropsonden von Flug B897

Regenradaraufnahme aus Keflavik für Flug B897

Rangkorrelationskoeffizienten von Flug B895

Literatur

IPCC (2013). Climate change 2013: The physical science basis, clouds and aerosols. Bern. (Chapter 7).

Platnick, M. A. S. T. (2015). Mod06 terra clouds 5-min l2 swath 1km and 5km.

Versicherung an Eides Statt

Ich, Henning Dorff, versichere an Eides Statt durch meine Unterschrift, die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Hierfür wurden insbesondere keine anderen Internet-Quellen als die angegebenen verwendet. Ferner versichere ich, dass die vorliegende Arbeit nicht im Rahmen eines anderen Prüfungsverfahrens eingereicht wurde und die auf dem elektronischen Speichermedium eingereichte Fassung der schriftlich eingereichten Fassung der Arbeit entspricht.