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Introduction

About this document

This document has two purposes; it aims to serve as a user guide, with descriptions of important
functions and classes and examples of their use, and also where necessary, there are algorithm
descriptions, and theoretical arguments justifying these algorithms.

Much of the user guide components of this document have been automatically extracted from
the docstrings in the PyARTS source code ( see http://epydoc.sourceforge.net/docstrings.html ).
This ensures consistency between the user guide and on-line help, keeps the user guide up-to-date,
and also improves the quality of the on-line help.

Algorithm description and theoretical basis (ATBD) content has only been included in cases
where the algorithm in question is novel and complex. The most mathematically arduous compo-
nent of this package is the T -matrix code of Mishchenko. Since this code has been included in only a
very slightly modified form, there is no T -matrix ATBD information included in this document. In-
stead the user is directed to the appropriate papers by Mishchenko et al (see The arts_scat module
for exact references), which are all available from http://www.giss.nasa.gov/~crmim/publications.

Why Python?

The following are some of the reasons that make Python an attractive language for scientific
computing

∙ straightforward incorporation of FORTRAN code

∙ elegant syntax

∙ Fully object oriented

∙ Interactive

∙ comprehensive standard library

∙ powerful, and freely available third-party scientific packages (NumPy, SciPy, mat-
plotlib)

∙ platform independent

∙ straightforward package distribution

∙ FREE as in beer

∙ FREE as in speech

In the case of PyARTS, the choice of Python was primarily based on the first point, which was
very important given the reliance upon pre-existing fortran code, and also the last points, which
removes an important obstruction in the sharing of code between scientists. Interactivity, and the
availability of high level, well documented libraries, contributed to the rapid development of the
PyARTS package.

Downloading PyARTS

I think you have already downloaded PyARTS succesfully, but otherwise, PyARTS is available by
svn from the ARTS website http://www.sat.ltu.se/arts/tools.

Prerequisites

Note: those are the versions that PyARTS was most recently developed and tested with. It may
work with older versions and probably will work with newer versions (possibly with minor changes).

∙ Python 2.6, <http://www.python.org> (you will probably have this already) -
Note: PyARTS does not work with Python 3.

∙ A fortran compiler

∙ NumPy 1.3.0
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∙ SciPY 0.7.2

∙ matplotlib 0.99.3 <http://matplotlib.sourceforge.net/>

∙ To build the documentation: docutils (Ubuntu: python-docutils)

Installation

Once you have all of the above prerequisites installed, and checked out PyARTS from the svn
repository, run the following from the base directory.

python setup.py install --user
This will install the package in ~/.local/lib and also it will put some required scripts in ~/.lo-

cal/bin. Do not try to add the PyARTS repository to your PYTHONPATH directly. It won’t
work. You need to install PyARTS first, because some parts need to be compiled (such as the
tmatrix module). If you omit the --user argument python will try and install the modules in the
standard 3rd party location (something like /usr/lib/python2.6/site-packages), which obviously
won’t happen unless you have superuser privileges

In most cases the install command above will work, however, if it cannot find numpy or scipy,
you will need to tell it where to find it:

python setup.py build_src build_ext --include-dirs=<wherever>/include/python install --user
Once installed you should make sure that the PATH environment variable includes ~/.local/bin

and the ARTS_PATH environment variable points to the arts executable, if this is not in the PATH
already.

Testing your Installation

There are several unit tests in the test/ folder of the distribution. These test both the functionality
and the accuracy of the software. To run them all, and check that your installation is OK, type

python testall.py -v
If you would like to contribute to PyARTS, which is definitely encouraged, it is strongly rec-

ommended that the above command is run, and that all tests are successful, before committing
your changes to svn.

Note: currently (19 May 2011), some tests have been disabled because of significant changes in
ARTS since the code was originally written.

Examples

Some example scripts are provided in the examples/ folder. Most of them should work as they
only depend on data provided in the data/ folder. Some fail because of changes in ARTS. The
testall.py script described above actually verifies that the examples run without error.

Documentation

Most modules in the package have reasonably complete docstring documentation. This means that
in an interactive python session, online help on a given PyARTS class or function can be obtained
by typing help(PyARTS_function_or_class). Or, in ipython, ?PyARTS_function_or_class.

The docstring documentation can also be viewed in easily navigatable html documents by doing
the following:

<wherever your python stuff is>/pydoc.py -p 1234

and open http://localhost:1234 in your web browser.
There is a user guide in the doc/ folder of the distribution.

History

PyARTS was originally developed by Cory Davis around 2003--2008. From 2010 and onwards,
Gerrit Holl has adapted most of PyARTS to newer versions of ARTS. Some parts were dropped
as it was not straightforward to adapt those, but those parts may be reintroduced later.
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PyARTS: an ARTS related Python package

Introduction

PyARTS is a python package, which has been developed to complement the Atmospheric Radiative
Transfer System - ARTS (http://www.sat.ltu.se/arts/). Although ARTS is very flexible software,
it’s primary function currently is to perform radiative transfer simulations for a given atmospheric
state. PyARTS simplifies the process of creating these atmospheric scenarios, and also provides
a front-end to the ARTS software for convenient configuration and execution of ARTS radiative
transfer calculations.

PyARTS includes two high-level modules that provide most of the functionality needed for the
preparation and execution of ARTS simulations:

clouds produces arbitrarily complex multi-phase multi-habit cloud fields for arts simulations. This
includes the generation of single scattering properties of non-spherical ice particles and the
generation of particle number density fields for given ice and liquid water content fields. clouds
also provides convenience functions for producing simple 1D and 3D box cloud scenarios.

The module provides a high-level Cloud class and several lower level objects such as Crystal
or Droplet. They can generate both single scattering properties and particle number density
fields. As of arts-1-14-139, arts can calculate particle number densities internally and there
is less need to do so in PyARTS.

arts contains classes and functions that actually perform ARTS simulations. The ArtsRun class
provides general functionality for configuring, performing, and managing the output of ARTS
simulations.

There are several lower-level modules that, as well as serving the arts and cloud modules, are
also useful in their own right:

arts_file_components Contains an ArtsCodeGenerator class that provides low- and mid-level
access to generate ARTS control-files.

arts_geometry Various functions dealing with 3D spherical geometry.

arts_math provides several interpolation, quadrature, and grid creation functions.

arts_scat provides functions and classes for the calculation of single scattering properties of ice
and liquid water hydrometeors.

arts_types provides support for the manipulation, loading, and saving in ARTS XML format of
some ARTS classes, e.g, ArrayOfGriddedField3, GriddedField3, and also the generation of
gaseous absorption lookup tables

artsXML provides general XML input and output that can be used for all ARTS objects.

general a general purpose module that includes simplified pickling/unpickling functions for saving
arbitrarily complex python objects, and functions for performing multi-threaded calculations.

physics Some physical constants, Rayleigh Jeans brightness temperature function, and psychro-
metric functions.

plotting general purpose plotting functions and functions for plotting ARTS related quantities
(requires matplotlib)

sli contains the SLIData2 class which generates almost optimal grids for 2D sequential linear
interpolation. SLI can be used by the ARTS-MC algorithm for the rapid calculation of
incoming radiation at the cloudbox boundary.

io Contains functions to locate and read various kinds of data associated with PyARTS or ARTS,
such as the Chevalier data or scattering databases.
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An example

Here is a simple example python session that demonstrates what can be done with the PyARTS
package. In this case we perform 3D polarized radiative transfer in an atmosphere containing a
uniform box shaped cloud.

FIXME: the example below needs updating!

1. First import the most commonly used PyARTS modules.

>>> from PyARTS import *

2. Start by defining a simple box shaped cloud filled with horizontally aligned oblate
spheroids.

>>> a_cloud=clouds.boxcloud(ztopkm=14.0,zbottomkm=13.0,lat1=-2.0,lat2=2.0,

... lon1=-2.0,lon2=2.0,cb_size={’np’:5,’nlat’:5,’nlon’:5},

... zfile=’PyARTS/data/tropical.z.xml’,tfile=’PyARTS/data/tropical.t.xml’,

... IWC=0.1)

>>> horizontal_plate=clouds.Crystal(ptype=30,NP=-1,aspect_ratio=2.0)

>>> a_cloud.addHydrometeor(horizontal_plate)

<Cloud, hydrometeors=1>

3. Generate single scattering data files, and particle number density fields.

>>> a_cloud.scat_file_gen(f_grid=[500e9,503e9],num_proc=2)

<Cloud, hydrometeors=1>

>>> a_cloud.pnd_field_gen(’pnd_field.xml’)

<Cloud, hydrometeors=1>

4. Generate grids for ARTS RT simulation. For the pressure grid, latitude grid and
longitude grid, a fine grid spanning the cloudbox is merged with a course grid covering
the modelled atmosphere.

>>> p_grid=arts_math.gridmerge(arts_math.nlogspace(101325.0,0.1,100),

... a_cloud.p_grid[1:-2])

>>> artsXML.save(p_grid,’p_grid.xml’)

>>> lat_grid=arts_math.gridmerge(arts_math.nlinspace(-16.0,16.0,100),

... a_cloud.lat_grid[1:-2])

>>> artsXML.save(lat_grid,’lat_grid.xml’)

>>> lon_grid=lat_grid

>>> artsXML.save(lon_grid,’lon_grid.xml’)

5. Now define parameters for ARTS run, giving the Monte Carlo algorithm a maximum
execution time of 10 seconds (you can also specify a desired accuracy or a fixed number
of iterations)

>>> arts_params={

... "atm_basename":"PyARTS/data/tropical",

... "cloud_box":a_cloud.cloudbox,

... "freq":501.18e9,

... "abs_species":["ClO","O3","H2O,H2O-MPM89","N2-SelfContStandardType"],

... "abs_lookup":"PyARTS/data/gas_abs_lookup.xml",

... "lat_grid":"lat_grid.xml",

... "lon_grid":"lon_grid.xml",

... "max_time":10,

... "p_grid":"p_grid.xml",

... "pnd_field_raw":a_cloud.pnd_file,

... "rte_pos":{’r_or_z’:95000.1,’lat’:9.1,’lon’:0},
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... "rte_los":{’za’:99.14,’aa’:180},

... "scat_data_file":a_cloud.scat_files,

... "mc_seed": 42,

... "stokes_dim":4

... }

6. And perform RT calculations (using 2 processors)...

>>> my_run=arts.ArtsRun(arts_params,’mcgeneral’,’cfile.arts’)

>>> my_run.run_parallel(2)

<ArtsRun cfile.arts>

7. And here is the simulated Stokes vector...

>>> print my_run.output[’y’]

[ 1.17613500e+02 5.57757000e+00 -7.19482500e-02 -2.69899500e-01]

>>> print my_run.output[’mc_error’]

[ 1.66664512 1.23597316 0.4771547 0.43988175]
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The arts module

PyARTS is designed as a wrapper for ARTS - ie an alternative to writing a control file for each
arts run. The module assumes that arts is in the default path. This can be overridden by setting
the environment variable ARTS_PATH (e.g. /home/user/test/myarts, where myarts is the name
of the executable).

The most useful class is ArtsRun.

ArtsRun objects

Class

A class representing a single arts simulation.

Initialisation

params: mapping Full parameters. For documentation, see arts_file_components.ArtsCodeGenerator.

run_type: string-like Determines the type of run. ArtsRun will initiate an ArtsCodeGener-
ator by calling the classmethod constructor ArtsCodeGenerator.do_run_type. For exam-
ple, if run_type is doit_batch, ArtsRun will initiate ArtsCodeGenerator.do_doit_batch.
Any do_x method in arts_file_components.ArtsCodeGenerator, e.g. clear, montecarlo,
doit_batch, will work here. Different

filename: string (optional) The name of the generated arts control file. If not given, a random,
temporary file is used.

Some examples for using this class are given in the docstring for the PyARTS package (__init__.py)

Attributes

params: mapping Stores parameters passed to constructor.

run_type: string Stores run_type passed to constructor.

filename: string Stores the filename used .

code: ArtsCodeGenerator object Stores the instance of ArtsCodeGenerator, after
executing .file_gen().

proc: subprocess.Popen object Stores the pipe to the arts process, after running
.start().

output: dictionary Dictionary storing all variables output by ARTS. Available after
running .process_output().

time_elapsed: float Stores run-time (user space) in seconds.

Selected methods

run arts.ArtsRun.run(self) Run ARTS according to the settings when instantiating ArtsRun.
This method calls self.start() and self.process_output(). The total runtime is stored in self.time_elapsed.

Returns self.

start arts.ArtsRun.start(self) Start the arts run.
Sets self.proc to the subprocess.Popen object to handle output etc.

process_output arts.ArtsRun.process_output(self) Wait for ARTS to complete and process
output (stdout, stderr)

For all variables output by the controlfile (available in self.code.out), retrieve the value and put
them in a hash self.output.
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Other module contents

Selected Functions

pnd_fieldCalc arts.pnd_fieldCalc(pnd_field_raw_file, cloudbox, p_file, lat_file, lon_file, pnd_field_file,
cloudbox_limits_file=”) Use ARTS to calculate pnd_field.

Uses arts to calculate the pnd_field WSV, which is interpolated onto the arts atmospheric
grids.

ppathCalc arts.ppathCalc(argdict) Use ARTS to calculate 3D propagation path.
WARNING: Currently not working!
Uses arts to calculate a 3D propagation path, with atmospheric field settings as described in

argdict. The returned object is a dictionary holding all the Ppath member data.

scat_data_monoCalc arts.scat_data_monoCalc(scat_data_raw_file, freq, scat_data_mono_file)
Use ARTS to calculate scat_data_mono.

Uses arts to calculate the scat_data_mono WSV, which is interpolated at frequency freq.

xml_ascii_to_binary arts.xml_ascii_to_binary(old_file, var_name, new_file) Use ARTS
to convert from xml to binary.

xml_binary_to_ascii arts.xml_binary_to_ascii(old_file, var_name, new_file) Use ARTS
to convert from binary to xml.

create_incoming_lookup arts.create_incoming_lookup(arts_params, zkm0, za0) Initialises
an SLIData2 object suitable for the generation of the ARTS WSV mc_incoming. See exam-
ples/mc_incoming_gen.py

IWP_cloud_opt_pathCalc arts.IWP_cloud_opt_pathCalc(settings) Calculates FOV aver-
aged ice water path and FOV averaged optical path. The standard error for each calculation (Monte
Carlo for Gaussian antennas) Returns iwp,tau,iwp_error,tau_error
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The clouds module

Clouds

Represent 3D clouds and cloud microphysics.
This module includes functions and classes representing 3D clouds and cloud microphysics.

This module has all you need for the generation of scattering data files (via the arts_scat module)
and particle number density fields, which enable the representation of 3D cloud fields in ARTS
simulations

Example of use: a 3D ice and liquid cloud field.

1. load iwc and lwc fields from TRMM data

>>> from PyARTS import *

>>> iwc_field=arts_types.LatLonGriddedField3.load(’../016/iwc_field.xml’)

>>> lwc_field=arts_types.LatLonGriddedField3.load(’../016/lwc_field.xml’)

2. load temperature field I prepared earlier

>>> t_field=arts_types.LatLonGriddedField3.load(’t_field.xml’)

3. Define hydrometeors

>>> ice_column=clouds.Crystal(NP=-2,aspect_ratio=0.5,ptype=30,npoints=10)

>>> water_droplet=clouds.Droplet(c1=6,c2=1,rc=20)

4. Create cloud field

>>> a_cloud=clouds.Cloud(t_field=t_field,iwc_field=iwc_field,lwc_field=lwc_field)

5. add hydrometeors

>>> a_cloud.addHydrometeor(ice_column,habit_fraction=1.0)

>>> a_cloud.addHydrometeor(water_droplet,habit_fraction=1.0)

6. generate (or find existing) single scattering data

>>> a_cloud.scat_file_gen(f_grid=[200e9,201e9],num_proc=2)

7. generate pnd fields

>>> a_cloud.pnd_field_gen(’pnd_field.xml’)

8. save cloud object for later

>>> quickpickle(a_cloud,’Cloud3D.pickle’)

Cloud objects

Cloud class

High-level class representing a cloud.
A high level class for the generation of ARTS cloud field data. A Cloud object is initialised

with up to three arts_type.LatLonGriddedField3 objects representing 3D temperature, ice water
content, and liquid water content fields. The temperature field is compulsory but either IWC or
LWC may be omitted. Droplet or Crystal objects can then be added to the Cloud Object using
the addHydrometeor method. The user is encouraged to create their own Hydrometeor classes (all
that is required is that they have scat_calc and pnd_calc methods with the same input/output
arguments). The scat_file_gen and pnd_field_gen methods create the single scattering data files
and particle number density files required to represent the cloud field in ARTS simulations.

Note that, as of ARTS-1-14-139, ARTS can internally calculate particle number density fields.
The single-scattering-data calculations, however, are still required to do externally.
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Constructor input

t_field: LatLonGriddedField3 Temperature field [K]

iwc_field: LatLonGriddedField3 Ice water content field [g/m^3] Maybe omitted, but then
lwc_field must be present.

lwc_field: LatLonGriddedField3 Liquid water content field [g/m^3] Maybe omitted, but then
iwc_field must be present.

Attributes Note: not all attributes are documented here, only those that are of relevance for
the user.

t_field: LatLonGriddedField3 As passed on to the constructor

iwc_field: LatLonGriddedField3 As passed on to the constructor

lwc_field: LatLonGriddedfield3 As passed on to the constructor

p_grid: 1-D array Pressure grid obtained from iwc_field if present, otherwise lwc_field [Pa].

lat_grid: 1-D array Latitude grid, obtained as for p_grid [degrees]

lon_grid: 1-D array Longitude grid, obtained as for lon_grid [degrees]

scat_files: list of strings List of scattering data files generated; filled by .scat_file_gen().

pnd_fields: list of string List of pnd field data files generated; filled by .pnd_field_gen().

pnd_data: ArrayOfLatLonGriddedField3 Contains all the pnd data, as calculated by .pnd_field_gen()

Selected methods

addHydrometeor clouds.Cloud.addHydrometeor(self, hydrometeor, habit_fraction=1.0) Adds
hydrometeor to cloud.

Adds a hydrometeor (e.g. a Droplet or Crystal object) to the cloud object. The habit_fraction
argument allows the implementation of multi-habit ice clouds. The habit_fractions for all of
the added Crystal objects should add up to 1.0. Otherwise the specified iwc_field will not be
reproduced.

Parameters

hydrometeor : Anything that has .scat_calc and .pnd_calc, like the MonoCrystal, Crystal and
Droplet objects do.

habit_fraction (float between 0 and 1)

Fraction of total cloud that this particle type has.

pnd_field_gen clouds.Cloud.pnd_field_gen(self, filename) Calculates pnd_field_raw and stores
it to ”filename”.

Calculates the pnd data required to represent the cloud field in an ARTS simulation. This pro-
duces an arts_types.ArrayOfLatLonGriddedField3 object, which has the same number of elements
as the scat_files data member. This is stored in the pnd_data member and output to filename in
ARTS XML format.

Parameters

filename: stream or string Either a stream (something with a .write method) or a string de-
scribing a filename to write the data to.
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scat_file_gen

clouds.Cloud.scat_file_gen(self, f_grid, za_grid=array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, 150, 160, 170, 180]), aa_grid=array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
120, 130, 140, 150, 160, 170, 180]), num_proc=1)

system-message

WARNING/2 in userguide.rst, line 794
Definition list ends without a blank line; unexpected unindent. backrefs:

Calculates single scattering data and generate files.
Calculates all of the single scattering data files required to represent the cloud field in an

ARTS simulation. The file names are stored in the scat_files data member. The input arguments
are f_grid,T_grid,za_grid, and aa_grid: numpy arrays determining the corresponding data in
the arts_types.SingleScatteringData objects. The optional argument num_proc determines the
number of processes used to complete the task.

Parameters

f_grid (1D-array)

Frequency grid for scattering calculation [Hz].

za_grid: 1D-array, optional Zenith angle grid for scattering calculation [degree]. Defaults to
every 10 degrees.

aa_grid: 1D-array, optional Azimuth angle grid for scattering calculation [degree]. Defaults
to every 10 degrees.

num_proc: int, optional Number of processors to use in calculation. Defaults to 1.

Hydrometeor objects

Crystal

Produces scattering data and pnd fields for ice clouds.
The size distribution is the McFarquhar- Heymsfield 1997 distribution (see clouds.mh97, as used

in the EOSMLS cloudy-sky forward model. A Crystal object is initialised with the particle parame-
ters ptype, aspect_ratio, NP, which have the same meaning as in arts_types.SingleScatteringData
objects. equivalent particle radii and pnd values are determined from the abscissas and weights for
an npoints Laguerre Gauss quadrature, to give npoints arts_types.SingleScatteringData objects,
and a pnd field corresponding to these particles. The methods scat_calc and pnd_calc are called
by the parent Cloud object.

Parameters

ptype: integer As for arts_types.SingleScatteringData

aspect_ratio: float As for arts_types.SingleScatteringData

NP: integer As for arts_types.SingleScatteringData

npoints: ? (FIXME GH 2011-03-25: what is this?)

T_grid: 1D-array As for arts_types.SingleScatteringData
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Droplet

Represents a floating particle consisting of liquid water.
Produces scattering data and pnd fields for liquid water clouds. The size distribution is the

modified gamma distribution of Nioku, as used in the EOSMLS cloudy-sky forward model. A
Droplet object is initialised with the distribution parameters c1, c2, and rc. Some suggested values
for these parameters are:

∙ Stratus (rc=10 micron, c1=6, c2=1)

∙ Cumulus Congestus (rc=20 micron, c1=5, c2= 0.5).

Scattering properties are integrated over the size distribution using an npoints Laguerre Gauss
quadrature, to give a one arts_types.SingleScatteringData object. T_grid is an optional
initialisation argument which overides the default temperature grid ([260,280,300,320]) for scat-
tering data file generation. The pnd field is then simply scaled by the lwc_field. The methods
scat_calc and pnd_calc are called by the parent Cloud object.

Parameters

c1: number Nioku distribution parameter (?)

c2: number Nioku distribution parameter (?)

rc: number Particle radius [micrometer]

npoints: number ?

T_grid: 1-D array temperature grid for scattering calculations [K]

Gamma

Scattering data and pnd fields for ice or liquid.
Produces scattering data and pnd fields for a gamma distribution of either ice or liquid water

clouds. The size distribution function is given by 𝑛(𝑟) = 𝑁0
( 𝑟
𝛽 )𝛾−1 exp(− 𝑟

𝛽 )

𝛽Γ(𝛾) ,where 𝛾 is the shape

parameter, and 𝛽 =
𝑟𝑒𝑓𝑓

𝛾+2

A Gamma object is initialised with the distribution parameters r_eff (effective radius), and
shape parameter g(𝛾). T_grid is required, as is the phase argument (’ice’,’liquid’). These two
arguments need to be consistent. Scattering properties are integrated over the size distribution
using an npoints Laguerre Gauss quadrature, to give a one arts_types.SingleScatteringData object.
The pnd field is then simply scaled by the iwc_field (or) lwc_field. The methods scat_calc and
pnd_calc are called by the parent Cloud object.

MonoCrystal

A monodisperse ice particle.
Produces scattering data and pnd fields for ice clouds with particles of only one size.

Parameters

ptype: integer As for arts_types.SingleScatteringData

aspect_ratio: float As for arts_types.SingleScatteringData

NP: integer As for arts_types.SingleScatteringData

equiv_radius: float As for arts_types.SingleScatteringData

T_grid: 1D-array As for arts_types.SingleScatteringData
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Other module contents

Selected functions

boxcloud clouds.boxcloud(ztopkm, zbottomkm, lat1, lat2, lon1, lon2, cb_size, zfile, tfile, IWC=None,
LWC=None) Return a box shaped Cloud object. ztopkm,zbottomkm,lat1,lat2,lon1,lon2, IWC,
LWC are Numeric values, cb_size is a dictionary with keys ’np’,’nlat’, and ’nlon’

gamma_dist clouds.gamma_dist(r, CWC, r_eff, g, phase=’ice’) Gamma distribution. Returns
an array of particle number densities, for an array of particle radii, r, according to the Gamma
size distribution,

𝑛(𝑟) = 𝑁0

( 𝑟
𝛽 )𝛾−1 exp(− 𝑟

𝛽 )

𝛽Γ(𝛾)

,where 𝛾 is the shape parameter, and 𝛽 =
𝑟𝑒𝑓𝑓

𝛾+2 .

Arguments

r: 1-D array array of particle radii [micrometer]

IWC: number cloud water content [gm-3]

r_eff: number effective radius [?]

g: number shape parameter (𝛾)

mh97 clouds.mh97(IWC, r, TK) MH97 McFarquhar and Heymsfield 1997’s particle size distri-
bution

Usage

n,integrated_n=mh97(IWC,r,TK).

Arguments

IWC: number Ice water content [gm-3]

r: 1-D array Array of radii [micrometer]

TK: number Temperature [K]

n: number number density in l-1mm-1 (or m−3𝜇m−1);

integrated_n: integrated number density in each size bin in m-3.

Equation

The MH97 size distribution is given by the sum of a gamma distribution for small
particles and a log-normal distribution for large particles. The small particle gamma
component is

𝑁(𝐷𝑚) =
6𝐼𝑊𝐶<100𝛼

5
<100𝐷𝑚

𝜋𝜌𝑖𝑐𝑒Γ(5)
exp (−𝛼<100𝐷𝑚)

,

and the large particle lognormal component is

𝑁(𝐷𝑚) =
6𝐼𝑊𝐶>100

𝜋1.5𝜌𝑖𝑐𝑒
√

2 exp
(︀
3𝜇> 100 + 4.5𝜎2

>100

)︀
𝐷𝑚𝜎>100𝐷3

0

exp

⎡⎣−1

2

(︃
log 𝐷𝑚

𝐷0
− 𝜇> 100

𝜎>100

)︃2
⎤⎦

For details see [McFarquharHeymsfield97].
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nioku clouds.nioku(LWC, r, rc, c1, c2) The modified gamma size distribution for water droplets
as given in the MLS cloudy sky ATBD. The units are l-1mm-1 (or m−3𝜇m−1)

𝑛(𝑟) = 𝐴𝑟𝑐1 exp (−𝐵𝑟𝑐2)

, where

𝐴 =
3𝐿𝑊𝐶𝑐2𝐵

𝑐1+4.0
𝑐2 × 1012

4𝜋Γ
(︀
𝑐1+4.0

𝑐2

)︀
,and 𝐵 = 𝑐1

𝑐2𝑟
𝑐2
𝑐

Arguments:

LWC, ice water content in gm-3;

r, Array of radii in microns;

rc,c1,c2, size distribution paramaters. Some suggested values for these parameters are:
Stratus (rc=10 micron, c1=6, c2=1), Cumulus Congestus (rc=20 micron, c1=5, c2=
0.5).

Algorithm Description and Theoretical Basis

How Cloud and Hydrometeor objects interact

The Cloud class, and the various hydrometeor classes (see Hydrometeor objects), aim to make it
easy to construct arts scenarios from IWC/LWC fields, such as those obtained from NWP/GCM
model output, and to be flexible and simple in the application of different microphysical regimes.

Examination of the Cloud source code reveals a very simple class. A Cloud object contains a
data member hydrometeors which is a list of hydrometeor objects. The Cloud.scat_file_gen and
Cloud.pnd_field_gen methods simply iterate through this list, calling the scat_calc, and pnd_calc
methods of each hydrometeor object. This results in a list of scattering data files, and particle
number density field for the scenario. The only requirement for the hydrometeor objects is that
they have the methods scat_calc, and pnd_calc methods, which have the same arguments as e.g.
Crystal objects...

scat_calc

clouds.Crystal.scat_calc(self, f_grid, za_grid=array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, 150, 160, 170, 180]), aa_grid=array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
120, 130, 140, 150, 160, 170, 180]), num_proc=1)

system-message

WARNING/2 in userguide.rst, line 1097
Definition list ends without a blank line; unexpected unindent. backrefs:

Calculates single scattering data.
Produces npoints scattering data objects, and returns a list (length=npoints) of scattering data

files.

Parameters

f_grid: 1D-array frequency grid for scattering calculations [Hz?]

za_grid: 1D-array zenith angle grid [degree]

aa_grid: 1D-array azimuth angle grid [degree]

num_proc: int Number of processors to use in the calculation
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Returns

scat_files: list of strings Each string contains the path to a arts-xml-file. The contents of those
files describe the single-scattering-properties. The number of strings is determined by npoints
(as passed to the constructor).

pnd_calc clouds.Crystal.pnd_calc(self, LWC_field, IWC_field, T_field) Calculates particle
number densities.

Returns a list (length=npoints) of pnd fields (GriddedField3), given LWC, IWC and tempera-
ture fields (all GriddedField3)

Parameters

LWC_field: LatLonGriddedField3 Liquid water content field [g/m^3]

IWC_field: LatLonGriddedField3 Ice water content field [g/m^3]

T_field: LatLonGriddedField3 Temperature field [K]

Returns

pnd_list list of LatLonGriddedField3 containing particle number density data [g/m^3]. The
number of pnd-fields is defined by npoints (see class documentation).

This system should allow for the straightforward implementation of new user defined micro-
physical regimes.

Figure 1: The Cloud class.

Using Laguerre - Gauss Quadrature to represent scattering properties of particle
polydispersions

Previously the method for calculating particle number densities (PND) has been sub-optimal. We
arbitrarily chose a set of particle sizes, and took bin boundaries between them to give our size bins.
The particle size distribution function was then integrated over the size bin to give the particle
number density for each size. These PNDs were then all scaled so that IWC was conserved. This
method is inelegant : there is no satisfactory way of determining the sizebins / bin points, which
led to the choice of a large number (40) of size bins for safety, and is unnecessarily costly.
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The theory of Gaussian quadrature states that for an N point method, the approximation,∫︁ ∞

0

𝑥𝑎 exp(−𝑥)𝑓(𝑥)𝑑𝑥 ∼=
𝑁∑︁
𝑖=1

𝑤𝑖𝑓(𝑥𝑖) (1)

, is exact if 𝑓(𝑥) is a polynomial of order up to 2𝑁−1. The weighting function on the left is closely
related to Gaussian distribution and modified Gaussian distributons often found in cloud particle
size distributions. The 𝑥𝑎 term can accomodate some of the radial dependency (eg 𝑟2, 𝑟3, 𝑟6) of
single scattering properties.

Given that our particle number densities are used to calculate some single scattering property Φ,
for a polydisperion with some size distribution function 𝑛(𝑟), then in ARTS we will be calculating∫︁ ∞

0

𝑛(𝑟)Φ(𝑟)𝑑𝑟 =

∫︁ ∞

0

𝑛(𝑟)

𝑥𝑎 exp(−𝑥)
𝑥𝑎 exp(−𝑥)Φ(𝑟)

𝑑𝑟

𝑑𝑥
𝑑𝑥 (2)

∼=
𝑁∑︁
𝑖=1

𝑤𝑖𝑛(𝑟𝑖)

𝑥𝑎
𝑖 exp(−𝑥𝑖)

(︂
𝑑𝑟

𝑑𝑥

)︂
𝑖

Φ(𝑟𝑖)

, where 𝑟 and 𝑥 are related by a simple transformation, the exact form of which is determined by the

size distribution. The method will be most successful if 𝑛(𝑟)
𝑥𝑎 exp(−𝑥)

𝑑𝑟
𝑑𝑥Φ(𝑟) can be well approximated

by a polynomial. Eq. 2 suggests that we represent the polydispersion using a set of N particles
with sizes given by the Gauss-Laguerre abscissa, 𝑥𝑖, and for each particle, 𝑖, the particle number
density is given by

𝑃𝑁𝐷𝑖 =
𝑤𝑖𝑛(𝑟𝑖)

𝑥𝑎
𝑖 exp(−𝑥𝑖)

(︂
𝑑𝑟

𝑑𝑥

)︂
𝑖

(3)

Calculation of abscissas and weights for Gauss-Laguerre quadrature is done using the scipy func-
tion special.laguerre
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Figure 2: The scattering matrix for liquid spheres, with a liquid water content of 1 gm−3, using
a modified gamma size distribution. The 𝑥- axes represent the number of quadrature points, and
the different lines on each plot are for different scattering angles.

A demonstration Figure 1 indicates that 3 quadrature points (and hence particle types in
ARTS) is sufficient for calculating the single scattering properties of liquid water clouds obeying
a modified gamma distribution. Reducing the number of particles needed in ARTS simulations
improves performance of both ARTS-MC and ARTS-DOIT scattering modules.

Implementation in Droplet and Gamma objects Gamma hydrometeors, and Droplet hydrome-
teors, which use a modified gamma size distribution, are economical because the non-linear factors
in the size distribution function are considered independent of the atmospheric field variables (IWC,
LWC, and T ). This means clouds have the same normalised size distribution at all positions, where
size distribution is then scaled to give the correct LWC or IWC. This allows us to use a single
particle type, with the scattering properties corresponding to an IWC/LWC of 1 gm-3. The PND
field is then identical to the IWC/LWC field.

Implementation in Crystal objects Crystal hydrometeor objects use the MacFarquhar and
Heymsfield (1997) size distribution which was obtained from aircraft measurements in tropical
cirrus. This correlation (see clouds.mh97) is clearly more complicated than the exponential form
best suited for Laguerre Gauss quadrature. However Laguerre Gauss quadrature still seems a good
choice given MH97’s use of the gamma distribution for small particles. For ARTS we require a
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finite, and as small as possible, number of particle types. In Eq. 2 we use the transformation
𝑥 = 2𝛼𝑟. Since the exponential term in the MH97 gamma component depends on IWC we have to
choose a suitable value for 𝛼, that will give accurate quadrature for the range of IWC encountered,
using a minimum number of quadrature points (particle types). The likely range of values for
𝛼<100 in MH97, led to the choice of 𝛼 = 0.02. A simple test, involving calculating IWC using
Laguerre Gauss quadrature for a range of input IWC, showed that 𝛼 = 0.02 resulted in errors of
1% for IWC=1 gm−3 and N=4, and 1% for IWC=0.1 gm−3 and N=7. By default the Crystal class
uses N=10 quadrature points (particle types).
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The arts_scat module

ARTS Single Scattering Data calculations.
Contains low-level function to calculate single-scattering properties. The higher-level classes

are arts_types.SingleScatteringData and the various types in the clouds module.

SingleScatteringData objects

Class

The class representing the arts SingleScatteringData class.
The data members of this object are identical to the class of the same name in ARTS; it

includes all the single scattering properties required for polarized radiative transfer calculations: the
extinction matrix, the phase matrix, and the absorption coefficient vector. The angular, frequency,
and temperature grids for which these are defined are also included. Another data member - ptype,
describes the orientational symmetry of the particle ensemble, which determines the format of
the single scattering properties. The data structure of the ARTS SingleScatteringData class is
described in the ARTS User Guide.

The methods in the SingleScatteringData class enable the calculation of the single scattering
properties, and the output of the SingleScatteringData structure in the ARTS XML format (see
example file). The low-level calculations are performed in arts_scat.

Constructor input

ptype (integer)

See the User Guide (if you are reading this through the User Guide, see below)

f_grid (1-D array)

f_grid array for frequency grid [Hz]

T_grid (1-D array)

T_grid array for temperature grid [K]

za_grid (1-D array)

za_grid array for zenith-angle grid [degree]

aa_grid (1-D array)

aa_grid array for azimuth-angle grid [degree]

equiv_radius (number)

equivalent volume radius [micrometer]

NP (integer or None)

code for shape: -1 for spheroid, -2 for cylinder, positive for chebyshev, None for arbitrary
shape (will not use tmatrix for calculations)

phase (string)

ice, liquid

aspect_ratio (number)

Aspect ratio [no unit]

Some inputs have default values, see SingleScatteringData.defaults.
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Figure 3: The SingleScatteringData class.

Selected methods

__init__ arts_types.SingleScatteringData.__init__(self, params={}, **kwargs) A SingleScat-
teringData object is initialised with keyword arguments. See the class documentation for details.

system-message

WARNING/2 in userguide.rst, line 1375
Inline strong start-string without end-string.

calc arts_types.SingleScatteringData.calc(self, precision=0.001) Calculates the extinction ma-
trix, phase matrix, and absorption vector data required for an arts single scattering data file.

generate arts_types.SingleScatteringData.generate(self, precision=0.001) performs calc() and
save with a filename generated from particle parameters

load arts_types.SingleScatteringData.load(cls, filename) Loads a SingleScatteringData object
from an existing file.

Note that this can only import data members that are actually in the file - so the scattering
properties may not be consistent with the params data member.

save arts_types.SingleScatteringData.save(self, f, compressed=None) Writes data to file

Other module contents

Selected functions

combine arts_scat.combine(scat_data_list, pnd_vec) Returns a single SingleScatteringData
object obtained by summing over a list of SingleScatteringData objects, each one multiplied by the
corresponding element in a vector of particle number densities. Currently this function requires
that all members of scat_data_list have the same value of ptype, and the same angular grids

refice arts_scat.refice(freq, temp) A wrapper for the REFICE fortran program - this time with
frequency and temperature as the arguments, and a python exception is raised if inputs are out of
range. freq in Hz, temp in K
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refliquid arts_scat.refliquid(freq, temp) Calculates the refractive index of liquid water, according
to a model based on those of Liebe and Hufford, as used in the EOSMLS scattering code. This
has been checked with Table C-1 in the cloudy ATBD. freq in Hz, temp in K

tmat_fxd arts_scat.tmat_fxd(equiv_radius, aspect_ratio, NP, lam, mrr, mri, precision, use_quad=0)
A simplified interface to the tmatrix.tmatrix function

tmat_rnd arts_scat.tmat_rnd(equiv_radius, aspect_ratio, NP, lam, mrr, mri, precision, nza,
use_quad=0) A simplified interface to the tmd.tmd function

phasmat arts_scat.phasmat(LAM, THET0, THET, PHI0, PHI, BETA, alpha) Calculates the
phase matrix and returns it in m2. This requires that the Tmatrix has already been calculated.
See arts_scat.extmat for argument descriptions

extmat arts_scat.extmat(NMAX, LAM, THET0, PHI0, BETA, alpha) Calculate the extinction
matrix for a given wavelength (LAM), and a propagation direction given by zenith angle (THET0)
and azimuthal angle (PHI0) , both in degrees. BETA and alpha give the particles orientation
(These angles are defined as in Mishchenkos paper [mishchenko00]). The output is a 1D array
with the 7 independent extinction matrix elements [KJJ,K12,K13,K14,K23,K24,K34] in m2. To
call this method you must first call tmat_fxd

Algorithm and Theoretical Basis

Single Scattering Properties

The single scattering data is calculated using the T -matrix method. For details of the T -matrix
method, please consult the references mentioned in the following sections.

ptype=20 In the ptype=20 case, where we have completely random orientation, we use a slightly
modified version of Mishchenko’s random orientation T-matrix code [mishtrav98]. Mischenko’s
source code has been altered to provide a python extension module, tmd.so, which contains
the function tmd. This function returns the scattering cross-section, 𝐶𝑠𝑐𝑎, the extinction cross-
section, 𝐶𝑒𝑥𝑡, and the scattering matrix elements, 𝐹11, 𝐹22, 𝐹33, 𝐹44, 𝐹12, 𝐹34. This function is
called by the SingleScatteringData.calc() method, and it is not intended for tmd.tmd to be called
directly by the user. SingleScatteringData.calc() calls tmd.tmd with arguments suitable for
a monodispersion of particle sizes, as this allows a consistent interface for both ptype=20 and
ptype=30. Size distributions of both these particle types can be handled by the clouds module.
However, if you want to use the size distribution capabilities of Mishchenko’s code, the tmd.tmd

function can be called directly. See the pydoc documentation for the argument list and [mishtrav98]
for the argument definitions.

ptype=30 For ptype=30, where there is horizontal alignment, but random azimuthal orienta-
tion, we use a modified version the fixed orientation code of Mishchenko [mishchenko00]. Mis-
chenko’s source code has been altered to provide a python extension module, tmatrix.so, which
contains the functions tmatrix and ampld. tmatrix.tmatrix calculates the T -matrix for given
particle and radiation parameters, and stores this in the data structure tmatrix.tmat. The
function tmatrix.ampl, uses the T -matrix data to calculate the scattering amplitude function
S(n,n′, 𝛼, 𝛽), for given incident, n, and scattered, n′, directions, and orientation angles 𝛼, and 𝛽.
This arrangement makes use of the fact that the T -matrix need only be calculated once for a given
particle and frequency, to get single scattering properties for a range of directions and particle ori-
entations. From S(n,n′, 𝛼, 𝛽), it is straightforward to get the extinction matrix K(n), and phase
matrix Z(n,n′); for details see [mishchenko00]. Again, the tmatrix module is not intended for the
user; the functions mentioned above are called within SingleScatteringData.calc().

The purpose of the ptype=30 case in the SingleScatteringData python class is to represent
scattering by horizontally aligned particles. This means that oblate particles (aspect ratio >
1) have their rotation axis parallel to the local zenith. In the notation of [mishchenko00], this
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corresponds to an orientation angle 𝛽 = 0, which makes the orientation angle 𝛼 irrelevant due
to the rotational symmetry of the particle. Conversely, prolate particles have the axis of rotation
perpendicular to the local zenith. This means that in the case of horizontally aligned prolate
particles, scattering properties must be averaged over all possible azimuth orientations, 𝛼, with
𝛽 = 𝜋/2.

Orientation Averaging This section only applies to horizontally aligned prolate particles. The
orientationally averaged extinction matrix is obtained from the averaged T -matrix, which can be
calculated ‘exactly’ from a single T -matrix calculation according to the analytic method described
in [mishchenko91]. This is implemented in the function tmatrix.avgTmatrix. Unfortunately the
orientationally average T -matrix is not useful for calculating the orientationally averaged phase
matrix. In short this is because unlike the extinction matrix, phase matrix elements can not be
expressed as linear expansions of T -matrix elements. Therefore ⟨Z(n,n′)⟩ must be obtained by
numerical integration.

⟨Z(n,n′)⟩ =
1

𝜋

∫︁ 𝜋

0

Z(n,n′, 𝛽 = 𝜋/2, 𝛼)𝑑𝛼

Several quadrature routines have been trialed for this integration. To date, by far the best in terms
of accuracy and speed has been Gauss Legendre quadrature [pressetal92]. In this case we use a 10
point quadrature. This is implemented by the gauss_leg function in the arts_math module.

Calculation of the absorption coefficient vector Calculation of the absorption coefficient
vector is the most taxing part of the arts_types.SingleScatteringData calculations, particularly
for oblate p30 particles. For p20 particles we have simply the absorption cross-section, 𝐾𝑎1 =
𝐶𝑒𝑥𝑡 − 𝐶𝑠𝑐𝑎, where the values on the RHS are obtained directly from tmd.tmd

However, for p30 particles, the absorption coefficient vector is given by

𝐾𝑎𝑖 = ⟨𝐾𝑖1(n)⟩ −
∫︁
4𝜋

𝑑(n′) ⟨𝑍𝑖1(n,n′)⟩ (4)

= ⟨𝐾𝑖1(n)⟩ − 2

∫︁
𝜋

𝑑∆𝜑

∫︁
𝜋

𝑑𝜃′ ⟨𝑍𝑖1(𝜃,∆𝜑, 𝜃′)⟩ 𝑠𝑖𝑛(𝜃′)

The integration is performed using multi-dimensional Gauss-Legendre quadrature, which is imple-
mented as the multi_gauss_leg function in the arts_math module. In the case of prolate particles,
the evaluation of ⟨𝑍𝑖1(𝜃,∆𝜑, 𝜃′)⟩ requires integration over azimuthal orientation. For this reason,
the integration in Eq. 4 is done using 6 point Gaussian quadrature, whereas for oblate particles
we use the 10 point method.

Refractive Index of Ice and Liquid Water

The calculation of single scattering properties for ice and liquid hydrometeors requires knowledge
of the complex refractive index of the material in question. For both ice and liquid water the
complex refractive index is a function of temperature and frequency.

PyArts incorporates the fortran code, REFICE.f of Stephen Warren, Warren Wiscombe, and
Bo-Cai Gao to calculate the refractive index of ice at a given frequency and temperature. This is
most easily accessed by the function refice (see above) in the arts_scat module. This function
looks up tables based mainly on the tabulated data of [Warrenetal84]. REFICE.f has incorporated
data published since Warren’s paper, but this is not in the mm-submm range. Stephen Warren has
suggested that the data of [MaetzlerWegmueller87], be consulted for the microwave region. This
has not been implemented in the REFICE extension model.

Figure 2 was generated by the script plot_refr_ind.py, which is in the “examples” directory
of the PyARTS distribution.
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Figure 4: Output of examples/plot_refr_ind.py

For liquid cloud droplets, the complex refractive index is calculated according to the model de-
scribed in the EOS-MLS Cloudy-Sky ATBD, which is based on the empirical model of [Liebeetal89]
and [Hufford91]. This is implemented in the arts_scat.refliquid function described above.

The range of convergent size parameters and aspect ratios for ice crystal

optical property generation

The original T -matrix fortran codes have been modified to call subroutines in the LAPACK library.
This gives the same extended range of convergent size parameters and aspect ratios as the optional
NAG enhancements described in Mishchenko’s papers.

Figure 3 shows the minimum integer size parameters, for a range of aspect ratios, that cause
convergence failures in the PyARTS implementation of the T-matrix codes. Here the complex
refractive index is given by ...

>>> from PyARTS.arts_scat import *

>>> T=240 #temperature

>>> f=300e9 #frequency

>>> m=refice(f,T) #refractive index of ice using Warren(1984)

>>> print m

(1.78117084503+0.00504761422053j)

The convergence failure parameters shown in Figure 3 were obtained by the script tmat_limits.py,
which resides in the test folder of the PyARTS dsitribution. For size parameters and aspect ratios
on or above the curves in Fig. 3, the T -matrix code will fail to converge.
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Figure 5: T -matrix convergence failure parameters for m=(1.78117084503+0.00504761422053j)
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The arts_types module

The arts_types module includes support for various ARTS-classes.
Due to the dynamic nature of Python, some are implemented in a more generic way. For

example, ArrayOf can be easily subclassed to be an array of anything, and all gridded-fields are
subclasses of GriddedField.

Classes of special interest may be:

∙ LatLonGriddedField3: Special case of GriddedField3 for lat/lon/pressure data

∙ AbsSpecies

∙ SingleScatteringData

∙ ScatteringMetaData

This module allows the generation, manipulation, and input/output in ARTS XML format of
these objects.

LatLonGriddedField3 objects

A gridded field consists of a pressure grid vector, a latitude vector, a longitude vector and a Tensor3
for the data itself.

Methods

__init__ arts_types.LatLonGriddedField3.__init__(self, p_grid, lat_grid, lon_grid, data)
GriddedField3 objects are initialised with a pressure grid vector, a latitude vector, a longitude
vector and a Tensor3 for the data itself

__call__ arts_types.LatLonGriddedField3.__call__(self, p_grid, lat_grid, lon_grid) inter-
polate the field onto new grids, returns only the field data

expandTo3D arts_types.LatLonGriddedField3.expandTo3D(self, new_lat_grid, new_lon_grid)
converts the existing 1D field to 3D and returns a new field. The original field is not changed

pad arts_types.LatLonGriddedField3.pad(self, plims=[110000.0, 1.0000000000000001e-05], latlims=[-
90, 90], lonlims=[-180, 180]) Adds extra gridpoints at new extremities in all dimensions. data values
are copied from the existing end points

load arts_types.LatLonGriddedField3.load(cls, filename) load a GriddedField3 object from an
ARTS XML file

save arts_types.LatLonGriddedField3.save(self, filename) Save the GriddedField3 object to an
ARTS XML file
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The plotting module

General purpose plotting functions using the matplotlib package.

SentinelMap objects

plotting.SentinelMap has no docstring!

Other module contents

Selected functions

hotcoldmap plotting.hotcoldmap(zmin, zmax) produces a color map with a black-blue-green
scale for values below zero, and a black-red-yellow scale for values above zero

myPcolor plotting.myPcolor(x, y, z, **kwargs) With the matplotlib pcolor you actually lose
the last row and column of data. This function addresses this, and produces a pcolor plot where
the patches are centred on the x and y values

system-message

WARNING/2 in userguide.rst, line 1860
Inline strong start-string without end-string.

mySubplot plotting.mySubplot(nrows, ncols, pnum, figpos=[0.050000000000000003, 0.050000000000000003,
0.90000000000000002, 0.90000000000000002], axpos=[0.14999999999999999, 0.14999999999999999,
0.75, 0.75]) More like the matlab subplot than matplotlib. Divides a portion of the current figure,
determined by figpos in to nrows by ncolumns panels. The normalised position of the axes within
the panel is given by axpos. The axes object is returned.

drawCloudBox plotting.drawCloudBox(zbase, ztop, lat1, lat2, npts=40, format=’k’) draws a
cloudbox cross section

drawPpath plotting.drawPpath(filename, format=’k’) plots a propagation path from an ARTS
XML file in x,y (km) coordinates

drawSurface plotting.drawSurface(lat1, lat2, npts=40, format=’k’) draws the geoid surface

setDataAspectRatioByAxisPos plotting.setDataAspectRatioByAxisPos(ax, r) Same idea as
matlab. Adjusts the axis position to fix the aspect ratio

setDataAspectRatioByFigSize plotting.setDataAspectRatioByFigSize(ax, r) Same idea as
matlab. Adjusts the figure size to fix the aspect ratio

shiftaxes plotting.shiftaxes(ax, delta_pos) For use with matplotlib. input:

system-message

ERROR/3 in plotting.shiftaxes.rst, line 7
Unexpected indentation. backrefs:

ax, a matplotlib.axes object; delta_pos, a 4 element list or array correspond to [delta_x_start,delta_y_start,delta_width,delta_height]
in normalised units.
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Demonstration

Figure 4 shows the output of examples/geometry.py, which uses . plotting.drawCloudBox,
plotting.drawPpath, and plotting.drawSurface.

-200 -150 -100 -50 0 50 100 150 200
x /km

6375

6380

6385

6390

6395

6400
y
 /

km

tangent height = 15.75 km

tangent height = 1 km

MLS

MLS

geometry for 3D RT simulations

Figure 6: the output of examples/mc_incoming_gengeometry.py, which uses .
plotting.drawCloudBox, plotting.drawPpath, and plotting.drawSurface.
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The artsXML module

artsXML

Creat, load and save datafiles in the Arts XML format.
For XML output, the main class is XMLfile. An XMLfile object is initialised with a filename

or a stream.

>>> from PyARTS import artsXML

>>> testfile=artsXML.XMLfile(’a_test_file.xml’)

Arts data objects are then added to the file with the add method.

>>> a_tensor=ones([3,5,6],numpy.float32)

>>> testfile.add(a_tensor)

Context managers are also supported:

>>> with artsXML.XMLfile("a_test_file.xml") as tf:

... tf.add(my_tensor)

Then you don’t need to worry about closing the file, as the context manager takes care of this.
The ARTS data type to save is is determined automatically from the python type. This mapping

is specified by the dictionary artsXML.mapping. For instance, [[1,2,3],[4,5,6]] would be saved as an
ArrayOfArrayOfIndex, whereas [array([1,2,3]),array([4,5,6])] would be saved as an ArrayOfVector.
Note that it is not guaranteed that ARTS actually understands this! For Tensor type objects, the
tag name (eg. Tensor3) and the size attributes are determined automatically by the shape of the
numpy array.

The file must then be closed with the close() method:

>>> testfile.close()

A shortcut save function is available. Using save the above is achieved in one line.

>>> artsXML.save(a_tensor,’a_test_file.xml’)

Some more complicated structures, like SingleScatteringData objects, have their own save meth-
ods which utilize this module.

The load function is a low-level function that returns a dictionary structure reflecting the
structure of the XML file. If you already know the type of the data you are going to load, you
can use the particular constructor, such as SingleScatteringData.load or ArrayOfLatLonGridded-
Field3.load. All of these will use artsXML.load as a backend.

XMLfile objects

arts XML output class. Initialise with a filename or object.
Warning: this will open the file for writing, thus over-writing any existing data!

Selected Methods

artsXML.XMLfile.close(self, really=True) This must be called to finalise the XML file

Other module contents

Selected functions

save artsXML.save(data, filename) Saves data to arts XML file (filename or stream).
If the filename ends in ’.gz’ the XML file will be gzipped
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load artsXML.load(filename, use_names=True) Loads an ArtsXML-file.
This general purpose function returns a dictionary structure reflecting the structure of the XML

file. If there is only one object in the structure, then that single object is returned. As far as far
as I know, this works with every data type exported by ARTS. Note that only in special simple
cases, such as single tensors, will load return exactly the same data given to the save command.
The more complicated data structures (e.g. SingleScatteringData) have their own load methods.
gzipped files can be loaded (as long as they end in ’gz’).

Parameters

filename (string-like)

Path to file to load (.xml or .xml.gz)

use_names (boolean, optional (default: True))

Use name tags in XML-file

Returns Returns an OrderedDict with the contents of the XML-file.
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The arts_math module

This module includes general purpose math functions. This module was developed before scipy
was included as a prerequisite, so there will be some functions remaining that duplicate scipy
functionality.

Other module contents

Selected functions

gauss_leg arts_math.gauss_leg(func, a, b, n) Gauss legendre integration with n abscissa

multi_gauss_leg arts_math.multi_gauss_leg(func, rangelist, n=10) (no documentation found)

gridmerge arts_math.gridmerge(aa, ba) Merges two sorted vectors(numpy array objects)

locate arts_math.locate(xa, x) Given an array, xa, and a number x, locate returns the index i,
such that x lies between xa[i] and xi[j]. Answers of -1 or n-1 indeicate that x is beyond the range
of xx

nlogspace arts_math.nlogspace(start, stop, n) Identical to the function of the same name in
ARTS; Returns a vector logarithmically spaced vector between start and stop of length n (equals
the Matlab function logspace)
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The io module

IO

Contains various functions to read particular datasets

Other module contents

Selected functions

read_chevalier io.read_chevalier(tp) Read Chevallier data, both “clear-sky” and cloudy fields.
Requires environment variable ARTS_XMLDATA_PATH to be set.

Parameters

type (string-like)

What type of Chevalier-data to read. Valid values: ’clear’, ’cloud’, ’all’.

var (string-like)

For what the Chevalier-data is maximised. Valid values: ’ccol’, ’oz’, ’q’, ’rcol’, ’t’.

Returns nd-array, 5000 x 92, containing “clear-sky” and cloudy fields. Record names as for the
Chevalier README:

(’p’, ’T’, ’z’, ’VMR_H2O’, ’VMR_O3’, ’CLW’, ’CIW’, ’Rain’, ’Snow’)

readYang2005 io.readYang2005(f) Read Yang-2005 type formatted file and get SingleScatter-
ingData ndarray.

Parameters

f (string-like)

Path to Yang-data to be read

Returns Returns (size, wavelength, angles), SSD, e.g. a two-element tuple, the first element
having in turn three elements.

size (1D-array (sizes,))

Sizes for the particles [m]

wavelengths (1D-array (wavelengths,))

Wavelengths for the particles [m]

angles (1D-array (angles,))

Zenith angles for the scattering [degrees]

SSD (2D-array (wavelengths, sizes))

An array with shape (wavelengths, sizes), containing the fields:

P11 : first element of the phase matrix [m^2] (angles,)

A_projected : projected area [m]

K : extinction cross section [m^2]

A : absorption cross section [m^2]

density : particle density [kg/m^3]

d_max : maximum diameter [m]

V : volume [m^3]

aspect_ratio : particle aspect ratio [no unit]
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See also /storage3/data/scattering_databases/yang/Yang_2005_IR/README

readHong io.readHong(p) Read Hong-type formatted file and get SingleScatteringData ndarray.

Parameters

p (string-like)

Path to Yang-data to be read

Returns Returns (size, wavelength, angles), SSD, e.g. a two-element tuple, the first element
having in turn three elements.

size (1D-array (sizes,))

Sizes for the particles [m]

wavelengths (1D-array (wavelengths,))

Wavelengths for the particles [m]

angles (1D-array (angles,))

Zenith angles for the scattering [degrees]

SSD (2D-array (wavelengths, sizes))

An array with shape (wavelengths, sizes), containing the fields:

Z (8 elements of the phase matrix [m^2] (8, angles))

P11, P12, P21, P22, P33, P34, P43, P44

K : extinction cross section [m^2]

A : absorption cross section [m^2]

A_projected : projected area [m]

density : particle density [kg/m^3]

d_max : maximum diameter [m]

V : volume [m^3]

aspect_ratio : particle aspect ratio [no unit]

The general module

This file includes interpreter or general purpose functions

Selected functions

Other module contents

multi_thread2 general.multi_thread2(func, inarglist, num_proc, logging) executes <func> for
every argument list in inarglist and returns a list of output objects. num_proc specifies the desired
number of concurrent processes (usually the number of CPUs)

quickpickle general.quickpickle(object, filename) pickle.dump <object> to <filename>. If file-
name ends with .gz the pickle file is gzipped

quickunpickle general.quickunpickle(filename) pickle.load an object from <filename> If an ab-
solute path is not included in filename, then environment variable DATA_PATH is used. Saves a
few lines of code.
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The sli module

This module defines the SLIData2 class, which allows the creation of optimized grids for 2D
sequential linear interpolation, as described by [Changetal97] (pdf).

The main difference with the method used by SLIData2 and that described in the paper, is
that we start with a course grid, and every function evaluation is included in the final grid. The
motivation for this is that is expected that function evaluations (e.g. ARTS RT simulations) are
expensive.

For an example of use, see the arts.create_incoming_lookup function.

SLIData2 objects

Class for 2D sequential linear interpolation

Selected methods

__init__ sli.SLIData2.__init__(self, func=None, x1=None, x2=None) initialises the SL-
IData2 object with a standard grid defined by vectors x1 and x2. func must be a function
y=func(x1,x2), where x1,x2 and y are vectors of the same length

refine sli.SLIData2.refine(self, N) Refine the grid by increasing the total number of gridpoints
to ’about’ N. Generally it is good to call refine 2 or more times to successively add more points to
the grid.

interp sli.SLIData2.interp(self, x1, x2) interpolate SLIData2 at x1 and x2 (single numeric values
only)

plot sli.SLIData2.plot(self) create a simple scatter plot of the grid.

load sli.SLIData2.load(self, filename) reads SLIData2 object from an XML file

save sli.SLIData2.save(self, filename) output the SLIData2 object in ARTS XML format

Demonstration

Figure 5 shows the output of examples/mc_incoming_gen.py, which makes use of the SLIData2

class to create an optimised 2D (altitude, zenith angle) lookup table of incoming clear-sky radi-
ance, for MonteCarlo scattering simulations with a pseudo-3D atmosphere (3D cloud, but a 1D
atmosphere outside the cloudbox).

Figure 7: the output of examples/mc_incoming_gen.py, which makes use of the SLIData2 class.

35

http://dynamo.ecn.purdue.edu/~bouman/publications/orig-pdf/ip9.pdf


REFERENCES

References

[Changetal97] Chang, J. Z., J. P. Allebach, C. A. Bouman, Sequential Linear In-
terpolation of Multidimensional Functions, IEEE Trans. Image Proc,
6(9),1997. (pdf)

[Hufford91] Hufford, G., A model for the complex permittivity of ice at frequencies
below 1 THz. Int. J. Infrared Millimeter Waves, 12, 677-682, 1991.

[Liebeetal89] Liebe, H. J., T. Manabe, and G. A. Hufford, Millimeter-wave attenu-
ation and delay rates due to fog/cloud conditions. IEEE Trans. Ant.
Prop., 37, 1617-1623, 1989.

[MaetzlerWegmueller87] Maetzler and Wegmueller, J. Phys. D. 20, 1623-1630, 1987

[McFarquharHeymsfield97] G.M. McFarquhar and A.J. Heymsfield, Parametrization of tropical
ice crystal size distributions and implications for radiative transfer:
Results from CEPEX, J. Atmos. Sci., 54, 2187-2200, 1997.

[mishchenko91] M. I. Mishchenko, Extinction and polarization of transmitted light by
partially aligned nonspherical grains, Astrophysical Journal, 367, 561-
574, 1991. (pdf)

[mishtrav98] Mishchenko, M.I. and Travis, L.D, Capabilities and limitations of a
current FORTRAN implementation of the T -matrix method for ran-
domly oriented, rotationally symmetric scatterers., J. Quant. Spec-
trosc. Radiat. Transfer, 60(3), 309-324,1998. (pdf)

[mishchenko00] M.I. Mishchenko, Calculation of the amplitude matrix for a non-
spherical particle in a fixed orientation, Applied Optics, 39(6), 1026-
1031,2000. (pdf)

[pressetal92] H.P Press, S.A Teukolksky, W.T. vetterling, and B.P Flannery, Nu-
merical Recipes in C: The Art of Scientific Computing, Cambridge
University Press, 1992.

[Warrenetal84] S.G. Warren, Optical constants of ice from the ultraviolet to the mi-
crowave, Applied Optics, 23(8), 218-229, 1984.

36

http://dynamo.ecn.purdue.edu/~bouman/publications/orig-pdf/ip9.pdf
http://www.giss.nasa.gov/~crmim/publications/1991_apj_367_561.pdf
http://www.giss.nasa.gov/~crmim/publications/1998_jqsrt_60_309.pdf
http://www.giss.nasa.gov/~crmim/publications/2000_ao_39_1026.pdf

	Contents
	Introduction
	About this document
	Why Python?
	Downloading PyARTS
	Prerequisites
	Installation
	Testing your Installation
	Examples
	Documentation
	History
	Acknowledgments

	PyARTS: an ARTS related Python package
	Introduction
	An example

	The arts module
	ArtsRun objects
	Other module contents

	The clouds module
	Clouds
	Cloud objects
	Hydrometeor objects
	Other module contents
	Algorithm Description and Theoretical Basis

	The arts_scat module
	SingleScatteringData objects
	Other module contents
	Algorithm and Theoretical Basis
	The range of convergent size parameters and aspect ratios for ice crystal optical property generation

	The arts_types module
	LatLonGriddedField3 objects

	The plotting module
	SentinelMap objects
	Other module contents

	The artsXML module
	artsXML
	XMLfile objects
	Other module contents

	The arts_math module
	Other module contents

	The io module
	IO
	Other module contents

	The general module
	Selected functions

	The sli module
	SLIData2 objects


