
The arts scat Python module

Cory Davis

June 10, 2004

1 The SingleScatteringData class

The main component of the arts scat module is the SingleScatteringData
class. The data members of this object are identical to the class of the same
name in ARTS; it includes all the single scattering properties required for
polarized radiative transfer calculations: the extinction matrix, the phase
matrix, and the absorption coefficient vector. The angular, frequency, and
temperature grids for which these are defined are also included. Another
data member - “ptype”, describes the orientational symmetry of the particle
ensemble, which determines the format of the single scattering properties.
The data structure of the ARTS SingleScatteringData class is described on
pages 80-83 of the ARTS User Guide.

The methods in the arts scat SingleScatteringData class enable the cal-
culation of the single scattering properties, and the output of the SingleScat-
teringData structure in the ARTS XML format (see example file). The main
methods are:-

• calc(precision=0.001): calculates the phase matrix, extinction matrix,
and absorption coefficient vector. The optional argument precision
determines the precision of internal T -matrix and numerical integra-
tion (only for ptype = 30) computations. The precision parameter is
recorded in the output XML file.

• file gen(filename): outputs the single scattering data to filename in
ARTS XML format

• generate(precision=0.001): performs calc() and file gen with a file-
name generated from particle parameters

1



A SingleScatteringData object is initialised with a dictionary of {“keyword”:value}
parameters. If this dictionary is omitted, or if any required parameters are
missing from the dictionary, default parameters are used. This is a little dan-
gerous - I might disable the defaults. After initialisation these parameters (eg:
“equiv radius”, “aspect ratio”,...) can be changed by modifying the params
member dictionary, although I prefer to create a new SingleScatteringData
object for each set of parameters.

The SingleScatteringData class also has a load(filename) method, which
loads a SingleScatteringData object from an existing file. Note that this can
only import data members that are actually in the file - so the scattering
properties won’t be consistint with the params data member. This method is
useful when combined with the combine and compress functions described
below.

Examples of Use

• Simple generation of single scattering data from a python interpreter
session. First import the required modules

bash-2.05b$ python

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from Numeric import * #import the numeric python module

>>> import arts_scat #import the arts_scat module

and define the necessary parameters

>>> scat_params={

... "NP":-1, #particle type as in Mischenko’s T-matrix code;

... #-1=spheroids,-2=cylinders

... ’phase’:’ice’ #The phase of the scattering particle ’ice’/’liquid’

... ’ptype’: 20, #random orientation (30=horizontal)

... ’equiv_radius’: 200, #equivalent volume radius in microns

... ’aspect_ratio’: 3, #oblate (<1=prolate)

... "T_grid":[250], #temperature is needed to calculate the

... #complex refractive index of ice/liquid water.

... #Currently only

2



... #one value is supported in ARTS.

... ’za_grid’:arange(0,181,10), #zenith angle grid

... ’aa_grid’:arange(0,181,10), #azimuth angle grid

... ’f_grid’: [240e9, 242e9] #frequency grid

... }

Now create a SingleScatteringData object, calculate scattering proper-
ties, and write an ARTS XML file.

>>> my_scat_data=arts_scat.SingleScatteringData(scat_params)

>>> my_scat_data.calc() #use the default precision value

>>> my_scat_data.file_gen("an_example_file.xml")

Now try the generate() method and see where the data ended up

>>> my_scat_data.generate()

>>> print my_scat_data.filename

/home/cory/data/p20f240T250r200NP-1ar3ice.xml

2 Extras

The arts scat module also includes some useful functions for manipulating
and testing SingleScatteringData objects.

combine and compress

If for a given 1D profile you have more particle types than non-zero ice water
content (IWC) levels, it makes sense to create one artificial SingleScattering-
Data object for each of these levels. For example, in the JPL code there are
40 size-bins, and profile 2101 in the 1996 simulated data set, which is a very
big cloud, there are only 7 non-zero IWC levels. In ARTS radiative transfer
calculations, the reduction from 40 to 7 particle types gives a considerable re-
duction in memory use and CPU time. The combine and compress functions
in the arts scat module enable this.

3



Tests

The arts scat module includes several tests, which, along with Pythons unittest
module, can demonstrate that everything is working properly and also test
the quality of the single scattering properties. The entire suite of tests can ei-
ther be run from the python interpreter by typing “arts scat.run tests()”, or
from the shell with the command “python [python library path]/unittest.py
arts scat.test suite”.

4


