
PyARTS User Guide, Algorithm Description and Theoretical

Basis

Cory Davis

date: 2006-05-05

PyARTS version: 1.1.9

email: cdavis@staffmail.ed.ac.uk

Contents

1 Introduction 3
1.1 About this document . 3
1.2 Why Python? . 3
1.3 Downloading PyARTS . 3
1.4 Prerequisites . 3
1.5 Installation . 4
1.6 Testing your Installation . 4
1.7 Examples . 4
1.8 Documentation . 4

2 PyARTS: an ARTS related Python package 6
2.1 Introduction . 6
2.2 An example . 6

3 The arts module 9
3.1 ArtsRun objects . 9

3.1.1 Selected methods . 9
3.2 Selected Functions . 9

4 The clouds module 10
4.1 Cloud objects . 10

4.1.1 Selected methods . 11
4.2 Hydrometeor objects . 11

4.2.1 Crystal . 11
4.2.2 Droplet . 11
4.2.3 Gamma . 11
4.2.4 MonoCrystal . 12

4.3 Selected functions . 12
4.4 Algorithm Description and Theoretical Basis . 12

4.4.1 How Cloud and Hydrometeor objects interact 12
4.4.2 Using Laguerre - Gauss Quadrature to represent scattering properties of

particle polydispersions . 13
4.4.3 A demonstration . 14
4.4.4 Implementation in Droplet and Gamma objects 14
4.4.5 Implementation in Crystal objects . 14

1

mailto:cdavis@staffmail.ed.ac.uk

CONTENTS

5 The arts scat module 16
5.1 SingleScatteringData objects . 16

5.1.1 Selected methods . 16
5.2 Selected functions . 17
5.3 Algorithm and Theoretical Basis . 18

5.3.1 Single Scattering Properties . 18
5.3.2 ptype=20 . 18
5.3.3 ptype=30 . 18
5.3.4 Orientation Averaging . 19
5.3.5 Calculation of the absorption coefficient vector 19
5.3.6 Refractive Index of Ice and Liquid Water 19

5.4 The range of convergent size parameters and aspect ratios for ice crystal optical
property generation . 19

6 The arts_types module 21
6.1 GriddedField3 objects . 21

6.1.1 Methods . 21
6.2 GasAbsLookup objects . 21

6.2.1 Methods . 21

7 The plotting module 23
7.1 SentinelMap objects . 23
7.2 Selected functions . 23

7.2.1 Demonstration . 23

8 The artsXML module 25
8.1 XMLfile objects . 25

8.1.1 Selected Methods . 25
8.2 Selected functions . 26

9 The arts_math module 27
9.1 Selected functions . 27

10 The general module 28
10.1 Selected functions . 28

11 The sli module 29
11.1 SLIData2 objects . 29

11.1.1 Selected methods . 29
11.1.2 Demonstration . 29

12 The arts1 module 30
12.1 Selected functions . 30

2

1 INTRODUCTION

1 Introduction

1.1 About this document

This document has two purposes; it aims to serve as a user guide, with descriptions of important
functions and classes and examples of their use, and also where necessary, there are algorithm
descriptions, and theoretical arguments justifying these algorithms.

Much of the user guide components of this document have been automatically extracted from
the docstrings in the PyARTS source code (see http://epydoc.sourceforge.net/docstrings.html).
This ensures consistency between the user guide and on-line help, keeps the user guide up-to-date,
and also improves the quality of the on-line help.

Algorithm description and theoretical basis (ATBD) content has only been included in cases
where the algorithm in question is novel and complex. The most mathematically arduous compo-
nent of this package is the T -matrix code of Mishchenko. Since this code has been included in only
a very slightly modified form, there is no T -matrix ATBD information included in this document.
Instead the user is directed to the appropriate papers by Mishchenko et al (see The arts scat module
for exact references), which are all available from http://www.giss.nasa.gov/˜crmim/publications.

1.2 Why Python?

The following are some of the reasons that make Python an attractive language for scientific
computing

• straightforward incorporation of FORTRAN code

• elegant syntax

• Fully object oriented

• Interactive

• comprehensive standard library

• powerful, and freely available third-party scientific packages (SciPy, matplotlib)

• platform independent

• straightforward package distribution

• FREE

In the case of PyARTS, the choice of Python was primarily based on the first point, which was
very important given the reliance upon pre-existing fortran code, and also the last point, which
removes an important obstruction in the sharing of code between scientists. Interactivity, and the
availability of high level, well documented libraries, contributed to the rapid development of the
PyARTS package.

1.3 Downloading PyARTS

The PyARTS CVS repository at Bremen is not in use, and is out of date!! I have
not committed any changes to the PyARTS cvs repository since the recent changes to NumPy (a
merger between the old Numeric Python and numarray) and Scipy. The new NumPy, which was
also briefly known as scipy core has tidied things up quite a bit, but I didn’t want to change the
PyARTS prerequisites without some feedback from the folk at Bremen and Chalmers, particularly
while numpy/scipy was a bit volatile.

An up-to-date PyARTS source distribution that uses the new numpy/ scipy can
be found at http://www.met.ed.ac.uk/˜cdavis/PyARTS/latest

1.4 Prerequisites

• Python 2.3, <http://www.python.org> (you will probably have this already)

• A fortran compiler

• NumPy and SciPy <http://www.scipy.org>

3

http://epydoc.sourceforge.net/docstrings.html
http://www.giss.nasa.gov/~crmim/publications
http://www.met.ed.ac.uk/~cdavis/PyARTS/latest
http://www.python.org
http://www.scipy.org

1 INTRODUCTION

• matplotlib <http://matplotlib.sourceforge.net/>

The versions of the above that I am currently using are numpy-0.9.2 (NOT -0.9.4 due to a
incompatibility with the scipy release) and scipy-0.4.4. Ian Adams reports that PyARTS works
also with newer versions of these packages (NumPy-0.9.5 and SciPy-0.4.6). Some parts of PyARTS
also require matplotlib, where I currently have matplotlib-0.86.2.

1.5 Installation

Once you have all of the above prerequisites installed, and checked out PyARTS from the ARTS
cvs repository, run the following from the base directory.

python setup.py install --home=˜
This will install the package in ˜/lib/python and also it will but some scripts in ˜/bin. If

you omit the --home argument python will try and install the modules in the standard 3rd party
location (something like /usr/lib/python2.2/site-packages), which obviously wont happen unless
you have superuser privileges

In most cases the install command above will work, however, if like me, your Numeric package
is not installed in the standard place (something like /usr/lib/python2.x/site-packages/Numeric),
you need to use a slightly different command to build and install PyARTS:

python setup.py build src build ext --include-dirs=<wherever>/include/python install --home=˜
Once installed you should modify your PYTHONPATH environment variable to include the

installation directory (eg ˜/lib/python).

1.6 Testing your Installation

There are several unit tests in the test/ folder of the distribution. These test both both the
functionality and accuracy of the software. To run them all, and check that your installation is
OK, type

python testall.py -v
If you would like to contribute to PyARTS, which is definitely encouraged, it is strongly rec-

ommended that the above command is run, and that all tests are successful, before committing
your changes to CVS.

1.7 Examples

Some example scripts are provided in the examples/ folder. These all should work as they only
depend on data provided in the data/ folder. The testall.py script described above actually verifies
that the examples run without error. At the time of writing the examples are:

get atm fields.py A demonstration of the artsGetAtmFields function

MCwith3Dboxcloud.py Creates a simple cloudy-sky scenario and performs a single radiative
transfer calculation using the ARTS-MC module.

mc incoming gen.py demonstrates the use of the create incoming lookup function which creates
a sequential linear interpolation lookup table of incoming radiances that can be used by the
ARTS Monte Carlo radiative transfer algorithm.

geometry.py uses the plotting module to show ARTS RT simulation geometry.

plot refr ind.py Uses the arts scat module, and the plotting module to show the refractive index
of ice at several EOS-MLS frequencies

1.8 Documentation

Most modules in the package have reasonably complete docstring documentation. This means that
in an interactive python session, online help on a given PyARTS class or function can be obtained
by typing help(PyARTS_function_or_class).

4

http://matplotlib.sourceforge.net/

1 INTRODUCTION

The docstring documentation can also be viewed in easily navigatable html documents by doing
the following:

<wherever your python stuff is>/pydoc.py -p 1234
and open http://localhost:1234 in your web browser.
There is a user guide in the doc/ folder of the distribution. A recent version of this document

can be found at http://www.met.ed.ac.uk/˜cdavis/PyARTS/userguide.pdf

5

http://www.met.ed.ac.uk/~cdavis/PyARTS/userguide.pdf

2 PYARTS: AN ARTS RELATED PYTHON PACKAGE

2 PyARTS: an ARTS related Python package

2.1 Introduction

PyARTS is a python package, which has been developed to compliment the Atmospheric Radiative
Transfer System - ARTS (http://www.sat.uni-bremen.de/arts/). Although ARTS is very flexible
software, it’s primary function currently is to perform radiative transfer simulations for a given
atmospheric state. PyARTS simplifies the process of creating these atmospheric scenarios, and also
provides a front-end to the ARTS software for convenient configuration and execution of ARTS
radiative transfer calculations.

PyARTS includes two high-level modules that provide most of the functionality needed for the
preparation and execution of ARTS simulations:

clouds produces arbitrarily complex multi-phase multi-habit cloud fields for arts simulations. This
includes the generation of single scattering properties of non-spherical ice particles and the
generation of particle number density fields for given ice and liquid water content fields. clouds
also provides convenience functions for producing simple 1D and 3D box cloud scenarios.

arts contains classes and functions that actually perform ARTS simulations. The ArtsRun class
provides general functionality for configuring, performing, and managing the output of ARTS
simulations.

There are several lower-level modules that, as well as serving the arts and cloud modules, are
also useful in their own right:

arts scat provides functions and classes for the calculation of single scattering properties of ice
and liquid water hydrometeors.

arts types provides support for the manipulation, loading, and saving in ARTS XML format of
some ARTS classes, e.g, ArrayOfGriddedField3, GriddedField3, and also the generation of
gaseous absorption lookup tables

artsXML provides general XML input and output that can be used for all ARTS objects.

arts math provides several interpolation, quadrature, and grid creation functions.

general a general purpose module that includes simplified pickling/unpickling functions for saving
arbitrarily complex python objects, and functions for performing multi-threaded calculations.

sli contains the SLIData2 class which generates almost optimal grids for 2D sequential linear
interpolation. SLI can be used by the ARTS-MC algorithm for the rapid calculation of
incoming radiation at the cloudbox boundary.

plotting general purpose plotting functions and functions for plotting ARTS related quantities
(requires matplotlib)

2.2 An example

Here is a simple example python session that demonstrates what can be done with the PyARTS
package. In this case we perform 3D polarized radiative transfer in an atmosphere containing a
uniform box shaped cloud.

1. First import the most commonly used PyARTS modules.

>>> from PyARTS import *

2. Start by defining a simple box shaped cloud filled with horizontally aligned oblate
spheroids.

6

http://www.sat.uni-bremen.de/arts/

2 PYARTS: AN ARTS RELATED PYTHON PACKAGE

>>> a_cloud=clouds.boxcloud(ztopkm=14.0,zbottomkm=13.0,lat1=-2.0,lat2=2.0,
... lon1=-2.0,lon2=2.0,cb_size={’np’:5,’nlat’:5,’nlon’:5},
... zfile=’PyARTS/data/tropical.z.xml’,tfile=’PyARTS/data/tropical.t.xml’,
... IWC=0.1)
>>> horizontal_plate=clouds.Crystal(ptype=30,NP=-1,aspect_ratio=2.0)
>>> a_cloud.addHydrometeor(horizontal_plate)
<PyARTS.clouds.Cloud instance at 0x405c8c4c>

3. Generate single scattering data files, and particle number density fields.

>>> a_cloud.scat_file_gen(f_grid=[500e9,503e9],num_proc=2)
<PyARTS.clouds.Cloud instance at 0x405c8c4c>
>>> a_cloud.pnd_field_gen(’pnd_field.xml’)
<PyARTS.clouds.Cloud instance at 0x405c8c4c>

4. Generate grids for ARTS RT simulation. For the pressure grid, latitude grid and
longitude grid, a fine grid spanning the cloudbox is merged with a course grid covering
the modelled atmosphere.

>>> p_grid=arts_math.gridmerge(arts_math.nlogspace(101325.0,0.1,100),
... a_cloud.p_grid[1:-2])
>>> artsXML.saveTensor(p_grid,’p_grid.xml’)
>>> lat_grid=arts_math.gridmerge(arts_math.nlinspace(-16.0,16.0,100),
... a_cloud.lat_grid[1:-2])
>>> artsXML.saveTensor(lat_grid,’lat_grid.xml’)
>>> lon_grid=lat_grid
>>> artsXML.saveTensor(lon_grid,’lon_grid.xml’)

5. Now define parameters for ARTS run, giving the Monte Carlo algorithm a maximum
execution time of 10 seconds (you can also specify a desired accuracy or a fixed number
of iterations)

>>> arts_params={
... "atm_basename":"PyARTS/data/tropical",
... "cloud_box":a_cloud.cloudbox,
... ’freq’:501.18e9,
... "gas_species":["ClO","O3","H2O,H2O-MPM89","N2-SelfContStandardType"],
... "gas_abs_lookup":"PyARTS/data/gas_abs_lookup.xml",
... "lat_grid":"lat_grid.xml",
... "lon_grid":"lon_grid.xml",
... "max_time":10,
... "p_grid":"p_grid.xml",
... "pnd_field_raw":a_cloud.pnd_file,
... "rte_pos":{’r_or_z’:95000.1,’lat’:9.1,’lon’:0},
... "rte_los":{’za’:99.14,’aa’:180},
... "scat_data_file":a_cloud.scat_files,
... "stokes_dim":4
... }

6. And perform RT calculations (using 2 processors)...

>>> my_run=arts.ArtsRun(arts_params,’montecarlo’,’cfile.arts’)
>>> my_run.run_parallel(2)
<PyARTS.arts.ArtsRun instance at 0x404585ac>

7. And here is the simulated Stokes vector...

7

2 PYARTS: AN ARTS RELATED PYTHON PACKAGE

>>> print ’Simulated Stokes vector =
’+str(my_run.output[’y’])
Simulated Stokes vector =
[1.17613500e+02 5.57757000e+00 -7.19482500e-02 -2.69899500e-01]
>>> print ’standard error = ’+str(my_run.output[’error’])
standard error = [1.66664512 1.23597316 0.4771547 0.43988175]

8

3 THE ARTS MODULE

3 The arts module

PyARTS.arts is designed as a wrapper for ARTS - ie an alternative to writing a control file for
each arts run. The module assumes that arts is in the default path. This can be overridden by
setting the environment variable ARTS PATH (e.g. /home/user/test/myarts, where myarts is the
name of the executable).

The most useful class is ArtsRun. This provides general functionality for performing clear
sky and cloudy (ARTS-MC only) ARTS simulations. For an example of the use of ArtsRun, see
examples/MCwith3Dboxcloud.py.

3.1 ArtsRun objects

A class representing a single arts simulation. The initialisation arguments are

params: a dictionary of parameters. Any “keyword”:value pairs not specified in argdict are given
default values. default parameters are stored in PyARTS.defaults. Its a good idea to refer
to this dictionary for the valid keywords.

run type: “montecarlo”, “mcgeneral”, “clear”, “clear3D”

filename: the name of the generated arts control file.

Some examples for using this class are given above in the docstring for the PyARTS module

3.1.1 Selected methods

arts.ArtsRun.run (self): Simply calls the start() and process out stream() methods

arts.ArtsRun.start (self): Start the arts run. And initiates a Python file object self.out stream
to handle arts output. Note that arts output is also written to file self.filename + “.out”

arts.ArtsRun.process out stream (self): Extracts important numerical values from self.std out

arts.ArtsRun.run parallel (self, number of processes): Only for monte carlo simulations. Di-
vides self.params[“max iter”] by number of processes and runs number of processes arts pro-
cesses. The results are then combined. This is particularly worthwhile on multiple processor
machines.

3.2 Selected Functions

arts.pnd fieldCalc (pnd field raw file, cloudbox, p file, lat file, lon file, pnd field file): Uses arts
to calculate the pnd field WSV, which is interpolated onto the arts atmospheric grids

arts.ppathCalc (argdict): Uses arts to calculate a 3D propagation path, with atmospheric field
settings as described in argdict. The returned object is a dictionary holding all the Ppath
member data

arts.scat data monoCalc (scat data raw file, freq, scat data mono file): Uses arts to calculate
the scat data mono WSV, which is interpolated at frequency freq

arts.xml ascii to binary (old file, var name, new file): uses arts to convert an ascii xml file
(old file) corresponding to an ARTS workspace variable (var name) to binary

arts.xml binary to ascii (old file, var name, new file): uses arts to convert an binary xml file
(old file) corresponding to an ARTS workspace variable (var name) to ascii

arts.create incoming lookup (arts params, zkm0, za0): Initialises an SLIData2 object suitable
for the generation of the ARTS WSV mc incoming. See examples/mc incoming gen.py

9

4 THE CLOUDS MODULE

4 The clouds module

This module includes functions and classes representing 3D clouds and cloud microphysics. This
module has all you need for the generation of scattering data files (via the arts scat module)
and particle number density fields, which enable the representation of 3D cloud fields in ARTS
simulations

Example of use: a 3D ice and liquid cloud field.

1. load iwc and lwc fields from TRMM data

>>> from PyARTS import *
>>> iwc_field=arts_types.GriddedField3().load(’../016/iwc_field.xml’)
>>> lwc_field=arts_types.GriddedField3().load(’../016/lwc_field.xml’)

2. load temperature field I prepared earlier

>>> t_field=arts_types.GriddedField3().load(’t_field.xml’)

3. Define hydrometeors

>>> ice_column=clouds.Crystal(NP=-2,aspect_ratio=0.5,ptype=30,npoints=10)
>>> water_droplet=clouds.Droplet(c1=6,c2=1,rc=20)

4. Create cloud field

>>> a_cloud=clouds.Cloud(t_field=t_field,iwc_field=iwc_field,lwc_field=lwc_field)

5. add hydrometeors

>>> a_cloud.addHydrometeor(ice_column,habit_fraction=1.0)
>>> a_cloud.addHydrometeor(water_droplet,habit_fraction=1.0)

6. generate (or find existing) single scattering data

>>> a_cloud.scat_file_gen(f_grid=[200e9,201e9],num_proc=2)

7. generate pnd fields

>>> a_cloud.pnd_field_gen(’pnd_field.xml’)

8. save cloud object for later

>>> quickpickle(a_cloud,’Cloud3D.pickle’)

4.1 Cloud objects

A high level class for the generation of ARTS cloud field data. A Cloud object is initialised
with up to three arts type.GriddedField3 objects representing 3D temperature, ice water content,
and liquid water content fields. The temperature field is compulsory but either IWC or LWC
may be omitted. Droplet or Crystal objects can then be added to the Cloud Object using the
addHydrometeor method. The user is encouraged to create their own Hydrometeor classes (all
that is required is that they have scat calc and pnd calc methods with the same input/output
arguments). The scat file gen and pnd field gen methods create the single scattering data files
and particle number density files required to represent the cloud field in ARTS simulations.

10

4 THE CLOUDS MODULE

4.1.1 Selected methods

clouds.Cloud.addHydrometeor (self, hydrometeor, habit fraction =1.0): Adds a hydrometeor
(e.g. a Droplet or Crystal object) to the cloud object. The habit fraction argument allows
the implementation of multi-habit ice clouds. The habit fractions for all of the added Crystal
objects should add up to 1.0. Otherwise the specified iwc field will not be reproduced.

clouds.Cloud.pnd field gen (self, filename =): Calculates the pnd data required to represent
the cloud field in an ARTS simulation. This produces an arts types.ArrayOfGriddedField3
object, which has the same number of elements as the scat files data member. This is stored
in the pnd data member and output to filename in ARTS XML format.

clouds.Cloud.scat file gen (self, f grid, za grid =[0 10 20 ...], aa grid =[0 10 20 ...], num proc
=1): Calculates all of the single scattering data files required to represent the cloud field in
an ARTS simulation. The file names are stored in the scat files data member. The input
arguments are f grid,T grid,za grid, and aa grid: numpy arrays determining the correspond-
ing data in the arts scat.SingleScatteringData objects. The optional argument num proc
determines the number of processes used to complete the task.

4.2 Hydrometeor objects

4.2.1 Crystal

produces scattering data and pnd fields for ice clouds The size distribution is the McFarquhar-
Heymsfield 1997 distribution (see clouds.mh97, as used in the EOSMLS cloudy-sky forward model.
A Crystal object is initialised with the particle parameters ptype, aspect ratio, NP, which have the
same meaning as in arts scat.SingleScatteringData objects. equivalent particle radii and pnd values
are determined from the abscissas and weights for an npoints Laguerre Gauss quadrature, to give
npoints arts scat.SingleScatteringData objects, and a pnd field corresponding to these particles.
The methods scat calc and pnd calc are called by the parent Cloud object

4.2.2 Droplet

produces scattering data and pnd fields for liquid water clouds. The size distribution is the modified
gamma distribution of Nioku, as used in the EOSMLS cloudy-sky forward model. A Droplet object
is initialised with the distribution parameters c1, c2, and rc. Some suggested values for these
parameters are:

• Stratus (rc=10 micron, c1=6, c2=1)

• Cumulus Congestus (rc=20 micron, c1=5, c2= 0.5).

Scattering properties are integrated over the size distribution using an npoints Laguerre Gauss
quadrature, to give a one arts_scat.SingleScatteringData object. T grid is an optional ini-
tialisation argument which overides the default temperature grid ([260,280,300,320]) for scattering
data file generation. The pnd field is then simply scaled by the lwc field. The methods scat calc
and pnd calc are called by the parent Cloud object

4.2.3 Gamma

produces scattering data and pnd fields for a gamma distribution of either ice or liquid water

clouds. The size distribution function is given by n(r) = N0
(r

β)γ−1 exp(− r
β)

βΓ(γ) ,where γ is the shape
parameter, and β = reff

γ+2

A Gamma object is initialised with the distribution parameters r eff (effective radius), and
shape parameter g(γ). T grid is required, as is the phase argument (’ice’,’liquid’). These two
arguments need to be consistent. Scattering properties are integrated over the size distribution
using an npoints Laguerre Gauss quadrature, to give a one arts scat.SingleScatteringData object.
The pnd field is then simply scaled by the iwc field (or) lwc field. The methods scat calc and
pnd calc are called by the parent Cloud object

11

4 THE CLOUDS MODULE

4.2.4 MonoCrystal

produces scattering data and pnd fields for ice clouds with particles of only one size

4.3 Selected functions

clouds.boxcloud (ztopkm, zbottomkm, lat1, lat2, lon1, lon2, cb size, zfile, tfile, IWC =None, LWC
=None): Return a box shaped Cloud object. ztopkm,zbottomkm,lat1,lat2,lon1,lon2, IWC,
LWC are Numeric values, cb size is a dictionary with keys ’np’,’nlat’, and ’nlon’

clouds.gamma dist (r, CWC, r eff, g, phase =ice): Gamma distribution. Returns an array of
particle number densities, for an array of particle radii, r, according to the Gamma size
distribution,

n(r) = N0

(r
β)γ−1 exp(− r

β)

βΓ(γ)

,where γ is the shape parameter, and β = reff

γ+2 . Arguments: r, array of particle radii; CWC,
cloud water content gm−3; r eff, effective radius; g (γ), shape parameter

clouds.mh97 (IWC, r, TK): MH97 McFarquhar and Heymsfield 1997’s particle size distribution
Usage: n,integrated n=mh97(IWC,r,TK). Arguments: IWC, ice water content in gm−3;
r, Array of radii in microns; TK, temperature in Kelvin; n, number density in l−1mm−1 (or
m−3µm−1); integrated n, integrated number density in each size bin in m−3. Equation: The
MH97 size distribution is given by the sum of a gamma distribution for small particles and
a log-normal distribution for large particles. The small particle gamma component is

N(Dm) =
6IWC<100α

5
<100Dm

πρiceΓ(5)
exp (−α<100Dm)

, and the large particle lognormal component is

N(Dm) =
6IWC>100

π1.5ρice

√
2 exp

(
3µ> 100 + 4.5σ2

>100

)
Dmσ>100D3

0

exp

−1
2

(
log Dm

D0
− µ> 100

σ>100

)2


For details see [McFarquharHeymsfield97].

clouds.nioku (LWC, r, rc, c1, c2): The modified gamma size distribution for water droplets as
given in the MLS cloudy sky ATBD. The units are l−1mm−1 (or m−3µm−1)

n(r) = Arc1 exp (−Brc2)

, where

A =
3LWCc2B

c1+4.0
c2 imes1012

4πΓ
(

c1+4.0
c2

)
,and B = c1

c2r
c2
c

Arguments: LWC, ice water content in gm−3; r, Array of radii in mi-
crons; rc,c1,c2, size distribution paramaters. Some suggested values for these parameters
are: Stratus (rc=10 micron, c1=6, c2=1), Cumulus Congestus (rc=20 micron, c1=5, c2=
0.5).

4.4 Algorithm Description and Theoretical Basis

4.4.1 How Cloud and Hydrometeor objects interact

The Cloud class, and the various hydrometeor classes (see Hydrometeor objects), aim to make it
easy to construct arts scenarios from IWC/LWC fields, such as those obtained from NWP/GCM
model output, and to be flexible and simple in the application of different microphysical regimes.

Examination of the Cloud source code reveals a very simple class. A Cloud object contains a
data member hydrometeors which is a list of hydrometeor objects. The Cloud.scat file gen and

12

4 THE CLOUDS MODULE

Cloud.pnd field gen methods simply iterate through this list, calling the scat calc, and pnd calc
methods of each hydrometeor object. This results in a list of scattering data files, and particle
number density field for the scenario. The only requirement for the hydrometeor objects is that
they have the methods scat calc, and pnd calc methods, which have the same arguments as e.g.
Crystal objects...

clouds.Crystal.scat calc (self, f grid, za grid =[0 10 20 ...], aa grid =[0 10 20 ...], num proc
=1): produces npoints scattering data objects, and returns a list (length=npoints) of scat-
tering data files

clouds.Crystal.pnd calc (self, LWC field, IWC field, T field): Returns a list (length=npoints)
of pnd fields (GriddedField3), given LWC, IWC and temperature fields (all GriddedField3)

This system should allow for the straightforward implementation of new user defined micro-
physical regimes.

Figure 1: The Cloud class.

4.4.2 Using Laguerre - Gauss Quadrature to represent scattering properties of par-
ticle polydispersions

Previously the method for calculating particle number densities (PND) has been sub-optimal. We
arbitrarily chose a set of particle sizes, and took bin boundaries between them to give our size bins.
The particle size distribution function was then integrated over the size bin to give the particle
number density for each size. These PNDs were then all scaled so that IWC was conserved. This
method is inelegant : there is no satisfactory way of determining the sizebins / bin points, which
led to the choice of a large number (40) of size bins for safety, and is unnecessarily costly.

The theory of Gaussian quadrature states that for an N point method, the approximation,∫ ∞

0

xa exp(−x)f(x)dx ∼=
N∑

i=1

wif(xi) (1)

, is exact if f(x) is a polynomial of order up to 2N−1. The weighting function on the left is closely
related to Gaussian distribution and modified Gaussian distributons often found in cloud particle
size distributions. The xa term can accomodate some of the radial dependency (eg r2, r3, r6) of
single scattering properties.

13

4 THE CLOUDS MODULE

Given that our particle number densities are used to calculate some single scattering property Φ,
for a polydisperion with some size distribution function n(r), then in ARTS we will be calculating∫ ∞

0

n(r)Φ(r)dr =
∫ ∞

0

n(r)
xa exp(−x)

xa exp(−x)Φ(r)
dr

dx
dx (2)

∼=
N∑

i=1

win(ri)
xa

i exp(−xi)

(
dr

dx

)
i

Φ(ri)

, where r and x are related by a simple transformation, the exact form of which is determined by the
size distribution. The method will be most successful if n(r)

xa exp(−x)
dr
dxΦ(r) can be well approximated

by a polynomial. Eq. 2 suggests that we represent the polydispersion using a set of N particles
with sizes given by the Gauss-Laguerre abscissa, xi, and for each particle, i, the particle number
density is given by

PNDi =
win(ri)

xa
i exp(−xi)

(
dr

dx

)
i

(3)

Calculation of abscissas and weights for Gauss-Laguerre quadrature is done using the scipy func-
tion special.laguerre

4.4.3 A demonstration

Figure 1 indicates that 3 quadrature points (and hence particle types in ARTS) is sufficient for
calculating the single scattering properties of liquid water clouds obeying a modified gamma dis-
tribution. Reducing the number of particles needed in ARTS simulations improves performance of
both ARTS-MC and ARTS-DOIT scattering modules.

4.4.4 Implementation in Droplet and Gamma objects

Gamma hydrometeors, and Droplet hydrometeors, which use a modified gamma size distribution,
are economical because the non-linear factors in the size distribution function are considered in-
dependent of the atmospheric field variables (IWC, LWC, and T). This means clouds have the
same normalised size distribution at all positions, where size distribution is then scaled to give the
correct LWC or IWC. This allows us to use a single particle type, with the scattering properties
corresponding to an IWC/LWC of 1 gm−3. The PND field is then identical to the IWC/LWC field.

4.4.5 Implementation in Crystal objects

Crystal hydrometeor objects use the MacFarquhar and Heymsfield (1997) size distribution which
was obtained from aircraft measurements in tropical cirrus. This correlation (see clouds.mh97) is
clearly more complicated than the exponential form best suited for Laguerre Gauss quadrature.
However Laguerre Gauss quadrature still seems a good choice given MH97’s use of the gamma
distribution for small particles. For ARTS we require a finite, and as small as possible, number of
particle types. In Eq. 2 we use the transformation x = 2αr. Since the exponential term in the
MH97 gamma component depends on IWC we have to choose a suitable value for α, that will give
accurate quadrature for the range of IWC encountered, using a minimum number of quadrature
points (particle types). The likely range of values for α<100 in MH97, led to the choice of α = 0.02.
A simple test, involving calculating IWC using Laguerre Gauss quadrature for a range of input
IWC, showed that α = 0.02 resulted in errors of 1% for IWC=1 gm−3 and N=4, and 1% for
IWC=0.1 gm−3 and N=7. By default the Crystal class uses N=10 quadrature points (particle
types).

14

4 THE CLOUDS MODULE

0 5 10
0.5

1

1.5

2

2.5

3
x 10−7

N

F 11

0 5 10
−1.5

−1

−0.5

0
x 10−7

N

F 12

0 5 10
0.5

1

1.5

2

2.5

3
x 10−7

N

F 22

0 5 10
−4

−2

0

2

4
x 10−7

N

F 33

0 5 10
0

1

2

3

4

5
x 10−10

N

F 34

0 5 10
−4

−2

0

2

4
x 10−7

N

F 44

Figure 2: The scattering matrix for liquid spheres, with a liquid water content of 1 gm−3, using
a modified gamma size distribution. The x- axes represent the number of quadrature points, and
the different lines on each plot are for different scattering angles.

15

5 THE ARTS SCAT MODULE

5 The arts scat module

Implementation of the ARTS Single Scattering Data class. Although this module is used as a
back-end to the clouds module, it can be used to easily generate single scattering properties for
single hydrometeors.

This example generates single scattering properties for a randomly oriented ice spheroid and
saves them in an ART XML File

>>> from PyARTS import arts_scat

>>> #define the scattering parameters
>>> scat_params={’ptype’:20,’equiv_radius’:300,’aspect_ratio’:0.3,

’f_grid’:[230e9,240e9],’T_grid’:[220,250],’NP’:-1,
’phase’:’ice’}

>>> #show off by doing everything in one line
>>> arts_scat.SingleScatteringData(scat_params).calc().save(’a_scattering_data_file.xml’)

If you wanted to manipulate the data you would do something like ...

>>> a=arts_scat.SingleScatteringData(scat_params).calc()

...and the scattering properties are in a.pha mat data, a.ext mat data and a.abs vec data.

5.1 SingleScatteringData objects

The class representing the arts SingleScatteringData class. The data members of this object are
identical to the class of the same name in ARTS; it includes all the single scattering properties
required for polarized radiative transfer calculations: the extinction matrix, the phase matrix, and
the absorption coefficient vector. The angular, frequency, and temperature grids for which these
are defined are also included. Another data member - ptype, describes the orientational symmetry
of the particle ensemble, which determines the format of the single scattering properties. The data
structure of the ARTS SingleScatteringData class is described in the ARTS User Guide.

The methods in the arts scat SingleScatteringData class enable the calculation of the single
scattering properties, and the output of the SingleScatteringData structure in the ARTS XML
format (see example file).

5.1.1 Selected methods

arts scat.SingleScatteringData. init (self, params ={}): A SingleScatteringData object is
initialised with a dictionary of {keyword :value} parameters. If this dictionary is omitted, or
if any required parameters are missing from the dictionary, default parameters are used. This
is a little dangerous - I might disable the defaults. After initialisation these parameters (eg:
equiv radius, aspect ratio,...) can be changed by modifying the params member dictionary,
although I prefer to create a new SingleScatteringData object for each set of parameters.

arts scat.SingleScatteringData.calc (self, precision =0.001): Calculates the extinction matrix,
phase matrix, and absorption vector data required for an arts single scattering data file

arts scat.SingleScatteringData.generate (self, precision =0.001): performs calc() and save
with a filename generated from particle parameters

arts scat.SingleScatteringData.load (self, filename, parse params =False): loads a SingleScat-
teringData object from an existing file. Note that this can only import data members that
are actually in the file - so the scattering properties won’t be consistent with the params
data member, unless you specify the optional parse params argument to be True (default
= False). This will extract the params dictionary that was printed in the description field
when the file was created This will only work with a file that was created with the arts scat
module

16

5 THE ARTS SCAT MODULE

Figure 3: The SingleScatteringData class.

arts scat.SingleScatteringData.save (self, filename): Writes single data to <filename> in an
arts readable XML format

5.2 Selected functions

arts scat.batch generate (argdict, num proc): This function takes a dictionary with keys: [’T grid’,
’aa grid’, ’NP’, ’equiv radius’, ’aspect ratio’, ’f grid’, ’ptype’, ’za grid’] (just like the Sin-
gleScatteringData parameters). However in this case the values for [’T grid’, ’NP’, ’equiv radius’,
’aspect ratio’, ’f grid’,’ptype’] are lists. batch generate cascades through these settings gen-
erating scattering data files for each combination. The order of calculation is according to the
hierarchy: [’f grid’,’T grid’, ’ptype’, ’NP’, ’aspect ratio’, ’equiv radius’] with ’equiv radius’
changing the fastest. These calculations can be done in num proc parallel processes. A list
of filenames (with an order corresponding to the above hierarchy) is returned

arts scat.combine (scat data list, pnd vec): Returns a single SingleScatteringData object ob-
tained by summing over a list of SingleScatteringData objects, each one multiplied by the
corresponding element in a vector of particle number densities. Currently this function re-
quires that all members of scat data list have the same value of ptype, and the same angular
grids

arts scat.refice (freq, temp): A wrapper for the REFICE fortran program - this time with fre-
quency and temperature as the arguments, and a python exception is raised if inputs are out
of range. freq in Hz, temp in K

arts scat.refliquid (freq, temp): Calculates the refractive index of liquid water, according to a
model based on those of Liebe and Hufford, as used in the EOSMLS scattering code. This
has been checked with Table C-1 in the cloudy ATBD. freq in Hz, temp in K

arts scat.tmat fxd (equiv radius, aspect ratio, NP, lam, mrr, mri, precision, use quad =0): A
simplified interface to the tmatrix.tmatrix function

arts scat.tmat rnd (equiv radius, aspect ratio, NP, lam, mrr, mri, precision, nza, use quad =0):
A simplified interface to the tmd.tmd function

17

5 THE ARTS SCAT MODULE

arts scat.phasmat (LAM, THET0, THET, PHI0, PHI, BETA, alpha): Calculates the phase
matrix and returns it in m2. This requires that the Tmatrix has already been calculated.
See arts scat.extmat for argument descriptions

arts scat.extmat (NMAX, LAM, THET0, PHI0, BETA, alpha): Calculate the extinction matrix
for a given wavelength (LAM), and a propagation direction given by zenith angle (THET0)
and azimuthal angle (PHI0) , both in degrees. BETA and alpha give the particles orientation
(These angles are defined as in Mishchenkos paper [mishchenko00]). The output is a 1D
array with the 7 independent extinction matrix elements [KJJ,K12,K13,K14,K23,K24,K34]
in m2. To call this method you must first call tmat fxd

5.3 Algorithm and Theoretical Basis

5.3.1 Single Scattering Properties

The single scattering data is calculated using the T -matrix method. For details of the T -matrix
method, please consult the references mentioned in the following sections.

5.3.2 ptype=20

In the ptype=20 case, where we have completely random orientation, we use a slightly modified
version of Mishchenko’s random orientation T-matrix code [mishtrav98]. Mischenko’s source code
has been altered to provide a python extension module, tmd.so, which contains the function
tmd. This function returns the scattering cross-section, Csca, the extinction cross-section, Cext,
and the scattering matrix elements, F11, F22, F33, F44, F12, F34. This function is called by the
SingleScatteringData.calc() method, and it is not intended for tmd.tmd to be called directly by the
user. SingleScatteringData.calc() calls tmd.tmd with arguments suitable for a monodispersion
of particle sizes, as this allows a consistent interface for both ptype=20 and ptype=30. Size
distributions of both these particle types can be handled by the clouds module. However, if you
want to use the size distribution capabilities of Mishchenko’s code, the tmd.tmd function can
be called directly. See the pydoc documentation for the argument list and [mishtrav98] for the
argument definitions.

5.3.3 ptype=30

For ptype=30, where there is horizontal alignment, but random azimuthal orientation, we use a
modified version the fixed orientation code of Mishchenko [mishchenko00]. Mischenko’s source code
has been altered to provide a python extension module, tmatrix.so, which contains the functions
tmatrix and ampld. tmatrix.tmatrix calculates the T -matrix for given particle and radiation
parameters, and stores this in the data structure tmatrix.tmat. The function tmatrix.ampl, uses
the T -matrix data to calculate the scattering amplitude function S(n,n′, α, β), for given incident,
n, and scattered, n′, directions, and orientation angles α, and β. This arrangement makes use of
the fact that the T -matrix need only be calculated once for a given particle and frequency, to get
single scattering properties for a range of directions and particle orientations. From S(n,n′, α, β),
it is straightforward to get the extinction matrix K(n), and phase matrix Z(n,n′); for details see
[mishchenko00]. Again, the tmatrix module is not intended for the user; the functions mentioned
above are called within SingleScatteringData.calc().

The purpose of the ptype=30 case in the SingleScatteringData python class is to represent
scattering by horizontally aligned particles. This means that oblate particles (aspect ratio >
1) have their rotation axis parallel to the local zenith. In the notation of [mishchenko00], this
corresponds to an orientation angle β = 0, which makes the orientation angle α irrelevant due
to the rotational symmetry of the particle. Conversely, prolate particles have the axis of rotation
perpendicular to the local zenith. This means that in the case of horizontally aligned prolate
particles, scattering properties must be averaged over all possible azimuth orientations, α, with
β = π/2.

18

5 THE ARTS SCAT MODULE

5.3.4 Orientation Averaging

This section only applies to horizontally aligned prolate particles. The orientationally averaged
extinction matrix is obtained from the averaged T -matrix, which can be calculated ‘exactly’ from
a single T -matrix calculation according to the analytic method described in [mishchenko91]. This
is implemented in the function tmatrix.avgTmatrix. Unfortunately the orientationally average
T -matrix is not useful for calculating the orientationally averaged phase matrix. In short this
is because unlike the extinction matrix, phase matrix elements can not be expressed as linear
expansions of T -matrix elements. Therefore 〈Z(n,n′)〉 must be obtained by numerical integration.

〈Z(n,n′)〉 =
1
π

∫ π

0

Z(n,n′, β = π/2, α)dα

Several quadrature routines have been trialed for this integration. To date, by far the best in terms
of accuracy and speed has been Gauss Legendre quadrature [pressetal92]. In this case we use a 10
point quadrature. This is implemented by the gauss leg function in the arts math module.

5.3.5 Calculation of the absorption coefficient vector

Calculation of the absorption coefficient vector is the most taxing part of the arts scat.SingleScatteringData
calculations, particularly for oblate p30 particles. For p20 particles we have simply the absorption
cross-section, Ka1 = Cext−Csca, where the values on the RHS are obtained directly from tmd.tmd

However, for p30 particles, the absorption coefficient vector is given by

Kai = 〈Ki1(n)〉 −
∫

4π

d(n′) 〈Zi1(n,n′)〉 (4)

= 〈Ki1(n)〉 − 2
∫

π

d∆φ

∫
π

dθ′ 〈Zi1(θ, ∆φ, θ′)〉 sin(θ′)

The integration is performed using multi-dimensional Gauss-Legendre quadrature, which is imple-
mented as the multi gauss leg function in the arts math module. In the case of prolate particles,
the evaluation of 〈Zi1(θ, ∆φ, θ′)〉 requires integration over azimuthal orientation. For this reason,
the integration in Eq. 4 is done using 6 point Gaussian quadrature, whereas for oblate particles
we use the 10 point method.

5.3.6 Refractive Index of Ice and Liquid Water

The calculation of single scattering properties for ice and liquid hydrometeors requires knowledge
of the complex refractive index of the material in question. For both ice and liquid water the
complex refractive index is a function of temperature and frequency.

PyArts incorporates the fortran code, REFICE.f of Stephen Warren, Warren Wiscombe, and
Bo-Cai Gao to calculate the refractive index of ice at a given frequency and temperature. This is
most easily accessed by the function refice (see above) in the arts scat module. This function
looks up tables based mainly on the tabulated data of [Warrenetal84]. REFICE.f has incorporated
data published since Warren’s paper, but this is not in the mm-submm range. Stephen Warren has
suggested that the data of [MaetzlerWegmueller87], be consulted for the microwave region. This
has not been implemented in the REFICE extension model.

Figure 2 was generated by the script plot_refr_ind.py, which is in the “examples” directory
of the PyARTS distribution.

For liquid cloud droplets, the complex refractive index is calculated according to the model de-
scribed in the EOS-MLS Cloudy-Sky ATBD, which is based on the empirical model of [Liebeetal89]
and [Hufford91]. This is implemented in the arts scat.refliquid function described above.

5.4 The range of convergent size parameters and aspect ratios for ice
crystal optical property generation

The original T -matrix fortran codes have been modified to call subroutines in the LAPACK library.
This gives the same extended range of convergent size parameters and aspect ratios as the optional
NAG enhancements described in Mishchenko’s papers.

19

http://www.netlib.org/lapack

5 THE ARTS SCAT MODULE

Figure 4: Output of examples/plot refr ind.py

Figure 3 shows the minimum integer size parameters, for a range of aspect ratios, that cause
convergence failures in the PyARTS implementation of the T-matrix codes. Here the complex
refractive index is given by ...

>>> from PyARTS.arts_scat import *
>>> T=240 #temperature
>>> f=300e9 #frequency
>>> m=refice(f,T) #refractive index of ice using Warren(1984)
>>> print m
(1.78117084503+0.00504761422053j)

The convergence failure parameters shown in Figure 3 were obtained by the script tmat_limits.py,
which resides in the test folder of the PyARTS dsitribution. For size parameters and aspect ratios
on or above the curves in Fig. 3, the T -matrix code will fail to converge.

20

6 THE ARTS_TYPES MODULE

6 The arts_types module

the arts types module includes support for the ARTS 1.1.* classes:

• GriddedField3

• ArrayOfGriddedField3

• GasAbsLookup

These classes have the same physical mean as in ARTS. This module allows the generation,
manipulation, and input/output in ARTS XML format of these objects

6.1 GriddedField3 objects

A gridded field consists of a pressure grid vector, a latitude vector, a longitude vector and a Tensor3
for the data itself.

6.1.1 Methods

arts types.GriddedField3. init (self, p grid =None, lat grid =None, lon grid =None, data
=None): GriddedField3 objects are initialised with a pressure grid vector, a latitude vector,
a longitude vector and a Tensor3 for the data itself

arts types.GriddedField3. call (self, p grid, lat grid, lon grid): interpolate the field onto
new grids, returns only the field data

arts types.GriddedField3.expandTo3D (self, new lat grid, new lon grid): converts the exist-
ing 1D field to 3D and returns a new field. The original field is not changed

arts types.GriddedField3.pad (self, plims =[110000.0, 1 ...], latlims =[-90, 90], lonlims =[-180,
180]): Adds extra gridpoints at new extremities in all dimensions. data values are copied
from the existing end points

arts types.GriddedField3.load (self, filename): load a GriddedField3 object from and ARTS
XML file

arts types.GriddedField3.save (self, filename): Save the GriddedField3 object to an ARTS
XML file

6.2 GasAbsLookup objects

This class enables the calculation of GasAbsLookup tables for arts 1.1.* using the stable branch
arts 1.0.*. An example of using this class will soon be provided.

6.2.1 Methods

arts types.GasAbsLookup. init (self, species =None, f grid =None, p grid =None, T pert
=None): The initialisation arguments are species, a list of lists of species tags as appears
in the arts 1.1 GasAbsLookupTable; and vectors f grid, p grid, and T pert, representing
frequency, pressure and temperature perturbations

arts types.GasAbsLookup. call (self, f index, pressure, temperature, vmrs): return a vector
containing the contribution of each species to the scalar gas absorption coefficient. Before
this can be called the method set slidata must be called (only once). This is analagous to
GasAbsLookup::Extract in ARTS

21

6 THE ARTS_TYPES MODULE

arts types.GasAbsLookup.calc (self, tags, hitran filename, line fmin, line fmax, atm basename):
Calculated the lookup table using arts 1.0. Input: tags, list of arts 1.0 tags e.g. [’H2O,H2O-
MPM93’,’O2,O2-MPM93’]; hitran filename, the name of the hitran line file; line fmin, float
- the minimum frequency line to consider; line fmax, float - the maximum frequency line to
consider; atm basename, string - the basename where the atmospheric profiles can be found
in arts1.0 ascii format

arts types.GasAbsLookup.load (self, filename): loads gas abs lookup table from an ARTS 1.1.
XML file

arts types.GasAbsLookup.save (self, filename): Saves the lookup table in arts-1.1 XML format

arts types.GasAbsLookup.set slidata (self): Sets the sli data member, which is used by the
call function to interpolate the lookup table.

22

7 THE PLOTTING MODULE

7 The plotting module

General purpose plotting functions using the matplotlib package.

7.1 SentinelMap objects

SentinelMap is a matplotlib colormap that deals with data points that you want to distinguish
from the rest of the data. For example if bad data is stored as -999, these values are plotted a
specified rgb color, and the rest of the colormap (cmap) is unchanged. This needs to be used with
the SentinelNorm class. e.g.

>>> cmap = SentinelMap(cm.jet, -999, (0,0,0))
>>> norm = SentinelNorm(-999)
>>> pcolor(x,y,z,norm=norm,cmap=cmap)

will plot the data with the usual jet colormap but with bad data values (-999) black.

7.2 Selected functions

plotting.hotcoldmap (zmin, zmax): produces a color map with a black-blue-green scale for
values below zero, and a black-red-yellow scale for values above zero

plotting.myPcolor (x, y, z, kwargs): With the matplotlib pcolor you actually lose the last row
and column of data. This function addresses this, and produces a pcolor plot where the
patches are centred on the x and y values

plotting.mySubplot (nrows, ncols, pnum, figpos =[0.050000000 ...], axpos =[0.149999999 ...]):
More like the matlab subplot than matplotlib. Divides a portion of the current figure, deter-
mined by figpos in to nrows by ncolumns panels. The normalised position of the axes within
the panel is given by axpos. The axes object is returned.

plotting.drawCloudBox (zbase, ztop, lat1, lat2, npts =40, format =k): draws a cloudbox cross
section

plotting.drawPpath (filename, format =k): plots a propagation path from an ARTS XML file
in x,y (km) coordinates

plotting.drawSurface (lat1, lat2, npts =40, format =k): draws the geoid surface

plotting.setDataAspectRatioByAxisPos (ax, r): Same idea as matlab. Adjusts the axis
position to fix the aspect ratio

plotting.setDataAspectRatioByFigSize (ax, r): Same idea as matlab. Adjusts the figure size
to fix the aspect ratio

plotting.shiftaxes (ax, delta pos): For use with matplotlib. input: ax, a matplotlib.axes object;
delta pos, a 4 element list or array correspond to [delta x start,delta y start,delta width,delta height]
in normalised units.

7.2.1 Demonstration

Figure 4 shows the output of examples/geometry.py, which uses . plotting.drawCloudBox,
plotting.drawPpath, and plotting.drawSurface.

23

7 THE PLOTTING MODULE

Figure 5: T -matrix convergence failure parameters for m=(1.78117084503+0.00504761422053j)

-200 -150 -100 -50 0 50 100 150 200
x /km

6375

6380

6385

6390

6395

6400

y
 /

km

tangent height = 15.75 km

tangent height = 1 km

MLS

MLS

geometry for 3D RT simulations

Figure 6: the output of examples/mc incoming gengeometry.py, which uses .
plotting.drawCloudBox, plotting.drawPpath, and plotting.drawSurface.

24

8 THE ARTSXML MODULE

8 The artsXML module

The artsXML module deals with the creation and loading of data files in the ARTS XML format.
For XML output, the main class is XMLfile. An XMLfile object is initialised with a filename.

>>> from PyARTS import artsXML
>>> testfile=artsXML.XMLfile(’a_test_file.xml’)

Arts data objects are then added to the file with the add*** methods.

>>> a_tensor=ones([3,5,6],Float)
>>> testfile.addTensor(a_tensor)

For Tensor type objects, the tag name (eg. Tensor3) and the size attributes are determined
automatically by the shape of the numpy array. The file must then be closed with the close()
method.

>>> testfile.close()

Some shortcut save*** functions are available. Using saveTensor the above is achieved in one
line.

>>> artsXML.saveTensor(a_tensor,’a_test_file.xml’)

Some more complicated structures, like SingleScatteringData objects, have their own save meth-
ods which utilize this module.

The load function is a general purpose function that returns a dictionary structure reflecting
the structure of the XML file. As far as far as I know, this works with every data type exported
by ARTS.

Elsewhere in the PyARTS package there are classes with load methods for more specialised
types such as GriddedField3, or SingleScatteringData. All of these will use artsXML.load as a
backend.

8.1 XMLfile objects

arts XML output class. Initialise with a filename

8.1.1 Selected Methods

artsXML.XMLfile.addArray (self, arraylist): takes a list of python arrays of the same rank
and writes an XML ArrayOfTensor<n>n structure

artsXML.XMLfile.addArrayOfArray (self, data): takes a list of lists of python arrays of the
same rank and writes an XML ArrayOfArrayOfTensorn structure

artsXML.XMLfile.addArrayOfString (self, data): takes an array of Strings and writes an
ArrayOfTensor structure

artsXML.XMLfile.addString (self, data): adds a String

artsXML.XMLfile.addTensor (self, data): This method takes a numpy array argument and
stores it in the arts XML format with the appropriate Tag (eg Vector Matrix , ...

artsXML.XMLfile.close (self): This must be called to finalise the XML file

25

8 THE ARTSXML MODULE

8.2 Selected functions

artsXML.saveTensor (data, filename): saves a python array in the appropriate arts xml format
(eg Vector, Matrix etc)

artsXML.saveArray (data, filename): saves a list of python arrays in the appropriate arts xml
format (eg ArrayOfVector,ArrayOfMatrix etc)

artsXML.saveString (data, filename): saves Strings in the appropriate arts xml format (e.g.
String or ArrayOfString)

artsXML.load (filename, use names =True): This general purpose function returns a dictionary
structure reflecting the structure of the XML file. If there is only one object in the structure,
then that single object is returned. As far as far as I know, this works with every data type
exported by ARTS Usage: data struct=load(filename)

26

9 THE ARTS_MATH MODULE

9 The arts_math module

This module includes general purpose math functions. This module was developed before scipy
was included as a prerequisite, so there will be some functions remaining that duplicate scipy
functionality.

9.1 Selected functions

arts math.gauss leg (func, a, b, n): Gauss legendre integration with n abscissa

arts math.multi gauss leg (func, rangelist, n =10): arts math.multi gauss leg has no doc-
string!

arts math.gridmerge (aa, ba): Merges two sorted vectors(numpy array objects)

arts math.locate (xa, x): Given an array, xa, and a number x, locate returns the index i, such
that x lies between xa[i] and xi[j]. Answers of -1 or n-1 indeicate that x is beyond the range
of xx

arts math.nlogspace (start, stop, n): Identical to the function of the same name in ARTS;
Returns a vector logarithmically spaced vector between start and stop of length n (equals
the Matlab function logspace)

27

10 THE GENERAL MODULE

10 The general module

This file includes interpreter or general purpose functions

10.1 Selected functions

general.multi thread (func, inarglist, num proc, logging): executes <func> for every argument
list in inarglist and returns a list of output objects. num proc specifies the desired number
of concurrent processes (usually the number of CPUs)

general.multi thread2 (func, inarglist, num proc, logging): executes <func> for every argument
list in inarglist and returns a list of output objects. num proc specifies the desired number
of concurrent processes (usually the number of CPUs)

general.quickpickle (object, filename): pickle.dump <object> to <filename>. If filename ends
with .gz the pickle file is gzipped

general.quickunpickle (filename): pickle.load an object from <filename> If an absolute path is
not included in filename, then environment variable DATA PATH is used. Saves a few lines
of code.

28

11 THE SLI MODULE

11 The sli module

This module defines the SLIData2 class, which allows the creation of optimized grids for 2D
sequential linear interpolation, as described by [Changetal97] (pdf).

The main difference with the method used by SLIData2 and that described in the paper, is
that we start with a course grid, and every function evaluation is included in the final grid. The
motivation for this is that is expected that function evaluations (e.g. ARTS RT simulations) are
expensive.

For an example of use, see the arts.create incoming lookup function.

11.1 SLIData2 objects

Class for 2D sequential linear interpolation

11.1.1 Selected methods

sli.SLIData2. init (self, func =None, x1 =None, x2 =None): initialises the SLIData2 object
with a standard grid defined by vectors x1 and x2. func must be a function y=func(x1,x2),
where x1,x2 and y are vectors of the same length

sli.SLIData2.refine (self, N): Refine the grid by increasing the total number of gridpoints to
’about’ N. Generally it is good to call refine 2 or more times to successively add more points
to the grid.

sli.SLIData2.interp (self, x1, x2): interpolate SLIData2 at x1 and x2 (single numeric values
only)

sli.SLIData2.plot (self): create a simple scatter plot of the grid.

sli.SLIData2.load (self, filename): reads SLIData2 object from an XML file

sli.SLIData2.save (self, filename): output the SLIData2 object in ARTS XML format

11.1.2 Demonstration

Figure 5 shows the output of examples/mc incoming gen.py, which makes use of the SLIData2
class to create an optimised 2D (altitude, zenith angle) lookup table of incoming clear-sky radi-
ance, for MonteCarlo scattering simulations with a pseudo-3D atmosphere (3D cloud, but a 1D
atmosphere outside the cloudbox).

Figure 7: the output of examples/mc incoming gen.py, which makes use of the SLIData2 class.

29

http://dynamo.ecn.purdue.edu/~bouman/publications/orig-pdf/ip9.pdf

12 THE ARTS1 MODULE

12 The arts1 module

This module deals with control file creation and data input/output for the stable arts 1 package.
This is used only for the creation of GasAbsLookup tables. To use this module you need to set
the envoronment variable ARTS1 PATH or manually set arts1.ARTS1 EXEC after importing this
module

12.1 Selected functions

arts1.abs file (tags, hitran filename, line fmin, line fmax, atm basename, p file, T offset, f file):
creates a command list corresponding to the calculation of absorption coefficients for specified
1D atmospheric fields. This function is used by the GasAbsLookup class

arts1.arts1 file from command list (command list, filename): takes a list of WSM and Agen-
daSet objects and creates an arts control file

arts1.arts1 load (filename): load an array aor a list of arrays from an arts 1 ascii file

arts1.arts1 save (x, filename): save a numpy array (1D or 2D) in arts 1 ascii format

30

REFERENCES

References

[Changetal97] Chang, J. Z., J. P. Allebach, C. A. Bouman, Sequential Linear In-
terpolation of Multidimensional Functions, IEEE Trans. Image Proc,
6(9),1997. (pdf)

[Hufford91] Hufford, G., A model for the complex permittivity of ice at frequencies
below 1 THz. Int. J. Infrared Millimeter Waves, 12, 677-682, 1991.

[Liebeetal89] Liebe, H. J., T. Manabe, and G. A. Hufford, Millimeter-wave attenu-
ation and delay rates due to fog/cloud conditions. IEEE Trans. Ant.
Prop., 37, 1617-1623, 1989.

[MaetzlerWegmueller87] Maetzler and Wegmueller, J. Phys. D. 20, 1623-1630, 1987

[McFarquharHeymsfield97] G.M. McFarquhar and A.J. Heymsfield, Parametrization of tropical
ice crystal size distributions and implications for radiative transfer:
Results from CEPEX, J. Atmos. Sci., 54, 2187-2200, 1997.

[mishchenko91] M. I. Mishchenko, Extinction and polarization of transmitted light by
partially aligned nonspherical grains, Astrophysical Journal, 367, 561-
574, 1991. (pdf)

[mishtrav98] Mishchenko, M.I. and Travis, L.D, Capabilities and limitations of a cur-
rent FORTRAN implementation of the T -matrix method for randomly
oriented, rotationally symmetric scatterers., J. Quant. Spectrosc. Ra-
diat. Transfer, 60(3), 309-324,1998. (pdf)

[mishchenko00] M.I. Mishchenko, Calculation of the amplitude matrix for a non-
spherical particle in a fixed orientation, Applied Optics, 39(6), 1026-
1031,2000. (pdf)

[pressetal92] H.P Press, S.A Teukolksky, W.T. vetterling, and B.P Flannery, Nu-
merical Recipes in C: The Art of Scientific Computing, Cambridge
University Press, 1992.

[Warrenetal84] S.G. Warren, Optical constants of ice from the ultraviolet to the mi-
crowave, Applied Optics, 23(8), 218-229, 1984.

Generated on: 2006-05-05. Generated by Docutils from reStructuredText source.

31

http://dynamo.ecn.purdue.edu/~bouman/publications/orig-pdf/ip9.pdf
http://www.giss.nasa.gov/~crmim/publications/1991_apj_367_561.pdf
http://www.giss.nasa.gov/~crmim/publications/1998_jqsrt_60_309.pdf
http://www.giss.nasa.gov/~crmim/publications/2000_ao_39_1026.pdf
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/rst.html

	Introduction
	About this document
	Why Python?
	Downloading PyARTS
	Prerequisites
	Installation
	Testing your Installation
	Examples
	Documentation

	PyARTS: an ARTS related Python package
	Introduction
	An example

	The arts module
	ArtsRun objects
	Selected methods

	Selected Functions

	The clouds module
	Cloud objects
	Selected methods

	Hydrometeor objects
	Crystal
	Droplet
	Gamma
	MonoCrystal

	Selected functions
	Algorithm Description and Theoretical Basis
	How Cloud and Hydrometeor objects interact
	Using Laguerre - Gauss Quadrature to represent scattering properties of particle polydispersions
	A demonstration
	Implementation in Droplet and Gamma objects
	Implementation in Crystal objects

	The arts_scat module
	SingleScatteringData objects
	Selected methods

	Selected functions
	Algorithm and Theoretical Basis
	Single Scattering Properties
	ptype=20
	ptype=30
	Orientation Averaging
	Calculation of the absorption coefficient vector
	Refractive Index of Ice and Liquid Water

	The range of convergent size parameters and aspect ratios for ice crystal optical property generation

	The arts_types module
	GriddedField3 objects
	Methods

	GasAbsLookup objects
	Methods

	The plotting module
	SentinelMap objects
	Selected functions
	Demonstration

	The artsXML module
	XMLfile objects
	Selected Methods

	Selected functions

	The arts_math module
	Selected functions

	The general module
	Selected functions

	The sli module
	SLIData2 objects
	Selected methods
	Demonstration

	The arts1 module
	Selected functions

