Exercise No. 5 – Jacobian and opacity rule

- 1. Run the ARTS controlfile jacobian.arts. (This time you have to do this only once.)
- Run the plotting script plot_jacobian.py. You get a figure with two sub-plots. One is the spectrum of the nadir brightness temperature (BT) at the top of the atmosphere; the other is the atmospheric zenith opacity. Both are for a spectral range near the 183.31 GHz water vapor line for a midlatitude-summer atmosphere.
 - Are there window regions?
- 3. The atmospheric temperature profile for the calculation was:

Pressure [hPa]	Temp. [K]	Altitude [km]
$\begin{array}{c} 1013.000000\\ 902.000000\\ 802.000000\\ 710.000000\\ 628.00000\\ 554.000000\\ 487.000000\\ 426.000000\\ 372.000000\\ 372.000000\\ 281.000000\\ 243.000000\\ 209.000000\\ 179.000000\\ 153.000000\\ 130.000000\\ 111.000000\\ \end{array}$	294.200000 289.700000 285.200000 279.200000 267.200000 261.200000 254.700000 248.200000 248.200000 241.700000 235.300000 222.300000 215.700000 215.700000	0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000 7.000000 8.000000 10.000000 11.000000 12.000000 13.000000 14.000000 15.000000 16.000000
95.000000 81.200000 69.500000 59.500000	215.700000 216.800000 217.900000 219.200000	17.000000 18.000000 19.000000 20.000000

- Where does the radiation at the peak of the line (183 GHz) originate?
- Where does the radiation at the wing (150 GHz) originate?
- 4. Change the variable freq_ind at the beginning of the plotting script from -1 to a number between 1 and 110. This will select a frequency and mark it with a circle in the BT plot. You get two more plots, the water vapor Jacobian and the opacity between the top of the atmosphere and altitude z, both for the selected frequency.
 - Write down the altitude of the Jacobian peak and the altitude where the opacity reaches 1 for some different frequencies.
 - Can you think of a reason why the two altitudes are not exactly the same?
 - Explain, why the Jacobians are sometimes positive, sometimes negative.