#DEFINITIONS: -*-sh-*- # # This control file demonstrates a simple ARTS 1D clear sky calculation. # Calculation of brightness temperature and optical depth as an auxilary variable is included. # # You can choose different species and change the sensor position and sensor line of soght (los) Arts2 { INCLUDE "general/general.arts" INCLUDE "general/continua.arts" INCLUDE "general/agendas.arts" INCLUDE "general/planet_earth.arts" # Agenda for scalar gas absorption calculation Copy(abs_xsec_agenda, abs_xsec_agenda__noCIA ) # Modified emission agenda to store internally calculated optical thickness. AgendaCreate( iy_main_agenda__EmissionOpacity ) AgendaSet( iy_main_agenda__EmissionOpacity ){ ppathCalc iyEmissionStandard ppvar_optical_depthFromPpvar_trans_cumulat WriteXML("ascii", ppvar_optical_depth, "results/optical_thickness.xml") WriteXML("ascii", ppvar_p, "results/ppvar_p.xml") } Copy( iy_main_agenda, iy_main_agenda__EmissionOpacity ) # cosmic background radiation Copy( iy_space_agenda, iy_space_agenda__CosmicBackground ) # standard surface agenda (i.e., make use of surface_rtprop_agenda) Copy( iy_surface_agenda, iy_surface_agenda__UseSurfaceRtprop ) # on-the-fly absorption Copy( propmat_clearsky_agenda, propmat_clearsky_agenda__OnTheFly ) # sensor-only path Copy( ppath_agenda, ppath_agenda__FollowSensorLosPath ) # no refraction Copy( ppath_step_agenda, ppath_step_agenda__GeometricPath ) # Number of Stokes components to be computed IndexSet( stokes_dim, 1 ) ######################################################################### # A pressure grid rougly matching 0 to 80 km, in steps of 2 km. VectorNLogSpace( p_grid, 200, 1013e2, 10 ) # Definition of species: # you can take out and add again one of the species to see what effect it has # on radiative transfer in the atmosphere. abs_speciesSet( species=["N2", "O2", "H2O"] ) # Read a line file and a matching small frequency grid abs_linesReadFromSplitArtscat( abs_lines, abs_species, "spectroscopy/Perrin/", 150e9, 200e9 ) # Sort the line file according to species abs_lines_per_speciesCreateFromLines # Atmospheric scenario AtmRawRead( basename="planets/Earth/Fascod/midlatitude-summer/midlatitude-summer" ) # Non reflecting surface VectorSetConstant( surface_scalar_reflectivity, 1, 0.4 ) Copy( surface_rtprop_agenda, surface_rtprop_agenda__Specular_NoPol_ReflFix_SurfTFromt_surface ) # Create a frequency grid VectorNLinSpace( f_grid, 200, 150e+9, 200e+9 ) # No sensor properties sensorOff # We select here to use Planck brightness temperatures StringSet( iy_unit, "PlanckBT" ) ######################################################################### # Atmosphere and surface AtmosphereSet1D AtmFieldsCalc Extract( z_surface, z_field, 0 ) Extract( t_surface, t_field, 0 ) # Definition of sensor position and line of sight (LOS) VectorSet( rte_pos, [800e3]) # 10e3 for sensor in z = 10 km MatrixSet( sensor_pos, [800e3]) MatrixSet( sensor_los, [180] ) VectorSet( rte_los, [180] ) # zenith angle: 0 looking up, 180 looking nadir VectorSet( rte_pos2, [] ) sensorOff #Jacobian calculation jacobianInit VectorCreate( g1 ) VectorCreate( g2 ) VectorCreate( g3 ) jacobianAddAbsSpecies( g1=p_grid, g2=lat_grid, g3=lon_grid, species="H2O", method="analytical", unit="rel", ) jacobianClose # Clearsky = No scattering cloudboxOff # Perform RT calculations abs_xsec_agenda_checkedCalc propmat_clearsky_agenda_checkedCalc atmfields_checkedCalc atmgeom_checkedCalc cloudbox_checkedCalc sensor_checkedCalc yCalc # Write output WriteXML( "ascii", f_grid, "results/f_grid.xml" ) WriteXML( "ascii", p_grid, "results/p_grid.xml" ) WriteXML( "ascii", jacobian, "results/jacobian.xml" ) WriteXML( "ascii", z_field, "results/z_field.xml" ) WriteXML( "ascii", y, "results/y.xml" ) }