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Chapter 1

The ARTS concept

This section describes the basic ideas underlying ARTS. It also introduces some terminol-
ogy. You should read it if you want to understand how the program works and how it can
be used efficiently.

1.1 Introduction

The number of satellite sensors in the millimeter and sub-millimeter spectral range is rapidly
growing. They use various frequency bands and observation geometries. Two important
groups of sensors are for example the nadir viewing millimeter wave sensors like AMSU1

and the limb viewing sub-millimeter wave sensors like the planned SMILES2.
For the data analysis all such sensors require accurate and fast forward models, which

can simulate measurements for a given atmospheric (and maybe ground) state. Depending
on the objective of the sensor, the measurement will depend for example on the distribution
of atmospheric temperature, water vapor, ozone, and many other trace gases.

So far, a lot of effort has been wasted in developing dedicated forward models for differ-
ent sensors, although all these models have many features in common. Moreover, existing
models were not easily modifiable and extendable. Hence, it was decided to develop a new
model which emphasizes modularity, extendibility, and generality.

1.2 Enter: ARTS

The most important notion in ARTS is theworkspace. All physical quantities (for example
absorption coefficients) areworkspace variables. But workspace variables can also be of a
more technical nature, for example various grids.

1The AdvancedM icrowaveSoundingUnit is a sensor on board the polar orbiting satellites of the US-
American National Aeronautics and Space Administration.

2The Superconducting Sub-Mi llimeter WaveL imb EmissionSounder is a Japanese Sensor which will be
flown for the first time on the International Space Station.

History
000616 Created by Stefan Buehler, based on my DPG2000 poster.
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Figure 1.1: Specificworkspace methods act on specific workspace variables to generate
other specific workspace variables. Additional input parameters can be specified as keyword
parameters in the controlfile.

The program performs a calculation by executing a list ofworkspace methods, which
are specified in a controlfile. These workspace methods take workspace variables as input,
and generate workspace variables as output. Additional input parameters can be specified
askeyword parametersin the controlfile (Figure??).

It is important to note that the controlfile has a fixed and well-defined syntax. This
syntax is understood by the ARTS parser. The great advantage of this concept is that it is
very easy to add new workspace variables and new workspace methods. The program has
an internal lookup table which lists all workspace methods, as well as their input variables,
output variables, and keyword parameters. To add a new method, one just has to add an
entry to this lookup table, and write the code for the method itself. No further changes to
the program are necessary. In particular, no changes to the program logic or to the parser.
How such an extension can be made practically is described in Section??.

1.3 Generic Workspace Methods

Generic methods (Figure??) allow the user of the program even more freedom than specific
methods. A generic method is for exampleVectorReadFromFile , which can be used
to read any workspace variable which is a vector from an ASCII file. For example

VectorReadFromFile(f_grid){"freqeuency_grid.dat"}

will read the specified file and generate the workspace variablef_grid .
Generic methods are particularly useful for IO operations like in the example above. No

new IO functions are necessary for new workspace variables, as long as they are of standard
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Figure 1.2: Forgenericworkspace methods the workspace variables to act on are specified
in the controlfile.

types already known to the program (for example vectors or matrices). Section?? gives a
short example of a controlfile which illustrates the use of both generic and specific methods.

1.4 An example controlfile

# An example ARTS controlfile that calculates absorption
# coefficients.
# SAB 16.06.2000

# --------------------< A specific method >-----------------
---
# -------------------
# Read the spectroscopic line data from the HITRAN cata-
logue and
# create the workspace variable ‘lines’:
linesReadFromHitran {

filename = "../../data/spectroscopy/hitran96/hitran96_h2o.par"
fmin = 0
fmax = 1000e12

}
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# Optionally write the line list to a file:
linesWriteToFile{""}

# This defines the list of tag groups (‘tag_groups’). Absorption
# coefficients will be calculated sepa-
rately for each tag group. This
# is necessary in order to calculate weighting func-
tions later on.
# The lines are assigned to the tag groups in the or-
der as the groups
# are specified here. That means the last group H2O gets as-
signed all
# the H2O lines that do not fit in any other group.
tag_groupsDefine{

[ "H2O-161",
"H2O-181",
"H2O-171",
"H2O" ]

}

# This separates the lines into the differ-
ent tag groups and creates
# the workspace variable ‘lines_per_tg’:
lines_per_tgCreateFromLines{}

lines_per_tgWriteToFile{""}

# --------------------< A generic method >------------------
--
# ------------------
# Read the pressure, temperature, and altitude pro-
files and create
# the workspace variable ‘raw_ptz_1d’:
MatrixReadFromFile (raw_ptz_1d)

{"../../data/atmosphere/fascod/midlatitude-
summer.tz.am"}

# The same for the input VMR profiles:
raw_vmrs_1dReadFromScenario

{"../../data/atmosphere/fascod/midlatitude-summer"}

# Optionally write this to a file:
ArrayOfMatrixWriteToFile (raw_vmrs_1d) {""}
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# Create the pressure grid ‘p_abs’:
VectorLinSpace(p_abs){

start = 1000
stop = 1
step = -1

}

VectorWriteToFile(p_abs){""}

# Now interpolate all the raw atmospheric in-
put onto the pressure
# grid and create the atmospheric vari-
ables ‘t_abs’, ‘z_abs’, ‘vmrs’
AtmFromRaw1D{}

# Optionally write these to files:
VectorWriteToFile (t_abs) {""}
VectorWriteToFile (z_abs) {""}
ArrayOfVectorWriteToFile (vmrs) {""}

# Create the frequency grid ‘f_abs’:
VectorLinSpace(f_abs){

start = 1
stop = 1000
step = 1

}

# Calculate absorption coefficients, both total (‘abs’) and
# separately for each tag group (‘abs_per_tg’):
absCalc{}

# These we definitely want to write to files!
MatrixWriteToFile (abs) {""}
ArrayOfMatrixWriteToFile (abs_per_tg) {""}



6 THE ARTS CONCEPT



Chapter 2

Theoretical formalism

In this section a theoretical framework for the forward model is presented. The presen-
tation follows?, but some extensions are made, for example, the distinction between the
atmospheric and sensor parts of the forward model is also discussed here.

2.1 The forward model

The radiative intensity,I, at a point in the atmosphere,r, for frequencyν and traversing in
the direction,φ, is dependent on a variety of physical processes and continuous variables
such as the temperature profile,T :

I = F (r, ν, φ, T, . . .) (2.1)

To detect the spectral radiation some kind of sensor, having a finite spatial and frequency
resolution, is needed, and the observed spectrum becomes a vector,y, instead of a contin-
uous function. The atmospheric radiative transfer is simulated by a computer model using
a limited number of parameters as input, and the forward model,F , used in practice can be
expressed as

y = F(xF ,bF ) + ε(xε,bε) (2.2)

where(xF ,bF ) and(xε,bε) together give a total description of both the atmospheric and
sensor states, andε is the measurement errors. The parameters are divided in such way that
x, the state vector, contains the parameters to be retrieved, and the remainder is given byb,
the model parameter vector. The total state vector is

x =

[
xF
xε

]
(2.3)

and the total model parameter vector is

b =

[
bF
bε

]
(2.4)

History
000306 Written by Patrick Eriksson, partly based on? and?.
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The actual forward model consists of either empirically determined relationships, or nu-
merical counterparts of the physical relationships needed to describe the radiative transfer
and sensor effects. The forward model described here is mainly of the latter type, but some
parts are more based on empirical investigations, such as the parameterisations of contin-
uum absorption. It should be noted that a possible data reduction is also part of the forward
model.

Both for the theoretical formalism and the practical implementation, it is suitable to
make a separation of the forward model into two main sections, a first part describing the
atmospheric radiative transfer for pencil beam (infinite spatial resolution) monochromatic
(infinite frequency resolution) signals (?),

i = Fa(xr,br) (2.5)

and a second part modelling sensor characteristics,

y = Fs(i,xs,bs) + ε(xε,bε) (2.6)

wherei is the vector holding the spectral values for the considered set of frequencies and
viewing angles (i.e.ii = I(νi, φi), wherei is the vector index), andxF andbF are sepa-
rated correspondingly, that is,xTF = [xTr ,x

T
s ] andbTF = [bTr ,b

T
s ]. The vectorsx andb can

now be expressed as

x =

 xr
xs
xε

 (2.7)

and

b =

 br
bs
bε

 , (2.8)

respectively.
The subscripts ofx andb are below omitted if the part of the vectors used is made clear

by the context.

2.2 The sensor transfer matrix

The modelling of the different sensor parts can be described by a number of of analytical
expressions (see?) that together makes the basis for the sensor model. These expressions
are throughout linear operations and it possible, as suggested in?, to implement the sensor
model as a straightforward matrix multiplication:

y = Hi + ε (2.9)

whereH is here denoted as the sensor transfer matrix. The matrixH can be set up to
incorporate effects of a data reduction and the total transfer matrix is then

H = HdHs (2.10)
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as

y = Hdy′ = Hd(Hsi + ε′) = Hi + ε (2.11)

whereHd is the reduction matrix,Hs the sensor matrix, andy′ andε′ are the measurement
vector and the measurement errors, respectively, before data reduction. The matricesHd

andHs are described in Section??and??, respectively.

2.3 Weighting functions

2.3.1 Basics

A weighting function is the partial derivative of the spectrum vectory with respect to some
variable used by the forward model. As the input of the forward model is divided between
x or b, the weighting functions are divided correspondingly between two matrices, the state
weighting function matrix

Kx =
∂y
∂x

(2.12)

and the model parameter weighting function matrix

Kb =
∂y
∂b

(2.13)

For the practical calculations of the weighting functions, it is important to note that the
atmospheric and sensor parts can be seperated. For example, ifx only hold atmospheric
and spectroscopic variables,Kx can be expressed as

Kx =
∂y
∂i

∂i
∂x

= H
∂i
∂x

(2.14)

This equation shows that the new parts needed to calculate atmospheric weighting func-
tions, are functions giving∂i/∂x wherex can represent the vertical profile of a species,
atmospheric temperature, spectroscopic data etc.

The practical calculation of weighting functions is discussed in detail in Sections??and
??.

2.3.2 Transformation between vector spaces

It could be of interest to transform a weighting function matrix from one vector space to
another. The new vector,x′, is here assumed to be of lengthn (x′ ∈ Rnx1), while the
original vector,x is of lengthp (x ∈ Rpx1). The relationship between the two vector
spaces is described by a transformation matrixB:

x = Bx′ (2.15)

whereB ∈ Rpxn. For example, ifx′ is assumed to be piecewise linear, then the columns of
B contain tenth functions, that is, a function that are 1 at the point of interest and decreases
linearly down to zero at the neighbouring points. The matrix can also hold a reduced set of
eigenvectors.
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The weighting function matrix corresponding tox′ is

Kx′ =
∂y
∂x′

(2.16)

This matrix is related to the weighting function matrix ofx (Eq. ??) as

Kx′ =
∂y
∂x

∂x
∂x′

=
∂y
∂x

B = KxB (2.17)

Note that

Kx′x′ = KxBx′ = Kxx (2.18)

However, it should be noted that this relationship only holds for thosex that can be repre-
sented perfectly by somex′ (or vice versa), that is,x = Bx′, and not for all combinations
of x andx′.

If x′ is the vector to be retrieved, we have that (?)

x̂′ = I(y, c) = T (x,b, c) (2.19)

whereI andT are the inverse and transfer model, respectively.
The contribution function matrix is accordingly

Dy =
∂x̂′

∂y
(2.20)

that is,Dy corresponds toKx′ , notKx.
We have now two possible averaging kernel matrices

Ax =
∂x̂′

∂x
=
∂x̂′

∂y
∂y
∂x

= DyKx (2.21)

Ax′ =
∂x̂′

∂x′
=
∂x̂′

∂y
∂y
∂x

∂x
∂x′

= DyKx′ = AxB (2.22)

whereAx ∈ Rpxn andAx′ ∈ Rpxp, that is, onlyAx′ is square.



Chapter 3

Basic radiative transfer

This section presents the atmospheric radiative transfer equation (RTE) for a non-scattering
atmosphere in local thermodynamic equilibrium. However, the calculation scheme de-
scribed here can easily be extended to include effects of e.g. scattering. The radiative
transfer equation gives the monochromatic (infinite frequency resolution) pencil beam (in-
finite spatial resolution) spectrum. The main problem, in this context, is how to practically
and accurately estimate the (continuous) integral in the discrete forward model.

The discussion treats mainly measurements of atmospheric emission. The forward
model can also handle pure absorption measurements and such observations are also dis-
cussed briefly last in the section.

The equations of this section are valid for monochromatic pencil beam spectra, that is,
no effects of the sensor are considered. How to incorporate sensor effects in the spectra is
discussed separately (Sec.??).

3.1 Introduction

Atmospheric radiative transfer can be expressed generally as

I = I1e
−
∫ l2
l1
κ(l)dl

+
∫ l2

l1
κ(l)σ(l)e−

∫ l2
l
κ(l′)dl′dl (3.1)

whereI is the monochromatic pencil beam intensity,l distance along the line of sight (LOS),
l1 the point of the considered part of the LOS furthest away from the sensor,l2 the closest
point of the LOS,I1 the intensity atl1, κ the total absorption along the LOS andσ the
source function.1

Equation?? is of general validity ifσ andκ consider the relevant effects, for example,
scattering. However, below in this section it is assumed that there is no scattering and the
atmosphere is in local thermodynamic equilibrium.

1The symbolsκ andσ are used here for the absorption and the source functionalong the LOS. The more
commonly used symbols,k andS, respectively, are used below to express the variables as functions of altitude.

History
000307 Started by Patrick Eriksson.
000908 First version finished by Patrick Eriksson.
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Note that Eq.?? is valid both for the case when the LOS is determined by geometrical
calculations and when refraction is considered (the refraction changes however the LOS).

With the assumptions of no scattering and local thermodynamic equilibrium,κ is the
summed gaseous absorption, and the source function equals the Planck function,B:

σ = B(ν, T ) =
2hν3

c2

1
ehν/kBT − 1

(3.2)

giving the blackbody radiation for a temperatureT and frequencyν.
If σ is constant along the considered part of the LOS, that is, the temperature is constant

for the caseσ = B, the RTE can be solved analytically to give

I = I1e
−τ + σ

(
1− e−τ

)
(3.3)

whereτ is the optical thickness

τ =
∫ l2

l1
κ(l)dl (3.4)

The transmission corresponding toτ is

ζ = e−τ (3.5)

3.2 Practical considerations

The LOS can be divided into parts in several ways. As absorption and temperature most
likely are avaliable at some vertical grid, the most natural choice would be to define the
LOS using this vertical grid. This solution is problematic for limb sounding as the ratio
between the distance along LOS and the corresponding vertical distance becomes infinite at
the tangent point. Another solution would be to base the division onτ , but such a division
does not guarantee thatT is close to constant inside the slabs as the vertical extension in
some cases could be very large, and each combination of frequency and viewing angle
should require a specific division.

As a practical compromise, it was here decided to divide LOS into equal long geomet-
rical steps. With this scheme the division is identical for all frequency components, but
changes between the viewing angles, and should give relatively fast and straightforward
calculations, maintaining a good accuracy. This approach has been applied successfully in
the Odin sub-mm forward model (??).

The next question is when and how to calculate LOS and the associated variables. As
the determination of weighting functions associated with the absorption, e.g. species WFs,
needs basically the same quantities as RTE, it is most efficient to do this procedure only
once and in such way that the values are suitable for both RTE and the weighting functions.
Hence, the LOS calculations shall be a separate part, not included in the RTE functions.
The standard use of the forward model should then be:

1. Calculation of absorption coefficients.

2. Determination of LOS.

3. Calculation of the source function and transmissions along LOS.
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Figure 3.1: Schematic description of the LOS and associated variables. The absorption
and the source function at the LOS points are denotedκi andσi, respectively, whileζi is the
transmission between the points andΨi is the mean of neighbouring source function values.
Only zeta andΨ are stored for the later calculations. All the points are separated by the
distance∆l (along the LOS). The distance between pointi andi+ 1 is denoted as stepi of
the LOS.

4. Iteration to solve RTE.

5. Calculation of weighting functions.

6. Saving etc.

The determination of LOS is described separately in Section??.

3.3 Practical solution

The LOS is here assumed to be defined withn points where the distance between the points
is constant (see Fig??). There are at least two definition points of the LOS (n ≥ 1). The
absorption and the source function are determined at the points of the LOS, and these values
are used to calculate the transmission and a mean source function value for the distances
between the LOS points. Only the later two quantities are stored.

3.3.1 Absorption and transmission

The absorption is treated to vary linearly between the LOS points. As mentioned above,
the transmission values shall be valid between the LOS points. With these definitions, the
optical thickness associated with stepi is

τi =
∆l
2

(κi + κi+1) , 1 ≤ i < n (3.6)

The relationship between the optical thicknesses and the transmission is

ζi = e−τi (3.7)

Note that

e−(τ1+τ2...τn) = ζ1ζ2 . . . ζn (3.8)

The absorption at the LOS points is determined from the absorption matrix provided by the
absorption module by linear interpolation, using the logarithm of the pressure as altitude
coordinate2. For the moment, linear interpolation is the only choice, but if it is found
that cubic and/or spline interpolation give better accuracy, such interpolations will also be
implemented.

2The logarithm of the pressure is throughout the basic altitude coordinate in ARTS.
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3.3.2 The source function

The source function is also basically assumed to vary linearly between the LOS points, but
for simplicity reasons, a single source function value is assigned to the LOS steps:

Ψi =
σi + σi+1

2
, 1 ≤ i < n (3.9)

The source function at the LOS points (σ) is simply by interpolating linearly the temperature
profile, and calculating the Planck function (Eq.??) for the obtained temperatures.

To fully model that the absorption and the source function have a simultanous linear
variation between the LOS points would give much more complicated analytical expres-
sions than presented here (if even possible to derive?). However, the simplified approach
used here should not influence the accuracy in any important way. This as the source func-
tion has, compared to the absorption, a relatively low variation and it can be treated to be
piecewise constant when solving the raqdiative transfer.

If long wavelengths are assumed and the source function equals the Planck function (Eq.
??), σ should maximally vary with about a factor of 2 as the minimum and the maximum
temperature in the atmosphere are about 150 and 300 K, respectively, and the relationship
betweenσ and temperature is close to linear. This should be compared to the absorption
that, even for a single frequency, often varies with many orders of magnitude.

3.3.3 Solving the radiative transfer equation

With the definitions given above, the intensity at pointn can be expressed as

I = I1

n−1∏
j=1

ζj +
n−1∑
i=1

Ψi(1− ζi)
n−1∏
j=i+1

ζj

 (3.10)

However, an alternative approach, requiring less computer memory, is to follow the radia-
tion from one slab of the atmosphere to next, and is the method of choice here. Following
Equation??, the following iterative expression can be determined (?)

Ii+1 = Iiζi + Ψi (1− ζi) i = 1, 2, ..., n− 1 (3.11)

whereIi is the intensity reaching pointi. The iteration is started by settingI1 to the intensity
at the atmospheric limit, that is, cosmic background radiation or correspondingly.

3.3.4 Considering ground reflection

The effect of a ground reflection is modeled as

Iafter = Ibefore(1− e) + eB(ν, Tground) (3.12)

wheree is the ground emission factor andIbefore andIafter is the intensity before and after
the reflection, respectively. See further Section??.
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3.4 Total atmospheric transmission

The atmospheric emission can be neglected if the observation is performed towards a suffi-
ciently strong source, such as the Sun, and the measurement gives basically the total atmo-
spheric transmission,ζtot. This transmission is

ζtot = e
−
∫ l2
l1
κ(l)dl

(3.13)

The corresponding iterative formula used in the forward model is simply (cf. Eq.??)

ζtot =
n−1∏
i=1

ζi (3.14)

It is noteworthy that the multiplication order is of no importance, a fact that can be used for
1D limb sounding where the conditions are assumed to be symmetrical around the tangent
point and only one half of the line of sight is stored. The transmission can here be calculated
as

ζtot =
n−1∏
i=1

ζ2
i (3.15)

If there is a ground reflection, it is considered as

ζtot = (1− e)
n−1∏
i=1

ζi (3.16)

wheree is the ground emission factor.
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Chapter 4

Line of sight, 1D

This section describes how the line of sight (LOS) can be determined for situations where
the atmosphere is assumed to be horizontally stratified, a 1D atmosphere. Expressions are
given both for pure geometrical calculations and when considering refraction.

4.1 Definitions

Vertical (geometrical) altitudes are denoted asz, pressures asp and distances along the LOS
are denoted asl. Vertical distances are measured from the geoid andl is the distance from
the lowest point of the LOS.

As a 1D atmosphere is assumed here, the conditions are symmetrical around tangent
points and points of ground reflection, and, for such cases, only one half of the LOS is stored
for efficiency reasons. The points of the LOS are stored by increasing vertical altitude point.
Index 1 corresponds accordingly to either the platform, the tangent point or the ground. The
internal description of the LOS is further described in the filelos.h .

The line of sight is defined by two variables, the platform altitude,zp, and the zenith
angle,φ, (see Fig.??):

The platform altitude is the altitude above the geoid of the sensor used to detect the spec-
trum simulated.

The zenith angle is the angle between the zenith direction and the direction of observation.
As an 1D atmosphere is assumed, there is no difference between positive and negative
zenith angles.

The lower limit of the atmosphere is given by the ground altitude,zg. The practical upper
limit of the atmosphere is denotedzlim and is in the forward model determined by the
highest point of the absorption grid. The absorption grid can extend belowzg. On the other
hand, it is not allowed that any part of the LOS is between the lowest absorption altitude
and the ground.

History
000307 Started by Patrick Eriksson.
000914 First version finished by Patrick Eriksson.
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Figure 4.1: Schematic description of the main variables of the observation geometry and
the LOS.Re is the Earth radius. Other variables defined in the text.

If φ > 90◦ the lowest point of the LOS is not the platform altitude, and this point is
denoted as the tangent point,zt. The angle between the LOS and the vector to the Earth
center is at the tangent point90◦. If the tangent point is below ground level,zt is determined
by an imaginary geometric prolonging of the LOS inside the Earth.

The forward model uses internally three main observation geometries:

Upward looking signifies observation from within the atmosphere in an upward direction
(zp < zlim andφ ≤ 90◦).

Limb sounding covers here all observations from a point outside the atmosphere (zp ≥
zlim). All zenith angles are covered, and, for example, nadir looking observations
(φ = 180) are treated as limb sounding in the forward model. If the LOS does not
pass the atmosphere (ztan ≥ zlim), cosmic background radiation, or correspondingly,
is returned.

Downward looking is observation from within the atmosphere in a downward direction
(zp < zlim andφ > 90◦).

4.2 Outlook towards 2D

So far ARTS is only capable of calculating spectra for 1D cases. It is planned to also handle
satellite measurements with atmospheric horizontal variations, but limited to observations
in the orbit plane, here denoted as 2D observations.

For 2D observations there is no symmetry to be used, each point of the LOS is unique.
This is also the case for 1D upward looking observations, and it is planned that 2D and 1D
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upward calculations of radiative transfer and weighting functions shall be performed with
the same general functions. The 2D case exhibits however one difference compared to the
1D upward case. For 2D cases there could be a ground reflection along the LOS, which is
never the case for 1D upward looking observations by definition. This question is discussed
a bit further in Section??. Note that if the 1D upward functions are used for 2D simulations,
the point of LOS closest to the sensor will throughout have index 1.

4.3 The step length

As described in Section??, the LOS is divided into equal long geometrical steps,∆l. The
user gives an upper limit for this step length. A point of the LOS is always placed at the
sensor (if inside the atmosphere), tangent points and points of ground reflection, but no
adjustment to the upper atmospheric limit is made. This gives a single fixed point for limb
sounding and upward looking observation and∆l is set to the value given by the user if the
LOS has at least two definition points. If the LOS gets only one point with the user defined
value, for example when the tangent point is just below the atmospheric limit, the step
length is adjusted to the length from the fixed point of the LOS (the sensor or the tangent
point) and the atmospheric limit.

In contrast to upward and limb sounding observations, for downward observations there
are two fixed points inside the atmosphere (the platform and the tangent point, or the point
of ground reflection) and∆l is here adjusted according to the the distance between these
two points. See further Section??.

4.4 Geometrical calculations

Most of the equations of this section are described further, both in text and by figures (with
a slightly different notation and definition of the zenith angle) in Section 4 of?.

4.4.1 Upward looking

The relationship between vertical altitude (z) and distance along LOS (l) can be found be
the law of cosines, giving

(Re + z)2 = (Re + zp)2 + l2 + 2l(Re + z) cos(φ) (4.1)

This equation gives

z =
√

(Re + zp)2 + l2 + 2l(Re + z) cos(φ)−Re (4.2)

The distance between the sensor and the limit of the atmosphere is

llim =
√

(Re + zlim)2 − (Re + zp)2 sin2(φ)− (Re + zp) cos(φ) (4.3)
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4.4.2 Limb sounding

The tangent altitude is

zt = (Re + zp) sin(φ)−Re φ ≥ 90◦ (4.4)

This relationship holds even ifzt < zg. Note thatsin(180◦ − φ) = sin(φ) and it must
be checked thatφ ≥ 90◦. Zenith angles< 90◦ correspond to an imaginary tangent point
behind the sensor, and are treated as observations into the space.

The Pythagorean relation gives the distance from the tangent point to the atmospheric
limit:

llim =
√

(Re + zlim)− (Re + zt) (4.5)

If llim is smaller than upper limit for∆l specified by the user,∆l is set tollim as also
described in Section??.

The vertical altitude as a function of the distance from the tangent point is

z =
√

(Re + zt) + l2 −Re (4.6)

If the tangent point is below ground, the LOS is determined by the upward expressions (Sec.
??) by setting

zp ← zg

φ ← sin−1 ((Re + zt)/(Re + zg))

4.4.3 Downward looking

This observation geometry can be handled by the upward and limb sounding functions by
suitable exchange of variables. However, as the lowest point of the LOS is either the tangent
point or the ground, and one point of LOS must fit the sensor altitude, the step length must
be adjusted to this distance.

The distance between the sensor and a tangent point is

lp =
√

(Re + zp)− (Re + zt) zt ≥ zg (4.7)

and the distance between the sensor and a point of ground reflection is

lp =
√

(Re + zp)− (Re + zt)−
√

(Re + zg)− (Re + zt) zt < zg (4.8)

wherezt is determined by Equation??.
The part of the LOS between the sensor and the tangent or ground point gets the follow-

ing number of points:

m = 1 + ceil(llim/∆lmax) (4.9)

where∆lmax is the upper limit for∆l specified by the user, andceil is a function giving
the first integer larger than the argument. The step length is accordingly

∆l =
llim
m− 1

(4.10)

If the tangent altitude is above the ground (ztan ≥ zt), the LOS is determined by the same
expressions as applied for limb sounding, but with the adjusted value for∆l. If there is
an intersection with the ground, the upward looking expressions can be used as described
above for limb sounding, again with the adjusted value for∆l.
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Figure 4.2: Geometry to derive Snell’s law for a spherical atmosphere. The Earth radius is
Re, the vertical altitudez, the refractive indexn and the angle between the LOS and the
vector to the Earth centerθ.

4.5 With refraction

Refraction affects the radiative transfer in several ways. The distance through a layer of a
fixed vertical thickness will be changed, and for a limb sounding observation the tangent
point is moved both vertically and horizontally. If the atmosphere is assumed to be hori-
zontally stratified, as done here (1D), a horizontal displacement is of no importance but for
2D calculations this effect must be considered. For limb sounding and a fixed zenith angle,
the tangent point is moved downwards compared to the pure geometrical case, resulting in
that inclusion of refraction in general gives higher intensities. However, the LOS is still
symmetric around tangent and ground points.

4.5.1 General theory

When determining the LOS through the atmosphere geometrical optics can be applied be-
cause the change of the refractive index over a wavelength can be neglected. Applying
Snell’s law to the geometry shown in Figure??gives

ni sin(θi) = ni+1 sin(θ′i) (4.11)

Using the same figure, the law of sines gives the relationship

sin(θi+1)
Re + zi

=
sin(180◦ − θ′i+1)

Re + zi+1
=

sin(θ′i)
Re + zi+1

(4.12)

By combining the two equations above, the Snell’s law for a spherical atmosphere (i.e. 1D)
is derived (e.g.??):

c = (Re + zi)ni sin(θi) = (Re + zi+1)ni+1 sin(θi+1) (4.13)

wherec is a constant. With other words, the Snell’s law for spherical atmospheres states
that the product ofn, (Re + z) andsin(θ) is constant along the LOS.
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Figure 4.3: The geometrical factor, as a function of altitude, for limb sounding and three
tangent altitudes. Taken from?

.

The radiative transfer is evaluated along the LOS, while Equation?? is expressed for
vertical altitudes. The relationship between a change in vertical altitude and the correspond-
ing change along the LOS is here denoted as the geometrical term and it is (?)

g(z) =
1

cos(θ)
(4.14)

which can be rewritten using trigonometric identities and Equation??:

g(z) =
(Re + z)n(z)√

(Re + z)2n2(z)− c2
(4.15)

A possible solution for calculating the LOS would be to integrating the geometrical term as
(?)

l21 =
∫ z2

z1
g(z)dz

wherez1 andz2 are two vertical altitudes andl21 the length along the LOS between these
two altitudes. However, this approach is problematic for limb sounding as the geometric
factor is singular at the tangent point (Fig.??).

4.5.2 The refraction prolongation factor

To avoid the singularity of the geometrical factor at tangent points, the refraction prolonga-
tion factor is here introduced. This factor is defined as

r(z) =
g(z)
gg(z)

(4.16)

wheregg(z) is the geometrical factor for the geometrical LOS that is parallel with the re-
fracted LOS at the lowest point. Thec constant forgg equals accordingly(Re+z) sin(θ) for
the lowest altitude of the refracted LOS. If this altitude is denoted aszmin, the prolongation
factor can be written as

r(z) =
n(z)

√
(Re + z)2 − (c/n(zmin))2√
(Re + z)2n2(z)− c2

(4.17)

The prolongation factor for limb sounding is shown in Figure??. The value ofr at tangent
points is discussed below.

The factorr gives the relative increase in length of the refracted LOS(∆l) compared to
the length of the corresponding geometrical LOS(∆lg) through a small vertical layer(∆z):

∆l = g(z)∆z = r(z)gg(z)∆z = r(z)∆lg. (4.18)
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Figure 4.4: Prolongation factors for limb sounding and three tangent altitudes. The figure
to the left showsr as a function of the vertical altitude, while the right figure showsr as
a function of the distance along the LOS from the tangent point. The refraction index is
calculated asn = 1 + 77.9593 · 10−6p/T where the unit ofp is hPa (see?).

4.5.3 Practical solution

The scheme applied to determine the LOS with refraction can be summarized as:

1. The lowest point of the LOS and the angleθ at this point are determined.

2. The geometrical LOS matching this point and angle is calculated with a step length
defined by the user,∆lr.

3. The prolongation factor is determined for the altitudes of the geometrical LOS.

4. The distances along the LOS from the lowest point are calculated following Eq.??,
where the applied prolongation factor is the mean ofr at the end points of the steps.

5. The obtained distances are interpolated to obtain an equally spaced refractive LOS
with the selected step length(∆l).

The altitude and angle in step 1 are directly given by the platform altitude and the zenith
angle for upward observations. Limb sounding is discussed separately below. The constant
c is throughout given by the zenith angle and the refractive index at the sensor. Figure??
shows thatr varies slowly (as a function ofl) and it should suffice to treatr as piecewise
linear function as done here.

The accuracy of the calculations can be controlled by the step length∆lr. As the cal-
culations are straightforward and simple a relatively low value for∆lr can be used without
increasing the total calculation time noteworthily. The described scheme can be said to be
correct to the first order, as it gives the same result as the pure geometrical expressions ifn
is set to 1.

Limb sounding

The most important step for limb sounding is to get a correct tangent altitude. Fortunately,
there is a way to determine the tangent altitude directly for 1D cases, without following the
LOS from the top of the atmosphere.

The tangent altitude is given by the relationship

(Re + zt)n(zt) = (Re + zp) sin(φ) = c (4.19)

assin(θ) = 1 at tangent points, the refractive index in space is 1 andsin(180◦ − φ) =
sin(φ). The tangent altitude is practically determined by finding the highest altitude
where(Re + z)n(z) exceeds the value ofc, followed by an interpolation of the product
(Re+ z)n(z) between the found altitude and the altitude above to find the altitude fulfilling
Equation??.
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For cases with ground reflections, a similar relationship,

(Re + zg)n(zg)sin(θg) = (Re + zp) sin(φ) = c, (4.20)

gives the angle between the LOS and the ground normal. With this angle the LOS can be
determined with the corresponding upward function.

The value of the prolongation factor at tangent points cannot be calculated using Equa-
tion ?? as the denominator of this expression is here zero. By using that(a2 − b2) =
(a+ b)(a− b) both in nominator and denominator, Equation??can be rewritten as

r2(z) =
n2(z)

[
(Re + z)2 − (Re + zt)2

]
(Re + z)2n2(z)− (Re + zt)2n2(zt)

=

=
n2(z) (2Re + z + zt)

(Re + z)n(z) + (Re + zt)n(zt)
z − zt

(Re + z)n(z)− (Re + zt)n(zt)

The first quotient equalsn(zt) at tangent points. By addingztn(z) to the denominator, the
second term can be further rewritten as

z − zt
(Re + z)n(z)− (Re + zt)n(zt)

=

=
z − zt

Re[n(z)− n(zt)] + n(z)(z − zt) + zt[n(z)− n(zt)]
=

=
1

n(z) +Re
n(z)−n(zt)

z−zt + zt
n(z)−n(zt)

z−zt

The last expression brings out that the important quantity is

a = lim
z→z+

t

n(z)− n(zt)
z − zt

(4.21)

The prolongation factor for the tangent point is now determined:

r(zt) =

√
n(zt)

n(zt) + a(Re + zt)
(4.22)

4.6 Ground intersections

Ground reflections are indicated by a special flag. This flag is zero when there is no ground
intersection or gives the index of the LOS point corresponding to the ground,ig. For 1D
calculations,ig is either 0 or 1, as index 1 is here defined to always be the lowest altitude of
the LOS. However, to pave the way for 2D calculations, cases where the ground is placed
at other positions than index 1 are handled.

For 1D cases, where only half of the total LOS is stored and the ground can only have
index 1 (ig = 1), the effect of a ground reflection (Eq.??) is put in when reversing the
loop order. Accordingly, the calculation order is: ... step2, step 1, ground, step 1, step 2,
... Ground reflections for 1D cases are treated internally in ARTS by the limb sounding
functions.

When solving the radiative transfer (Eq.??) for 2D cases, the ground reflection is
treated between evaluating stepig and ig−1 (the iteration goes fromn to 1), as shown in
Figure??. Ground reflections for 2D cases are treated internally in ARTS by the upward
looking functions (Sec.??).
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Figure 4.5: Schematic of ground reflections for 2D cases. The index of the point corre-
sponding to the ground isig. Point 1 of the LOS is the point closest to the sensor.
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Chapter 5

Sensor modeling

A sensor model is needed because a practical instrument gives consistently spectra deviat-
ing from the hypothetical monochromatic pencil beam spectra provided by the atmospheric
part of the forward model (that isy 6= i always). For a radio (heterodyne) instrument, the
most influential sensor parts are the antenna, the mixer, the sideband filter and the spectrom-
eter. Limb sounding observations are also affected by Doppler shifts, but this effect is not
considered here, it is assumed to be treated separately.

5.1 Implementation strategy

The modeling of a sensor part is either a summation of different frequency components
(mixer), or a weighting of the spectra as a function of frequency (spectrometer) or viewing
direction (antenna) with the instrument response of concern. In all cases it is possible to
describe the sensor influence by an analytical expression. See for example? for more
details. These analytical expressions can be implemented and solved for each run of the
sensor model, but this would be relatively computationally demanding for cases when the
settings are kept constant, as the calculations are duplicated in an unnecessary manner, and
we want to find a better implementation strategy.

Summation and weighting of the spectral components are both linear operations, and
thus it is possible to model the effect of the different sensor parts as subsequent matrix
multiplications of the monochromatic pencil beam spectrum, as suggested in?:

y = Hn . . .H2H1i + ε (5.1)

wheren is the number of sensor parts to consider, and this results in that the sensor model
can be expressed as a single matrix multiplication (Eq.??)

y = Hi + ε

Applying Equation?? for the sensor model will clearly give very rapid calculations, and we
must find ways to calculateH.

History
000321 Started by Patrick Eriksson.
000826 First version finished by Patrick Eriksson.
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5.2 Integration as vector multiplication

The effect of both the antenna and the spectrometer can be expressed as an integral (e.g.?,
Eq. 86 and 94), and the question is how to transform these integrals into matrix operations.

The problem at hand is that the antenna and spectrometer responses and the zenith
angle and frequency grids are known, while the spectral values are unknown. This problem
corresponds to determine a (row) vectorh that multiplied with an unknown (column) vector,
g, approximates the integral of the product between the functionsg andf :

hg =
∫
f(x)g(x)dx (5.2)

whereg contains values ofg at some discrete points. The functionsf is here the response
for some sensor part, andg holds the spectral values.

The shape off andg between the grid points must be known to solve this problem.
Here it will be assumed that both functions are piecewise linear.

Following Figure??, the functiong can between the pointsx1 andx4 be expressed as a
sum of the two unknown valuesg1 andg2:

g(x) = g1 + (g2 − g1)
x− x1

x4 − x1
= g1

x4 − x
x4 − x1

+ g2
x− x1

x4 − x1
(5.3)

which can be rewritten as

g(x) = g1(a+ bx) + g2(c− bx), x1 ≤ x ≤ x4 (5.4)

where

a =
x4

x4 − x1
, b =

−1
x4 − x1

, c =
−x1

x4 − x1

A shorter expression can be obtained for the functionf as the valuesf1 andf2 are known:

f(x) = (d+ ex), x2 ≤ x ≤ x3 (5.5)

where

d = f1 − x2
f2 − f1
x3 − x2

e =
f2 − f1

x3 − x2

The integral in Equation??can now for ranges betweenx2 andx3 be calculated analytically
in a straightforward manner:∫ xb

xa
f(x)g(x)dx =

∫ xb

xa
(d+ ex)(g1(a+ bx) + g2(c− bx))dx = . . . =[

g1x
(
ad+

x

2
(bd+ ae) +

x2

3
be
)

+ g2x
(
cd+

x

2
(ce− bd)− x2

3
be
)]xb

xa

(5.6)

For the practical calculations, the integral is solved from one grid point to next, of either
f or g. The functions are assumed to be zero outside their defined ranges (for example,
f = 0 for x < x2). For the case shown in Figure??, the integration order would be
(xa, xb) = (x2, x3), (xa, xb) = (x3, x4), (xa, xb) = (x4, x5) . . .
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Figure 5.1: The quantities used in Section??.

Using Equation??, we can now determine how to calculateh. For each integration step,
hi andhi+1 are increased as

hi = hi + xb
(
ad+

xb
2

(bd+ ae) +
x2
b

3
be
)
− xa

(
ad+

xa
2

(bd+ ae) +
x2
a

3
be
)

hi+1 = hi+1 + xb
(
cd+

xb
2

(ce− bd)− x2
b

3
be
)
− xa

(
cd+

xa
2

(ce− bd)− x2
a

3
be
)

wherei is the index for whichxi ≤ xa andxb ≤ xi+1. The vectorh is initialized with
zeros before the calculation starts.

5.3 Summation as vector multiplication

The influence of the mixer and sideband filter of the sensor correspond to a summation of
pairs of frequency components. The two frequencies of the pair are related as

ν ′ = 2νLO − ν (5.7)

whereνLO is the frequence of the local oscillator signal, andν ′ is denoted as the image
frequency.

The intensity correspondence after the mixer and the sideband filter can be written as

IIF (ν) =
fs(ν)I(ν) + fs(ν ′)I(ν ′)

fs(ν) + fs(ν ′)
(5.8)

whereI(ν) is the intensity for frequencyν andfs the response of the sideband filter as a
function of frequency.

If the intensity is assumed to vary linearly between the points of the frequency grid,
Equation??can be written as

IIF (νi) =
1

fs(νi) + fs(ν ′i)

[
fs(νi)I(νi) +
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Figure 5.2: Schematic description of image frequency and sideband filtering.

+
fs(ν ′i)

νj+1 − νj

(
I(νj)(νj+1 − ν ′i) + I(νj+1)(ν ′i − νj)

)]
(5.9)

wherefs for the different frequencies is obtained by an analytical expression or interpo-
lation, andνj and νj+1 are the two points of the frequency grid surrounding the image
frequency,ν ′i. The row of theH matrix corresponding toνi is then

hi =
fs(νi)

fs(νi) + fs(ν ′i)

hj =
fs(ν ′i)

fs(νi) + fs(ν ′i)
νj+1 − ν ′i
νj+1 − νj

hj+1 =
fs(ν ′i)

fs(νi) + fs(ν ′i)
ν ′i − νj
νj+1 − νj

wherehi is the value ofh for frequencyνi etc. Remaining values ofH are zero.
For the special case when the image frequency matches perfectly a frequency grid point,

the equations above can be simplified to give

hi =
fs(νi)

fs(νi) + fs(ν ′i)

hj =
fs(ν ′i)

fs(νi) + fs(ν ′i)

The frequency grid after the mixer consists of the frequencies inside the primary band of the
grid before the mixer. To include frequencies from the image band (mirrored to the primary
band) would need an interpolation in the primary band that could cause unexpected effects.



Chapter 6

Data reduction

Many observation scenarios give rise to very large measurement vectors, larger than can
be handled practically during the inversions, and some kind of reduction of the data size is
needed. This data reduction can be made part of the sensor transfer matrix. In fact, the data
reduction can be viewed upon as an imaginary second spectrometer. The transfer matrix to
use is then (Eq.??)

H = HdHs

whereHd is the data reduction matrix andHs the sensor matrix.

6.1 Averaging of viewing angles

In some cases the spectra from different viewing angles are combined, either as a pure data
reduction or internally in the spectrometer. The rows ofHd for this case have the structure

h = [0, . . . , 0,
1
nv
, 0, . . . , 0,

1
nv
, 0, . . . , 0,

1
nv
, 0, . . . , 0] (6.1)

wherenv is the number of viewing angles to combine.

6.2 Data binning

Data binning means that neighboring channels are combined by weighted averaging. If
channelsi1 to i2 of y′ are combined to give elementj of y, the binning can be expressed as

yj =
1∑i2

i=i1
∆νi

i2∑
i=i1

∆νi(y′)i (6.2)

Row j of Hd is accordingly

hi =
∆νi∑i2
i=i1

∆νi
, i1 ≤ i ≤ i2 (6.3)

Other values ofh are zeros. The matrixHd is for data binning highly sparse.

History
000321 Created and written by Patrick Eriksson.
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6.3 Reduction by eigenvectors

A commonly used approach for reducing data sizes is to base the reduction of the eigen-
vectors of the covariance matrix expressing the variability of the measurements. These
empirical eigenvectors fulfills the relationships

Sy = EΛET (6.4)

whereΛ is a diagonal matrix holding the eigenvalues corresponding to the eigenvectors, the
columns ofE. The eigenvectors form an orthogonal basis:

I = ET
j Ej (6.5)

whereEj signifies thej first columns of the matrix.
The data reduction for this case is performed as

y = ET
j y′ (6.6)

that is

Hd = ET
j (6.7)

By basing the data reduction on the covariance matrix eigenvectors, the reduction main-
taining the maximum possible fraction of the variability of the spectra, for a givenj, is
achieved.



Chapter 7

Atmospheric weighting functions

This section describes how the calculation of the atmospheric weighting functions (WFs)
matrices is performed in the forward model. For several types of variables (such as species
profiles and fit of absorption continuum) WFs are obtained by semi-analytical expressions,
while for other quantities the WFs are obtained by straightforward perturbation calculations.

7.1 Calculation approaches

7.1.1 Pure numerical calculation

The most straightforward method to determine WFs is by perturbing one parameter at a
time. For example, the WF for the state variablep can always be calculated as

Kp
x =
F(x + ∆xpep,b)−F(x,b)

∆xp
(7.1)

whereKp
x is columnp of Kx, (x,b) is the linearization state,ep is a vector of zeros except

for the componentp that is unity, and∆xp is a small disturbance (but sufficiently large to
avoid numerical instabilities).

However, it is normally not needed to make a recalculation using the total forward model
as the variables are in general either part of the atmospheric or the sensor state, but not both.
If xp is an atmospheric variable, the calculation can be performed as (Eq.??)

Kp
x = H

[Fr(xr + ∆xpep,br)−Fr(xr,br)
∆xp

]
(7.2)

wherexr is the atmospheric part of the state vector etc (see further Sec.??).

7.1.2 Analytical expressions

For some atmospheric variables, such as species abundance, it is possible to derive a semi-
analytical expression for the WFs. This is advantageous because it results in faster and more

History
000310 Started by Patrick Eriksson.
000911 First version finished by Patrick Eriksson.
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accurate calculations. By Equation??,

Kx = H
∂i
∂x

,

it can be seen that the core problem of finding these analytical expressions is to determine
∂i/∂x.

If xp influences only the conditions at one altitude, the problem can be simplified as (?,
Eq. 43)

Kp
x = H

∂i
∂xp

= H

[
∂i
∂Sp

∂Sp

∂xp
+

∂i
∂kp

∂kp

∂xp

]
(7.3)

whereSp and kp are the source function and the absorption at the (vertical) altitudep,
respectively.

The absorption and source function in Equation??are defined in vertical coordinates (as
we retrieve atmospheric variables as functions of altitude). For different reasons it is more
practical to work with these quantities defined along the LOS. For example, the source func-
tion and transmission along the LOS are already determined when calculating the spectra.
To solve this problem, Equation?? is expanded one step further

Kp
x = H

[
∂i
∂σ

∂σ

∂Sp
∂Sp

∂xp
+
∂i
∂κ

∂κ

∂kp
∂kp

∂xp

]
(7.4)

whereσ andκ are the source function and the absorption along the LOS, respectively.
The term∂i/∂σ is here denoted as source function line of sight weighting functions

(source LOS WFs) and is discussed in Section??. The term∂i/∂κ is denoted as absorption
LOS WFs and is discussed in Section??. These terms are treated seperately as they are
common for all variables influencing the source function or the absorption.

The term∂Sp/∂xp can often be neglected. When scattering is neglected and local
thermodynamic equilibrium is assumed, the only variable of interest affecting the source
function is the temperature. See further Section??. For other variables, such as species
abundance,∂Sp/∂xp = 0.

It was decided to allow that the retrieval grids differ between species, temperature etc.
This results in that the terms∂σ/∂Sp and∂κ/∂kp are not constant, they change according
to the selected retrieval grid. Accordingly, it is not suitable to include these terms in the
corresponding LOS WFs, they must be treated seperately.

7.2 Absorption line of sight weighting functions

The absorption line of sight weighting functions are defined as

Kq
κ =

∂i
∂κq

(7.5)

These weighting functions express how the intensity is affected by changes of the absorption
at the points of the line of sight. Note thatκ is the total absorption, not the absorption of a
single species.

For simplicity, the absorption LOS WFs are below derived without using vector nota-
tion. The notation used here is identical to the one used in Section??.
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Figure 7.1: The terms used for the derivation of line of sight weighting functions when the
individual atmospheric parts are passed a single time. The variables are defined in Figure
??.

7.2.1 Single pass

This section derives the absorption LOS WFs for cases when each individual part of the
atmosphere is passed only once, as for upward looking measurements, or when each point
in the atmosphere is treated separately (2D simulations). With other words, the conditions
are not assumed to be symmetrical around some point. Accordingly, 1D limb sounding and
1D downward observations are not treated here, and are instead discussed in Section??and
??, respectively.

By rewriting Equation??, the monochromatic pencil beam intensity can be expressed
as (see Fig.??)

I = I2ζ1 + ψ1(1− ζ1), q = 1

I =
[
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

]
Θq−1

1 , 1 < q < n (7.6)

I =
[
Inζn−1 + ψn−1(1− ζn−1)

]
Θn−1

1 , q = n

where it assumed that the LOS hasn points, index 1 is the point closest to the sensor,

Iq = InΘn
q +

n−1∑
i=q

ψi(1− ζi)Θi
q, 1 ≤ q < n (7.7)

is the intensity reaching pointq along the LOS,In is the radiation at point n (the radiation
entering the atmosphere), and

Θp
q =

p−1∏
i=q

ζi for p > q, and Θp
p = 1 (7.8)

the transmission from pointq andp. It should be noted thatIq andΘp
q not are calculated

as indicated by the equations above. These quantities are instead updated when going from
one step of the LOS to the next, as described below. It should also be noted that ground
reflections are here neglected and are discussed seperately below.

The transmissionsζq−1 andζq are separated in Equation?? as they are the only terms
including the absorption at pointq. For example

ζq−1 = e−∆l(κq−1+κq)/2 (7.9)

and we have that

∂ζq
∂κq

= −∆l
2
ζq (7.10)
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∂ζq−1

∂κq
= −∆l

2
ζq−1 (7.11)

∂ζq−1ζq
∂κq

= −∆lζq−1ζq (7.12)

The derivate of transmission values besideζq andζq−1 with respect toκq is zero.
The LOS WFs are now easily determined, using the case1 < q < n as example

Kq
κ = −∆l

2

[
2Iq+1ζqζq−1 +ψq(1− 2ζq)ζq−1−ψq−1ζq−1

]
Θq−1

1 , 1 < q < n(7.13)

which can be rewritten as

Kq
κ = −∆l

2
[I2 − ψ1]Θ2

1, q = 1

Kq
κ = −∆l

2
[2(Iq+1 − ψq)ζq + ψq − ψq−1]Θq

1, 1 < q < n (7.14)

Kq
κ = −∆l

2
[In − ψn−1]Θn

1 , q = n

Note that oneζq is incorporated inΘq
q, and thatΘ2

1 = ζ1.
These equations are used for the practical calculations, but it could be of interest to note

that Equation??can be written

Kq
κ = −∆l

2
[(Iq+1 − ψq)ζq + Iq − ψq−1]Θq

1, 1 < q < n, (7.15)

showing that the expressions forq = 1 andq = n are special cases of the general expression
where the terms connected toq − 1 andq, are neglected, respectively.

The iteration starts here at the end closest to the sensor the sensor, that is, at index
1. (reversed order to the RTE part). The iteration is started by settingI1 to the already
calculated spectrum andΘ1

1 to 1. These two variables are updated as

Iq+1 =
Iq − ψq(1− ζq)

ζq
(7.16)

Θq+1
1 = Θq

1ζq (7.17)

For 2D calculations possible ground reflections inside the LOS must be handled. The
ground cannot be found at any of the end points of the LOS, and the correspondance to
Equation?? for a ground point is (c.f. Equations??and??)

I =
[
Iq+1ζq(1− e)ζq−1 + ψq(1− ζq)(1− e)ζq−1 + eBζq−1 +

+ψq−1(1− ζq−1)
]
Θq−1

1 , 1 < q < n (7.18)

and the corresponding absoprtion LOS WF for this point is (cf. Eq.??)

Kq
κ = −∆l

2
[2(Iq+1 − ψq)ζq(1− e) + ψq(1− e) + eB − ψq−1]Θq

1 (7.19)

(7.20)
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The intensity and the transmission are here updated as

Iq+1 =
Iq − ψq(1− ζq)(1− e)− eB

ζq(1− e)
Θq+1

1 = Θq
1ζq(1− e)

It is noteworthy that the effect of a ground intersection is included inI1 when the iteration
starts.

7.2.2 1D limb sounding

For limb sounding and when the atmosphere is assumed to be consist of homogenous layers
(horizontally stratified), there is a perfect symmetry around the tangent point. This covers
also the case with a ground reflection. For these cases the distance from the sensor is
neglected, the important factor is the vertical altitude. All altitudes above the tangent point
are passed twice (Fig.??) and both crossings of an atmospheric layer are treated to be
identical for the retrievals, and this fact must also be reflected by the WFs.

Using a nomenclature similar to the one used for Equation??, the intensity of a limb
sounding observations can be expressed as (Fig.??)

I =
(
I2

(
ζ1Θ1

1

)2
+ ψ1(1− ζ1)

(
Θ1

1

)2
ζ1 + I1

1ζ1 + ψ1(1− ζ1)
)
Θn

2 , q = 1

I =
[(
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

)(
Θq−1

1

)2
ζq−1ζq +

+Iq−1
q−1ζq−1ζq + ψq−1(1− ζq−1)ζq + ψq(1− ζq)

]
Θn
q+1, 1 < q < n (7.21)

I =
(
Inζn−1 + ψn−1(1− ζn−1)

)(
Θn−1

1

)2
ζn−1 + In−1

n−1ζn−1 +

+ψn−1(1− ζn−1), q = n

where the expression forq = 1 is commented below, index 1 of the LOS is the tangent (or
the ground) point, indexn corresponds to the highest altitude,

Iq = InΘn
q +

n−1∑
i=q

ψi(1− ζi)Θi−1
q (7.22)

is the intensity reaching pointq from the part of the atmosphere furthest away from the
sensor,In the intensity at pointn,

Iqq =
[ q−1∑
i=1

(ψi(1− ζi)Θi−1
1

]
Θq

1 +
q−1∑
i=1

ψi(1− ζi)Θq
i+1, q > 1 (7.23)

is the intensity generated along the LOS (towards the sensor) between the two crossing with
altitudeq, I1

1 = 0, Θ is defined by Equation??. The equations definingIq, Iqq andΘ neglect
ground reflections, but could easily be extended to cover also such cases. However,I1

1 and
Θ1

1 are included forq = 1 to make Equation??valid for cases with ground reflections. The
treatment of ground reflections are discussed seperately last in the section.
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Figure 7.2: The terms used for the derivation of line of sight weighting functions for 1D
limb sounding.

If the different combinations ofζq−1 and ζq are grouped, for example, Equation??
becomes

I =
[(

(Iq+1 − ψq)ζ2
q−1ζ

2
q + (ψq − ψq−1)ζ2

q−1ζq + ψq−1ζq−1ζq
)(

Θq−1
1

)2
+

+(Iq−1
q−1 − ψq−1)ζq−1ζq + (ψq−1 − ψq)ζq + ψq

]
Θn
q+1 (7.24)

This equation has some higher products betweenζq−1 andζq than Equation??, and the
derivatives, with respect toκq, of these product are

∂ζ2
q−1ζq

∂κq
= −3∆l

2
ζ2
q−1ζq (7.25)

∂ζ2
q−1ζ

2
q

∂κq
= −2∆lζ2

q−1ζ
2
q (7.26)

Using Equations??, ??, ?? and??, the LOS WFs for 1D limb sounding can be determined
to be

Kq
κ = −∆l

2

[(
2I2ζ1 + ψ1(1− 2ζ1)

)(
Θ1

1

)2
+ I1 − ψ1

]
Θn

1 q = 1

Kq
κ = −∆l

2

[(
4(Iq+1 − ψq)ζq−1ζq + 3(ψq − ψq−1)ζq−1 + 2ψq−1

)(
Θq−1

1

)2
ζq−1 +

+2(Iq−1
q−1 − ψq−1)ζq−1 + ψq−1 − ψq

]
Θn
q , 1 < q < n (7.27)

Kq
κ = −∆l

2

[(
2Inζn−1 + ψn−1(1− 2ζn−1)

)(
Θn−1

1

)2
ζn−1 +

+In−1
n−1 − ψn−1

]
ζn−1, q = n

The function calculating these LOS WFs takes the total spectrum as input (that is,Inn ) and
it is then most suitable to iterate downwards, starting with pointn. For each iteration, the
quantities are updated as

Iq−1 = Iqζq−1 + ψq−1(1− ζq−1)
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Θq−1
1 =

Θq
1

ζq−1

Iq−1
q−1 =

Iq − ψq−1(1− ζq−1)(1 + (Θq−1
1 )2ζq−1)

ζq−1

The iteration is started by settingIn to cosmic background radiation, or correspondingly,
and settingΘn

1 to the square root of the total transmission. As mentioned above,Inn is an
input to the function.

No special attention needs to be given here to possible ground reflections. This as the
effects of a ground reflection are already included inInn andΘn

1 when starting the iteration.
The procedure of settingΘn

1 to the square root of the total transmission maintains the sym-
metry and makes it possible to treat the ground as an imaginary altitude “below” point 1. If
there is a ground reflection,Θ1

1 andI1
1 equal

√
1− e andeB, respectively, at the end of the

iteration.

7.2.3 1D downward looking observations

Downward observation from an aircraft or a balloon can mainly be treated as a combina-
tion of limb sounding and upward looking observations. The altitudes below the platform
altitude are covered by the limb sounding expressions with a suitable choice ofIq for the
highest point. The altitudes above the platform altitude are treated by the upward looking
equations, but also considering the transmission through the lower altitudes.

If q is the index for platform altitude, the intensity can be expressed as

I =
(
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

)(
Θq−1

1

)2
ζq−1 +

+Iq−1
q−1ζq−1 + ψq−1(1− ζq−1) (7.28)

and the corresponding WF is

Kq
κ = −∆l

2

[(
3(Iq+1 − ψq)ζq−1ζq + 2(ψq − ψq−1)ζq−1 + ψq−1

)(
Θq−1

1

)2
+

+Iq−1
q−1 − ψq−1

]
ζq−1 (7.29)

7.3 Source function line of sight weighting functions

The source function line of sight weighting functions are defined as

Kq
σ =

∂i
∂σq

(7.30)

These weighting functions express how the intensity is affected by changes of the source
function at the points of the line of sight. The source and absorption LOS WFs are tightly
related and this section follows closely Section??.
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7.3.1 Single pass

As, for example,

ψq =
σq + σq+1

2
(7.31)

the derivate of the mean source function values with respect toσq is

∂ψq−1

∂σq
=
∂ψq
∂σq

=
1
2

(7.32)

This derivate for otherψ terms is zero.
Using??, the source LOS WFs for upward looking observations can be determined to

be

Kq
σ =

1− ζ1

2
, q = 1

Kq
σ =

1− ζq−1ζq
2

Θq−1
1 , 1 < q < n (7.33)

Kq
σ =

1− ζn−1

2
Θn−1

1 , q = n

For ground points in 2D calculations, the Wfs are (cf. Eq.??)

Kq
σ =

(1− ζq)(1− e)ζq−1 + 1− ζq−1

2
Θq−1

1 , 1 < q < n (7.34)

The practical calculations, such as the updating ofΘ, follow the absorption LOS WFs (Sec.
??).

7.3.2 1D limb sounding

The 1D limb sounding source LOS WFs are (derived using Eq.??)

Kq
σ =

1
2

(
1− ζ1

)(
1 +

(
Θ1

1

)2
ζ1

)
Θn

2 , q = 1

Kq
σ =

1
2

[
(1− ζq−1ζq)

(
Θq−1

1

)2
ζq−1ζq + (1− ζq−1)ζq +

+1− ζq
]
Θn
q+1, 1 < q < n (7.35)

Kq
σ =

1
2

(
(1− ζn−1)

(
Θn−1

1

)2
ζn−1 + 1− ζn−1

)
, q = n

The practical calculations follow the absorption LOS WFs (Sec.??).

7.3.3 1D downward looking observations

The source LOS WFs for downward looking observations are determined by the upward
and the limb sounding expressions in the same manner as for the absorption LOS WFs
(Sec.??).

The LOS WF for the index corresponding to the platform altitude is (cf. Eq.??) obser-
vations can be determined to be

Kq
σ =

1
2

[
(1− ζq−1ζq)

(
Θq−1

1

)2
ζq−1 + 1− ζq−1

]
(7.36)
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Figure 7.3: Examples on basis functions for a vertical grid with a 1 km spacing: —— 30 km,
– – – 31 km and –· – 32 km.

7.4 Transformation from vertical altitudes to distances along
LOS

7.4.1 Basis functions

The source function and the absorption, both as a function of vertical altitude(k) and along
the LOS(κ), are assumed to vary linear between the points of the grid of concern. The
functions to express the quantities between grid points are denoted as basis functions. For
picewise linear functions, the basis functions decline, from the point of interest, linearly
down to zero at neighboring points. Such functions are here denoted as tenth functions
(Fig. ??).

7.4.2 Transformation from z to l

The forward model uses internally a grid along the line of sight (Sec.??), while the atmo-
spheric WF matrices are calculated for some user specified vertical grid, and a transforma-
tion between these two grids must be performed. This transformation is achieved by the
terms,∂κ/∂kp and∂σ/∂Sp. As the source function and the absorption are assumed to
have the same funcional behavoiur (piece wise linear), these two terms are identical if the
retrieval grid is the same for both quantities:

∂κ

∂kp
=

∂σ

∂Sp
(7.37)

For example, the term∂κ/∂kp gives the relationship between the absorption along the LOS
and a change of the absorption at one altitude. Figure?? exemplifies∂κ/∂kp for three



42 ATMOSPHERIC WEIGHTING FUNCTIONS

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

B
as

is
 f

u
n

ct
io

n

Distance from z
tan

 [km]

Figure 7.4: The basis functions of Figure?? shown as a function of the distance from the
tangent point, whereztan = 30 km.

altitudes. Ideally, the following relationship should be fulfilled for allz∑
i

kiφik(z(l)) =
∑
j

κjφjκ(l) (7.38)

whereφk andφκ are the basis functions fork andκ, respectively. However, as can be seen
in Figure??, φik expressed along the LOS is not a piecewise linear function and cannot be
fitted perfectly by the basisφκ. Hence, some approximation is needed, and the most natural
choice for this approximation is to fulfill Equation?? only for the grid points along the
LOS:

κq =
∑
i

kiφik(z(lq)) (7.39)

wherelq is the distance along the LOS for the corresponding toκq. Note that atlq all φjκ
are zero except forφqκ, that is unity.

We have now that

∂κq

∂kp
= φpk(z(lq)) (7.40)

Hence, term∂κ/∂kp is determined by the values ofφpk at the altitudes corresponding to the
grid points of the LOS.

Assuming that the LOS altitudeq, zκq , is found between retrieval pointsp− 1 andp, at
the altitudeszkp−1 andzkp , respectively, we have that

∂κq

∂kp
=
zκq − zkp−1

zkp − zkp−1

(7.41)
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If zκq is further away fromzkp than the neighbouring retrieval points, the derivative is zero.
The derivative is also treated to be zero ifzκq is outside the retrieval grid (that is, below or
above all retrieval altitudes).

The basis functions fork change if the retrieval grid is changed, and as the retrieval
grid is individual for the species, temperature etc., the term∂κ/∂kp must be determined for
each calculation of a WF matrix.

7.5 Species WFs

As it is assumed here that the species have no influence on the source function, species WFs
are calculated as (cf. Eq.??)

Kp
x = H

∂i
∂κ

∂κ

∂kp
∂kp

∂xp
(7.42)

The term∂i/∂κ is described in Section??, while the term∂κ/∂kp is treated in Section
??, and it remains to determine∂kp/∂xp. It is assumed below in this section thatx only
represents a single species.

The species absorption can be written as

kp = k̄psx
p +

∑
i6=s

kpi (7.43)

wherep is the altitude of concern,̄ks is the absorption of the species of interest, normalized
to the units of the corresponding values ofx (or b) andki the total absorption for other
species. We have then that

∂kp

∂xp
= k̄ps (7.44)

Different units for species retrievals are allowed. The possible units are

1. Fractions of linearization state [-], i.e.x/x0 wherex0 is the linearization state

2. Volume mixing ratio [-] (no dimension)

3. Number density [molecules/m3)

Accordingly, for the practical calculations, the absorption of the species of interest is
needed, and a possibility to scale to the absorption from the unit used by the forward model
to the other two units considered.

It is advantageous for the retrieval that the values ofx are of similar magnitudes (??)
as the numerical precision is limited. This fact makes WFs in fractions of the linearization
state (or rather, the a priori state) interesting as the values ofx are then all around 1. In
addition, Equation?? is especially simple for this case:

∂kp

∂xp
= kps (7.45)

asxp = 1.
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Figure 7.5: Fit of continuum absorption with off-sets at three positions (ncont = 2). The
outermost frequencies, hereν1 andν3, are placed at the end points of the range covered
(νmin andνmax, respectively).

7.6 Continuum absorption WFs

These WFs are used to fit unknown absorption that varies smoothly inside the frequency
range covered. This absorption is added to the species absorption:

kp = kps + kpc (7.46)

wherekps is the summed species absorption andkps the continuum absorption.
The continuum absorption is represented by a polynomial for each altitude. The polyno-

mials are characterized by the magnitude of the absorption at a number of points inside the
frequency range covered (Fig.??). This approach was selected as it gives the possibility to
impose positive constraints in a straightforward manner. A direct polynomial representation
(k = k0 + k1ν + k2ν

2...) is less favorable regarding this aspect.
The number of points isncont + 1 wherencont is the polynomial order selected. The

points are equally spaced between the lowest and highest frequency,νmin andνmax, con-
sidered. Figure?? exemplifies this forncont = 2. The points are accordingly placed at the
following frequencies

νi = νmin +
(νmax − νmin)(i− 1)

ncont
, 1 ≤ i ≤ (ncont + 1) (7.47)

This equation results in that the single point forncont = 0 is placed atνmin, but the position
of the frequency point is for this case of no importance as the corresponding WF is constant
(as a function of frequency). With other words, ifncont = 0, the WFs are simply

∂kp

∂xp1
= 1 (7.48)
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To determine the frequency dependency of the WFs for higher values ofncont, the La-
grange’s formula can be used. This formula gives the polynomial of orderN−1 that passes
throughN fixed points (?, Eq. 3.1.1):

k(ν) =
(ν − ν2)(ν − ν3) . . . (ν − νN )

(ν1 − ν2)(ν1 − ν3) . . . (ν1 − νN )
x1 +

+
(ν − ν1)(ν − ν3) . . . (ν − νN )

(ν2 − ν1)(ν2 − ν3) . . . (ν2 − νN )
x2 + · · ·+

+
(ν − ν1)(ν − ν2) . . . (ν − νN−1)

(νN − ν1)(νN − ν2) . . . (νN − νN−1)
xN (7.49)

wherexi is the absorption at the selected frequency points,νi, that are given by Equation
??, andN = ncont + 1.

The frequency dependency of the continuum WFs can be obtained by differentiating
Equation??:

∂kp(ν)
∂xpi

=
(ν − ν1) . . . (ν − νi−1)(ν − νi+1) . . . (ν − νN )

(νi − ν1) . . . (νi − νi−1)(νi − νi+1) . . . (νi − νN )
(7.50)

This equation gives, for example, forncont = 1

∂kp(ν)
∂xp1

=
νmax − ν

νmax − νmin
, νmin ≤ ν ≤ νmax (7.51)

∂kp(ν)
∂xp2

=
ν − νmin

νmax − νmin
, νmin ≤ ν ≤ νmax (7.52)

Note that these WFs have no altitude variation. Or with other words, they are identical for
all p.

7.7 Temperature profile WFs

A critical factor for the calculation of temperature WFs is if hydrostatic equilibrium is as-
sumed or not. If hydrostatic equilibrium is neglected, the WFs can be calculated by semi-
analytical expressions, while if hydrostatic equilibrium is assumed, the WFs are obtained
by perturbations.

A change of the temperature inside an atmospheric layer will change the line of sights
for beams passing this altitude. This effect should however normally be small, and it is here
neglected.

7.7.1 Without hydrostatic equilibrium

For some measurement situations it can be questionable to assume that the pressure, tem-
parature and geometrical altitude, valid for the measurement, fulfill the law of hydrostatic
equilibrium. One example is 1D limb sounding when there is a large horizontal distance
between the nadir point of the tangent point for the start and end points of the scan. This
is, for example, the case for the Odin observations where the tangent point will move in the
latitude direction with a speed of about 9 km/s and a scan takes 1 – 2 minutes.
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If the constrain of hydrostatic equilibrium is neglected, WFs for the temperature profile
can be calculated following Equation??, that is:

Kp
x = H

[
∂i
∂σ

∂σ

∂Sp
∂Sp

∂tp
+
∂i
∂κ

∂κ

∂kp
∂kp

∂tp

]
(7.53)

wheret is the vector describing the vertical temperature profile.
The term∂i/∂σ, the source LOS WFs, are derived in Section??, while the absorption

LOS WFs (∂i/∂κ) are found in Section??. As a single grid is here of concern, Equation??
is valid, that is,∂κ/∂kp equals∂σ/∂Sp. These two terms are discussed in Section??.

Here it is assumed thatS equals the Planck function,B (Equation??), and the derivative
of the source function with respect to the temperature is (see also Equation 44 of?)

∂S

∂T
=

hν

kBT 2

(
1− e−hν/kBT

)−1
B(ν, T ) (7.54)

The term∂Sp/∂tp is calculated using Equation??whereT is replaced bytp.
The term∂kp/∂tp cannot easily be determined analytically. Instead, the total absorp-

tion is calculated for a temperature profile that is 1 K higher at all altitudes than the assumed
profile. The difference between the two absorption matrices are then interpolated to the tem-
perature profile retrieval grid, giving an estimation of the derivative of the absorption with
respect to the temperature at the grid altitudes. Schematically

∂kp

∂tp
= Υ(k(T0 + 1)− k(T0))

whereΥ is the interpolating function from the vertical absorption grid to the retrieval grid,
k the total absorption, andT0 the assumed temperature profile.

7.7.2 With hydrostatic equilibrium

The gases in the atmosphere behave like an ideal gas, and the pressure the temperature and
the vertical altitudes above one point are linked by the fact that hydrostatic equilibrium must
be fulfilled. The pressure in the atmosphere changes as

∆P = −ρg∆z (7.55)

where∆P is the change in pressure for an altitude change of∆z, ρ is the air density and
g the gravitational acceleration. If this expression is combined by the ideal gas law, the
hypsometric equation is obtained:

z2 − z1 =
RdT̄v
g

ln
(P1

P2

)
(7.56)

where the indeces 1 and 2 indicate two close altitudes,Rd is the gas constant for dry air
(287.053 JK−1kg−1) and T̄v the average virtual temperature between the altitudesz1 and
z2. The virtual temperature is introduced to include effects of the variable amount of water
vapor. If no liquid water is present, the virtual temperature can be calculated as

Tv = T
(
1 + 0.379

xH2O

1− xH2O

)
(7.57)
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wherexH2O is the volume mixing ratio of water vapor.
The calculations take into account that the gravitational acceleration and the average

molecular weight changes with altitude. ...(To be written!!)
The temperature WFs with hydrostatic equilibrium are basically calculated by pertur-

bations (Eq.??). The temperature at each pressure level is changed 1 K. When considering
hydrostatic equilibrium, the ground pressure is kept constant, i.e. the vertical altitudes of the
pressure levels below the point of concern are not changed. (Finish after implementation!!
Smart tricks as to calculate the absorption for +1K (effect of vertical changes?)?)

7.8 WF for ground emission factor

This WF is not yet implemented but this can easily be done.
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Chapter 8

Measurement errors

Following Equation??,

y = F + ε,

measurement errors,ε are here defined as errors that are additive to the spectrum, that is,
not dependent on the actual spectrum. Error sources falling into this category are thermal
noise and baseline ripples (there is a small influence of the magnitude of the spectrum on
the thermal noise but this effect is normally totally negligible).

The term baseline ripple is used here as a common name for all instrumental imperfec-
tions causing a distortion of the spectra, for example, reflections inside the receiver, adding
theoretically a sinusoidal term to the spectrum.

8.1 General

The sensor transfer matrix can be neglected when treating measurement errors as these
errors are assumed to be additive to the spectra. On the other hand, a possible data reduction
must be considered. This fact can also be understood by Equation??:

y = Hdy′ = Hd(Hsi + ε′) = Hi + ε

Using this equation, a measurement error WF can be written as

Kp
x =

∂y
∂xp

=
∂ε

∂xp
= Hd

∂ε′

∂xp
(8.1)

Accordingly, quantities connected with the measurement errors shall be multiplicated with
the data reduction matrixHd, this in contrast to the atmospheric WFs where the total reduc-
tion sensor matrix must be applied (Eq.??).

History
000315 Created and written by Patrick Eriksson.
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8.2 Thermal noise

The nature of the thermal noise differs from all other variables and error sources. The
most distinct feature of the thermal noise is the low correlation between the measurements
channels, in fact, the thermal noise is normally assumed to be totally uncorrelated. Such
an assumption results in that a variable for each channel would be needed to model, or to
fit, the measurement noise, and this is not a practical solution. In addition, it is not even
of interest to know the actual magnitude of the thermal noise for each single measurement,
we are instead interested in the statistical characteristics of the thermal noise. The special
nature of the thermal noise has the consequence that this term is treated differently than
the other variables. Instead of providing weighting functions, the forward model gives the
covariance matrix for the thermal noise.

Thermal noise is introduced in two ways, by the observation of the atmosphere, and
by the calibration process. The first part is here denoted as measurement thermal noise,
while the latter is denoted as calibration thermal noise. In many cases, there is no practical
difference between the two terms and they can together be treated as measurement thermal
noise. However, if a single calibration measurement is used for a number of atmospheric
spectra that are inverted jointly, as is the normal case for limb sounding, the error introduced
by the calibration is totally correlated between the different viewing angles and it could be
of importance to consider this fact.

8.2.1 Measurement thermal noise

As mentioned above, measurement thermal noise is here defined to be totally uncorrelated
between the different viewing angles. The magnitude of the thermal noise, expressed in
brightness temperatures, is described by the radiometer noise formula

σitn =
q
(
Trec + T ia

)
√

∆νiτ
(8.2)

whereσitn is the standard deviation of the thermal noise for channeli, q a compensation
factor Trec the receiver noise temperature,Ta the antenna temperature,∆ν the channel
bandwidth andτ the integration time.

The factorq is used to compensate for extra noise introduced by the calibration, losses in
the spectrometer etc. It is important to defineq andτ consistently. Let us take an ordinary
load switching instrument as example, where one half of the time is used to measure the
atmosphere and the other half is used to observe a reference load. If thenτ gives the
total integration time,q should be (about) a factor

√
2 higher than whenτ gives only the

integration time for the atmospheric observations.
The thermal noise is often assumed to be uncorrelated between the measurement chan-

nels, and the corresponding covariance matrix,S is then diagonal, where the diagonal ele-
ments are

Siitn =
(
σitn

)2
(8.3)

whereSii is element(i, i) of the matrix.
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Figure 8.1: The frequency
correlation functions. The
frequency is scaled to the
correlation length as(νi −
νj)/νc.

However, for most spectrometer types there exist in fact some correlation of the noise
between the channels as there is an overlap of the channel frequency responses. The inter-
channel correlation of the thermal noise can be treated in the forward model by three differ-
ent correlation functions: (1) gaussian

cij = exp

(
−
(
νi − νj
fc

)2
)

(8.4)

(2) exponential

cij = exp

(
−|νi − νj |

fc

)
(8.5)

and (3) tenth

cij = 1− |νi − νj |(1− e
−1)

νc
, |νi − νj | <

νc
(1− e−1)

cij = 0, |νi − νj | ≥
νc

(1− e−1)
(8.6)

whereνc is the frequency distance where the correlation has declined toe−1, the frequency
correlation length, andνi the middle frequency of channeli (Fig. ??). It is also possible to
apply a threshold for the correlation, where allcij below the threshold value are set to 0.

The covariance matrix for one viewing angle with inter-channel correlation is

Sijtn = cijσitnσ
j
tn (8.7)

The correlation between different viewing angles is set to 0.
To include the effect of data reduction, the covariance matrix is multiplicated withHd

as

Stn = HdS′tnH
T
d (8.8)

whereS′tn is the covariance matrix before data reduction.
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8.2.2 Calibration thermal noise

In contrast to the measurement thermal noise, the calibration thermal noise is assumed to
be totally correlated between the different viewing angles. This latter noise as assumed to
be identical between the channels and a simplified expression is used:

σitn =
Tcal√

∆νiτcal
(8.9)

whereTcal is an effective noise temperature covering all relevant effects andτcal the cali-
bration integration time.

The correlation functions used for the measurement thermal noise can also be applied
for the calibration thermal noise.

Data reduction is considered by Equation??.

8.3 Sinusoidal baseline ripple

Reflections inside the receiver give theoretically rise to a sinusoidal baseline ripple. The
relationship between the period length in the spectrum,∆ν2π, and the physical distance
between the reflecting objects,l, is (?)

∆ν2π =
c

2l
(8.10)

wherec is the speed of light.
This type of baseline ripple is retrieved by expressing the sine functions, with unknown

amplitude and phase, as a sum of sine and cosine functions (?)

εsin =
n∑
i=1

(
xisin

(
2π
ν − ν̄
∆νi2π

)
+ xi+ncos

(
2π
ν − ν̄
∆νi2π

))
(8.11)

wheren is the number of ripple terms,̄ν the mean frequency,νi2π the period length of ripple
i andxi are the amplitude of the sine and cosine functions to be determined. The length of
the part ofx used to fit sinusoidal baseline ripples is accordingly2n. The mean frequency
is defined below by Equation??.

Using Equation??, the WFs for the sine and cosine terms can be determined to be

Kp
x = Hdap (8.12)

and

Kp
x = Hdbp (8.13)

respectively, where the elements of the vectorsap andbp are

aip = sin

(
2π
νi − ν̄
∆νp2π

)
(8.14)

and

bip = cos

(
2π
νi − ν̄
∆νp2π

)
, (8.15)



8.4 POLYNOMIAL BASELINE RIPPLE 53

1

-1

1-1

p=1

p=2

p=0

f’ Figure 8.2: Polynomial
WFs of order 0, 1 and
2. The scaled frequency is
f ′ = (ν − ν̄)/∆ν.

whereνi is the frequency for channeli.
It should be noted that the treatment of baseline ripple neglects the effect of the spec-

trometer and Equation?? assumes that the widths of the spectrometer channels are much
smaller than the period length of the ripple. However, this should be the situation found for
most practical situations.

8.4 Polynomial baseline ripple

A polynomial representation of the baseline ripple can be suitable at many occasions. One
example is when a sinusoidal baseline ripple has a period that exceeds significantly the total
frequency coverage of the receiver and the exact period length is not known. A baseline
polynomial can also be used to fit continuum absorption for linear situations, e.g. to fit the
unknown emission from the troposphere for ground-based observations.

The polynomial measurement error is modeled as

εpol = x0 +
npol∑
i=1

xi

(
ν − ν̄
∆ν

)i
(8.16)

wherenpol is the polynomial order selected,xi are the polynomial coefficients to be deter-
mined, and̄ν and∆ν normalization factors. The part ofx corresponding to the polynomial
fit of the baseline is accordingly

x =



...
x0

x1
...

xnpol
...


(8.17)
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The normalization factors are needed to avoid extreme values (without the factors the quan-
tity νi would have been calculated), resulting in that the magnitudes of the coefficientsxi
will not deviate too strongly. The factors are calculated as

ν̄ =
νmin + νmax

2
(8.18)

∆ν =
νmax − νmin

2
(8.19)

whereνmin andνmax are the minimum and maximum value, respectively, of the frequency
grid given by the spectrometer. These definitions of the normalization factors give a scaled
frequency grid extending from -1 to 1.

The polynomial WFs are

Kp
x = Hdap (8.20)

where the elements ofap are

aip =

(
νi − ν̄

∆ν

)p
(8.21)

Note that forp = 0, ap = 1.
Examples on polynomial weighting functions are shown is Figure??.

8.5 Piecewise polynomial baseline ripple

If the spectrum is recorded with a number of spectrometers (or individual spectrometer
parts) there could be a difference in the level between the different parts of the spectrum.
Figure??shows an example on such a spectrum.

The baseline for such cases can be retrieved by piecewise polynomials where an indi-
vidual polynomial is applied for each part of the spectrum. For frequencies inside the part
of concern the WFs are given by Equation??, while for remaining frequencies the WFs are
0.
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Figure 8.3: Example on fit of baseline with piecewise polynomials. The top figure shows a
(poor!) test measurement with the 22.2 GHz water vapor radiometer at Onsala Space Ob-
servatory, Sweden. The spectrum was recorded by an auto-correlator spectrometer having
four 20 MHz wide individual parts, clearly seen in the spectrum. The middle figure shows
the measurement spectrum after a correction based on the retrieved baseline variables, and
the simulated spectrum corresponding to the retrieved profile. The baseline is fitted by 3:rd
order polynomial over the whole frequency range, and a 2:nd oder polynomial inside each
20 MHz range. The lower figure shows the difference between the spectra in the middle
figure, the residual.
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Chapter 9

Sensor variables weighting functions

This section presents weighting functions for sensor variables, beside the ones treated as
measurement errors. The covered features are calibration, pointing and frequency instabil-
ity.

9.1 Calibration weighting functions

9.1.1 Proportional calibration errors

This section gives the WF for situations where a calibration uncertainty gives an error that
is directly proportinal to the noise free spectrum. Such a calibration uncertainty can be
encountered for e.g. ground-based observations of altitudes above the tropoapuse, where
a compensation of the tropospheric attenuation must be made, as an error of the assumed
tropospheric opacity gives rise to a proportional calibration error.

A measurement with a proportional calibration uncertainty can be expressed as

y = Hd

(
(1 + xcal)Hsi + ε′

)
(9.1)

See Equation?? for definition of the variables. The WF for this case is easily obtained

Kx = HdHsi = Hi = y − ε (9.2)

that is, the WF is identical to the (noise free) spectrum given by the forward model.

9.1.2 Calibration load temperatures

The calibration of a Dicke switched radiometer is often performed by observing two loads
with known intensity. The calibration formula is then (neglecting data reduction)

yi = Ii1 + (Ii2 − Ii1)
V i
atm − V i

1

V i
2 − V i

1

(9.3)

History
000320 Created and written by Patrick Eriksson.
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Here In ARTS Description

– – –

Table 9.1: Symbols used in this chapter and the corresponding ARTS notation.

whereyi is the calibrated value for channeli, I1 andI2 are the assumed intensities of the
two loads,Vatm, V1 andV2 are the voltage recorded when observing the atmosphere, load
1 and load 2, respectively.

The load temperature WFs are obatined by differenting Equation??. For example, we
have that (?)

∂yi

∂Ii1
= 1− V i

atm − V i
1

V i
2 − V i

1

=
Ii2 − yi

Ii2 − Ii1
(9.4)

The WF for load temperature 1 is then

Kx = Hda (9.5)

where the elements of the vectora are

ai =
Ii2 − yi

Ii2 − Ii1
(9.6)

The corresponding expression for load 2 is

ai =
yi − Ii1
Ii2 − Ii1

(9.7)

Hence, these WFs are easily calculated if the spectrum (before data reduction) is at hand.



Chapter 10

The art of developing ARTS

This section is supposed to become the ARTS developers manual one day. Its aim is to
describe how the program is organized and to give detailed instructions how to make exten-
sions.

10.1 Organization

ARTS is written in C++ with the help of the GNU development tools (Autoconf, Automake,
etc.). It is organized in a similar manner as most GNU packages. The top-level ARTS direc-
tory is either calledarts or arts-x.y , where x.y is the release number. It contains vari-
ous sub-directories, notablydoc for documentation,src for the C++ source code,ami for
the MATLAB interface, anddata for auxiliary data (such as model atmospheres). The doc-
ument that you are reading right now, the ARTS User Guide, is located indoc/uguide .

There are two different versions of the ARTS package: The developers version and
the end-user version. Both contain the complete source code, the only difference is that
the developers version also includes the CVS housekeeping data. If you want to join in the
ARTS development (which we of course encourage you to do), you should write an email to
the authors to obtain access to the developers version, which makes it easier to merge your
changes with the ‘official’ ARTS program. Furthermore, for serious development work
you need a computer running Unix, the GNU development tools, LaTeX, and the Doxygen
program. All this is freely and easily available on the Internet, and, what is more, all these
tools are included in the Suse linux distribution. (Most likely they are also included in the
Redhat distribution, but I did not check.)

The end-user version contains everything that you need in order to compile and in-
stall ARTS in a fairly automatic manner. The only thing you should need is an ANSI-
C++ compiler and the standard Unixmake utility. Please see filesarts/README and
arts/INSTALL for installation instructions. We are developing with the GNU C++ com-
piler, no other compilers have been tried so far. FIXME: Update this also.

History
000728 Stefan Buehler: Added stuff about build system and howto cut a release.
000615 Created by Stefan Buehler. For now, this is basically the former content

of the filenotes.txt .
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10.2 The ARTS build system

As mentionend above, GNU tools are used to construct the ARTS build system. A good
introduction to the GNU build system can be found in:

http://www.amath.washington.edu/˜lf/tutorials/autoconf/

Using these tools makes a lot of things very easy, but also some things slightly more com-
plicated.

The most important thing to keep in mind is that an ARTS release is not just a copy of
the ARTS development tree. Instead there is a special make target ‘dist’ that you can use to
cut a release. How this is done in detail is described in Section??. Mostly, the GNU tools
are smart enough to figure out automatically what should go into the release. However,
this can be controlled by editing the Makefile.am files which can be found in almost all
directories.

The support for documentation other than info and man pages is not very good in the
GNU system, so I had to use some tricks to make sure that the Doxygen automatic docu-
mentation and the User Guide work as they should. I’ve set it up so that these documents
need not to be built by the installer of the program, since he or she might not have the nec-
essary programs (Doxygen and LaTeX). However, this could (and hopefully will) be done
much more nicely in the future. For example, there should be an automatik check for Doxy-
gen and LaTeX, with apropriate actions taken depending on if the programs are found or
not.

If you add directories or just files, you have to make sure that they also go into
the distribution. For program source code files, this is done automatically.But if you
add any other kind of file, for example a data or a documentation file, you have to
edit the Makefile.am file in that directory to make sure that your stuff goes into the
distribution. It is a good idea to always check the release if the things you added are really
there.

10.3 Conventions

Here are some general rules for ARTS programming:

10.3.1

Never usefloat or double explicitly, use the typeNumeric instead. This is set in
arts.h (to double by default). Thus, it is possible to compile the program forfloat
by simply changing thetypedef in arts.h .

10.3.2

UseVECTORandMATRIX for mathematical vectors and matrices (with elements of type
Numeric ). UseARRAY<string> for example to create an array of strings (and likewise
for any other type). This should work for everything exceptbool (dunno why not for
bool , strange things happen). ARRAYs can be used just like VECTORs. In particular, you
can use round braces to get 1-based indexing, and they do range checks.
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10.3.3 Terminology

Calculations are carried out in the so called workspace (WS), on workspace variables
(WSVs). A WSV is for example the variable containing the absorption coefficients. The
WSVs are manipulated by workspace methods (WSMs). The WSMs to use are specified in
the controlfile in the same order in which they will be executed.

10.3.4 Global variables

Are not visible by default. To use them you have to declare them like this:

extern const Numeric PI;

which will make the global constant PI=3.14... available. Other important globals are:

full_name Full name of the program, including version.
parameters All command line parameters.
basename Used to construct output file names.
out_path Output path.
messages Controls the verbosity level.
wsv_data WSV lookup data.
wsv_group_names Lookup table for the names oftypesof WSVs.
WsvMap The map associated withwsv_data .
md_data WSM lookup data.
MdMap The map associated withmd_data .
workspace The workspace itself.
species_data Lookup information for spectroscopic species.
SpeciesMap The map associated withspecies_data .

The only exception from this rule are the output streamsout0 to out3 , which are visible
by default.

10.3.5 Files

Always use theopen_output_file andopen_input_file functions to open files.
This switches on exceptions, so that any error occurring later on with this file will result
in an exception. (Currently not really implemented in the GNU compiler, but please use it
anyway.)

10.3.6 Version numbers

The package version number is set in fileconfigure.in in the top level ARTS directory.
Always increase this when you make a new distribution. The minor version number is set
in src/version.cc . Always increase this before you do a CVS commit, even for small
changes.

10.3.7 Global header file

The global header filearts.h mustbe included by every file, for example because it turns
on or off assertions (see also Section??).
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10.3.8 Documentation

Doxygen is used to generate automatic documentation. See
http://www.stack.nl/˜dimitri/doxygen/
for information. There is a complete User manual there. At the moment we only generate
the output as HTML, although latex, man-page, and rtf format is also possible. The HTML
version is particularly useful for source code browsing, since it includes the complete source
code! You should add doxygen headers to the following:

1. Files

2. Classes (Including all private and public members)

3. Functions

4. Global Variables

The documentation headers are comment blocks that look like the examples below.
They should be put above thedefinitionof a function, i.e., in the.cc file. Some functions
are defined in the.h file (e.g., inline member functions). In that case the comment can be
put in the.h file. The first sentence will be used as a short description for the entity, so
it should be explanatory. If you make changes to a function or file, add some descriptive
text and another\author \date block (see example below).

There are some emacs macros that insert these comment blocks automatically. You can
find them in the ARTS distribution indoc/emacs . Documentation on the macros can be
found indoc/index.html .

File comment:

/**
\file dummy.cc

A dummy file.
This file has no purpose at all, it just servers as an example...

\author Stefan Buehler
\date 2000-09-13

*/

Function comment:

The emacs macro here inserts only\param for all arguments. If arguments are modified
by the function you should change this to\retval .

/**
A dummy function.
This function has no purpose at all, it just serves as an example...

\retval a This parameter is modified by the function.
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\param b This is the other input parameter.
\return A dummy value computed from a and b.

\author Stefan Buehler
\date 2000-09-13

Made some modifications to illustrate how histo-
ries should be handled.

\author Stefan Buehler
\date 2000-09-14

*/
int dummy(int& a, int b);

Generic comment:

/**
This is a dummy comment. You can write as much as you want here...

*/

10.4 Extending ARTS

10.4.1 How to add a workspace variable

1. Create a record entry in file workspace.cc . (One of the
wsv_data.push_back blocks.) Take the already existing entries as tem-
plates. The ARTS concept works best if WSVs are only of a rather limited number
of different types, so that generic WSMs can be used extensively, for example for IO.

The name must beexactlylike you use it in the source code, because this is used to
generate interface functions.

2. That’s it!

10.4.2 How to add a workspace variable group

1. Add awsv_group_names.push_back("your_type") function to the func-
tion define_wsv_group_names() in groups.cc . The name must beexactly
like you use it in the source code, because this is used to generate interface functions.

2. That’s it! (But as stated above, use this feature wisely)

10.4.3 How to add a workspace method

1. Create an entry in the functiondefine_md_data in file methods.cc . (Make
a copy of an existing entry (one of themd_data.push_back(...) blocks) and
edit it to fit your new method.) Don’t forget the documentation string! It should
contain line breaks and even double line breaks (= blank lines) in appropriate places.
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For the future, maybe also anauthor field would be nice here. (FIXME: Update
this.)

2. Run: make.

3. Look in md.h . There is a new function prototype
void <YourNewMethod>(...)
Check that everything looks nice. If necessary, change the documentation string.

4. Add your function to one of the.cc files which contain method functions. Such files
must have names starting withm_. (See separate HowTo if you want to create a new
source file.) The header of your function must be compatible with the prototype in
md.h .

5. Thats it!

10.4.4 How to add a source code file

1. Create your file. Names of files containing workspace methods should start withm_.

2. You have to register your file in the filesrc/Makefile.am . This file states which
source files are needed for arts. Should be self-explanatory where you have to add
your file. The above goes for source (.cc ) and header (.h ) files likewise.

3. Unfortunately, at the moment you also have to register your file in a similar way in the
file doc/doxygen/Makefile.am , if the Doxygen documentation should work.

4. Then go to the top level arts directory and run:reconf .

5. In the same directory, run:configure . This will create new makefiles which take
your new file into account.

6. Go tosrc and run:cvs add <my_file> to make your file known to CVS.

10.5 CVS issues

The arts project is controlled by CVS. This section describes some basic CVS commands.
For more information see the extensive CVS documentation.

10.5.1 How to check out arts

1. Go to a temporary directory.

2. Run: cvs co -P arts .
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10.5.2 How to update (if you already have a copy)

1. Go to the top ARTS directory (called simplyarts ).

2. Run: cvs update -P

IMPORTANT! Always update, before you start to make changes to the program,
especially after a longer pause. If you edit an outdated copy, it will be a lot more
work to bring your changes into the current copy of the program.

10.5.3 How to commit your changes

1. You should make sure that the program compiles and runs without obvious errors
before you commit.

2. If you have created a new source file, make it known to CVS by running:
cvs add <my_file> in the directory where the file resides.

In general, when you runcvs update , it will warn you about any files it doesn’t
know by marking them with a?. Files that are created during the compilation process,
but should not be part of the package are listed in the.cvsignore files in each
directory.

3. Have you added the documentation for your new features?

4. Increase the subversion number in filesrc/version.cc .

5. Open the fileChangeLog in the top level ARTS directory with your favorite editor.

With Emacs, you can very easily add an entry by typing either

M-x add-change-log-entry

or C-x 4 a .

Specify the new version number and describe your changes.

6. Make sure that you have saved all your files. Go to the top level ARTS directory and
run: cvs commit .

7. This will pop up an editor. Use the mouse to cut and paste the Change-Log message
also to this editor window. Safe the file and exit the editor. If you made changes
in different directories, another editor will pop up, already containing your message.
Save again and exit. Do this until no more editors come up. (Note: This works well
if you set

export EDITOR=xedit

in you shell startup file.

With smarter editors there might be problems, because they might refuse to safe your
file if you haven’t made changes to it. So you would have to add a blank to the
message each time a new directory is commited.)
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8. You have to give your version of the program a symbolic name, so that it can be
retrieved later on if necessary. Do this by running:cvs tag arts-x-y-z where
x,y,z must be replace by the version numbers. You have to use dashes to separate the
numbers, a point (. ) will not work.

9. Tell the other developers about it. (Guess we should set up a mailing list. FIXME:
Update this.)

10.5.4 How to cut a release

1. Change the release number in the fileconfigure.in in the top-level ARTS direc-
tory. (The line that you have to change is the one withAM_INIT_AUTOMAKE.)

2. Commit your changes (see other howto). However, the following is different now:

• Set the subversion number in filesrc/version.cc to 0.

3. In the top-level ARTS directory, runmake distcheck . This will not only cut the
release, but also immediately try to build it, to see if it works. Unless you are on a
very fast machine, this may take a while. Maybe you should go and have a cup of
coffee.

4. If all goes well, you can find the release inside the top-level ARTS directory as a file
arts-x.y.tar.gz , where x.y is the release number.

5. Check the release carefully by trying to build and install the program.

10.5.5 How to move your arts working directory

Never try to move CVS directories! Instead:

1. Commit your changes.

2. Goabovethe top level ARTS directory.

3. Run: cvs release -d arts .

This will ask for confirmation, and if you sayy delete your working copy of arts.

4. Go to the directory where you want to have your ARTS copy in the future.

5. Check out a new copy (see other howto above).

10.6 Configuration

Here are some interesting options forconfigure :

–disable-warnings: Compile without-Wall on g++ compilers (by default warnings are
on).

–disable-assert: Include#define NDEBUG 1 in config.h . This is (will be FIXME:
Implement this) the central switch to turn off all debugging features (index range
checking for vectors, the trace facility, assertions,...)Not yet implemented.
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10.7 Debugging (use of assert)

This section is taken more or less literally from the GNU tools manual of Eleftherios
Gkioulekas:
http://www.amath.washington.edu/˜lf/tutorials/autoconf/index.html .

The idea behind assert is simple. Suppose that at a certain point in your code, you expect
two variables to be equal. If this expectation is a precondition that must be satisfied in order
for the subsequent code to execute correctly, you must assert it with a statement like this:

assert(var1 == var2);

In general assert takes as argument a boolean expression. If the boolean expression is
true, execution continues. Otherwise theabort system call is invoked and the program
execution is stopped. If a bug prevents the precondition from being true, then you can
trace the bug at the point where the precondition breaks down instead of further down in
execution or not at all. Theassert call is implemented as a C preprocessor macro, so it
can be enabled or disabled at will. One way to enable assertions is to includeassert.h .

#include <assert.h>

Then it’s possible to disable them by defining the ‘NDEBUG’ macro.
In ARTS, assertions are turned on and off with the global NDEBUG preprocessor

macro, which can be set or unset in filearts.h . In the future there will be also a con-
figure option to achieve this (FIXME: Update this).

During debugging and testing it is a good idea to leave assertions enabled. However, for
production runs it’s best to disable them. If your program crashes at an assertion, then the
first thing you should do is to find out where the error happens. To do this, run the program
under thegdb debugger. First invoke the debugger:

gdb

Then load the executable and set a breakpoint at theexit system call:

(gdb) file arts (gdb) break exit (or break __as-
sert_fail )

Now run the program:

(gdb) run

Instead of crashing, under the debugger the program will be paused when theexit
system call is invoked, and you will get back the debugger prompt. Now type:

(gdb) where

to see where the crash happened. You can use theprint command to look at the contents
of variables and you can use theup anddown commands to navigate the stack. For more
information, see the GDB documentation or typehelp at the prompt of gdb.

For ARTS, the assertion failures mostly happen inside the matrix / vector package TNT
(usually because you triggered a range check error, i.e., you tried to read or write beyond
array bounds). In this case theup command of GDB is particularly useful. If you give this
a couple of times you will finally end up in the part of your code that caused the error.

Recommendation: In Emacs there is a special GDB mode. With this you can very
conveniently step through your code.


