```
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
raw_vmrsReadFromFiles
  {seltags = ["liquidcloud-MPM93", "icecloud-MPM93"]
   filenames = ["@ac_arts_data@/atmosphere/particles/midlatitude-summer.cumuloni
mbus.MPM93droplet.aa",
                 "@ac_arts_data@/atmosphere/particles/midlatitude-summer.cirrus.M
PM93ice.aa"]
   basename =
                "@ac_arts_data@/atmosphere/fascod/midlatitude-summer"
                                                                        Information about the
                                                                        model atmosphere.
# Create the pressure grid 'p_abs' (just an example)
VectorNLogSpace(p_abs){
                                                                        Also the VMR profiles
        start = 100000.000
        stop =
                  1000.000
                                                                        H2O and N2 have to
              = 10
                                                                        be given seperately.
# Now interpolate all the raw atmospheric input onto the pressure
# grid and create the atmospheric variables `t_abs', `z_abs', `vmrs'
# set the H2O VMR in clouds to saturation level
  (must be called after AtmFromRaw)
WaterVaporSaturationInClouds{}
#
                                                                         Water vapor saturation
                                          profile in vmrs:
# Set the physical H2O profile from the
                                                                        in the cloud range
h2o_absSet{}
# Set the physical N2 profile from the N2 profile in vmrs:
#
# Read spectral line data from HITRAN96 catalogue for
                                                                        Spectral line data is
  the frequency range from 1 to 2 GHz.
                                                                        also necessary for the
 This in not essential for the continuum tags but
# bust be given as input for absCalc below.
                                                                        method absCalc.
 ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
lines_per_tgReadFromCatalogues{
  filenames = [ "@ac_arts_data@/spectroscopy/hitran96/hitran96_lowfreq.par" ]
  formats = [
               "HITRAN96" ]
           = [ 1.0e9 ]
  fmin
           = [ 2.0e9 ]
# Create an example frequency grid `f_mono'
                                                                      Input frequency grid
VectorNLinSpace(f_mono){
        start =
                   100.0e9
                                                                      on which the calculation
                   200.0e9
        stop =
             =
                   100
                                                                      is performed.
#
#
#
#
#
#
#
#
#
#
#
```