% Function for calculating the complex refractive index % of pure ice in the submillimeter region, according to % Zhang ... % (Zhang et al. do not provide a formula for real part of refractive index, % but have measured it and showed variations from 1.787-1.793 between 250 % and 1000GHz with no significant temperature variation. Here, we fix the % real part to the mean value of 1.790) % % FORMAT n = n_ice_zhang01(f,TK) % % OUT n Complex refractive index % IN f Frequency [Hz]. 0.01-3000 GHz. % TK Temperature [K]. 20-273.15 K. % 2014-07-14 Created by J. Mendrok function n = n_ice_zhang01(f,TK) f = f/1e9; if f<1. | f>1000 error('Valid range for frequency is 1-1000 GHz'); end if TK<100 | TK>273.15 error('Valid range for temperature is 100-273.15 K'); end n1=1.79d0; h = 6.6260693d-34; % [Js] ; from wikipedia: h = 6,626 069 3(11) * 10^-34 Js c = 2.99792458d+10; % [cm/s] ; from wikipedia: c = 2,997 924 58 * 10^8 m/s k = 1.3806504d-23; % [J/K] ; from wikipedia: k = 1,380 650 4(24) * 10-23 J/K hck = h*c/k; Pi4c = 4.*pi*c; A = 4.044d-5; % [GHz] ; it's not fully clear from paper, whether A is T-dependent B0 = 1.391d+5; % [cm^(-1)*K] v0 = 233.d0; % [cm^(-1)] hckv = hck * v0; v02 = v0^2; c1 = A / (2.d0*n1); % [GHz] expVT = exp( hckv / TK ); c2 = 1.d9/Pi4c * B0/TK * ( expVT/(expVT-1.0d0).^2 ) / v02; % 1e9*[1/Hz]=[1/GHz] n = n1 + i*(shiftdim(c1/f,1) + c2*f);