function result = mie_2(m, x, xmax) % Low-frequency approximation of Mie Efficiencies for given % complex refractive-index ratio m=m'+im" % and size parameter x=k0*a, k0= wave number in ambient medium, % a=sphere radius using the complex Mie Coefficients an and bn % for n=1 to 2, p. 131 in Bohren and Huffman (1983) BEWI:TDD122. % Result is m', m", x, efficiencies for extinction (qext), % scattering (qsca), absorption (qabs), backscattering (qb), % asymmetry parameter asy= and qratio=qb/qsca. % Uses the function "mieab_2" for the Mie Coefficients. % C. Mätzler, May 2002. if x==0 result=[0 0 0 0 0 1.5]; elseif x>xmax, result=[NaN, NaN, NaN, NaN, NaN, NaN]; else, nmax=2; n1=nmax-1; n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=cn./n./(n+1); x2=x*x; f=mieab_2(m,x); anp=(real(f(1,:))); anpp=(imag(f(1,:))); bnp=(real(f(2,:))); bnpp=(imag(f(2,:))); g1(1:4,nmax)=[0; 0; 0; 0]; g1(1,1:n1)=anp(2:nmax); g1(2,1:n1)=anpp(2:nmax); g1(3,1:n1)=bnp(2:nmax); g1(4,1:n1)=bnpp(2:nmax); dn=cn.*(anp+bnp); q=sum(dn); qext=2*q/x2; en=cn.*(anp.*anp+anpp.*anpp+bnp.*bnp+bnpp.*bnpp); q=sum(en); qsca=2*q/x2; qabs=qext-qsca; fn=(f(1,:)-f(2,:)).*cn; gn=(-1).^n; f(3,:)=fn.*gn; q=sum(f(3,:)); qb=q*q'/x2; asy1=c1n.*(anp.*g1(1,:)+anpp.*g1(2,:)+bnp.*g1(3,:)+bnpp.*g1(4,:)); asy2=c2n.*(anp.*bnp+anpp.*bnpp); asy=4/x2*sum(asy1+asy2)/qsca; qratio=qb/qsca; result=[qext qsca qabs qb asy qratio]; end;