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Abstract 
A stochastic version of the Iterative Amplitude Adjusted Fourier Transform (IAAFT) 
algorithm is presented. This algorithm is able to generate so-called surrogate time series, 
which have the amplitude distribution and the power spectrum of measured time series or 
fields. The key difference between the new algorithm and the original IAAFT method is the 
treatment of the amplitude adjustment: it is not performed for all values in each iterative step, 
but only for a fraction of the values. This new algorithm achieves a better accuracy, i.e. the 
power spectra of the measurement and its surrogate are more similar. We demonstrate the 
improvement by applying the IAAFT algorithm and the new one to 13 different test signals 
ranging from rain time series and 3-dimensional clouds to fractal time series and theoretical 
input. The improved accuracy can be important for generating high-quality geophysical time 
series and fields. The traditional application of the IAAFT algorithm is statistical nonlinearity 
testing. Reassuringly, we found that in most cases the accuracy of the original IAAFT 
algorithm is sufficient for this application. 

 

1 Introduction 
The Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm was developed by 
Schreiber and Schmitz (1996, 2000) to generate surrogate time series for statistical 
nonlinearity testing (Theiler et al., 1992; Theiler and Prichard, 1996; Kugiumtzis, 1999). 
Surrogates are time series which share certain statistical properties with the original time 
series. In case of the IAAFT algorithm, the surrogates share their distribution and power 
spectrum with the measurement. To stress that the surrogate is a permutation of the original, 
i.e. that the values of the original are reproduced exactly, the term amplitude distribution is 
preferred over probability density function, but in this article we will also simply use the term 
distribution.  

Besides nonlinearity testing, the IAAFT algorithm is applied to generate realistic geophysical 
fields. It is, for example, not possible to measure a full 3-dimensional cloud field, but one can 
simulate a surrogate cloud field based on estimates of the distribution and power spectrum 
from a limited measurement (Venema et al., 2006). Surrogate fields can also be used as 
idealised boundary conditions for dynamical models. For applications where the distribution 
is equally important as the structure, IAAFT surrogates could be useful instead of 
(multi-)fractal time series or fields. Furthermore, the algorithm is a practical method to 
generate time series with interesting statistical properties for testing, e.g. analysis and error-
detection, algorithms. We expect to see many more geophysical applications when the 
technique becomes better known in that community. 
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In the engineering community the IAAFT algorithm was recently discovered independently to 
simulate pressure fields from strong winds and offshore waves (Masters and Gurley, 2003). 
Masters and Gurley also compared the algorithm to older ones used in the engineering 
community and found the IAAFT algorithm to be more accurate. An example of such an older 
algorithm is the one proposed by Popescu et al. (1998) to generate fields of soil properties 
such as the elastic modulus and the mass density. Lewis and Austin (2002) used a similar 
algorithm to create fractal clouds with a lognormal distribution. 

The structure of a cloud field is important for its radiative properties, e.g. for the reflection of 
sun light by clouds (Scheirer and Macke, 2001; Pincus et al., 2005). For this purpose it is 
important that surrogate fields capture this structure very accurately. Figure 1 shows the 
reflectance bias of surrogate cloud fields created with the IAAFT algorithm for sparse 
cumulus fields generated with a Large Eddy Simulation (LES) model. LES models are able to 
simulate atmospheric flow at spatial resolutions that are sufficient to resolve turbulent eddies. 
The IAAFT cumulus surrogates display some noise (wisps of cloud) in the cloud free 
sections, which biases their reflectance. The surrogate cumulus clouds generated with our 
more accurate Stochastic IAAFT (SIAAFT) algorithm do not have a bias; see Venema et al. 
(2006). This illustrates that the accuracy of the power spectrum can be important for 
geophysical applications. On the other hand, the accuracy is not always a limiting factor. In 
case of less demanding stratocumulus clouds a much lower accuracy of the power spectrum 
was high enough to avoid biases in the reflectance of their surrogates.  

Another method to generate surrogates that are more accurate than the IAAFT surrogates is 
constrained randomization using global search algorithms such as simulated annealing 
(Schreiber, 1998). Unfortunately, Schreiber is unsure if his algorithm can be applied to 
statistical problems such as nonlinearity testing. The computation of large geophysical fields 
using simulated annealing will be very computationally expensive. 

In Section 3, we present the SIAAFT algorithm which generates surrogates whose power 
spectra match the original power spectra more accurately than the surrogates generated with 
the original IAAFT algorithm. Furthermore, we demonstrate the accuracy of the SIAAFT 
algorithm by generating surrogates from a range of different inputs (Section 4). Before 
explaining the step from IAAFT to SIAAFT, the original IAAFT algorithm will be shortly 
reviewed (Section 2). 

 

2 IAAFT Algorithm 
The IAAFT algorithm is explained mathematically below for a time series and illustrated by 
its application to a cloud liquid water path (LWP) measurement in Figure 2. LWP is the 
vertically integrated amount of liquid water in a cloud. On our webpage (http://www.meteo.
uni-bonn.de/venema/themes/surrogates/iaaft), the algorithms are further clarified using 
pseudo code; working Matlab versions for time series and fields can be downloaded. 

The measured time series (Fig. 2, upper Panel) is denoted by the vector {mn}, with the index n 
= {0,1,...,N-1}, and N the number of values of the original. The algorithm starts with a 
random shuffle of the data points (Panel 2). Then an iterative process is started as illustrated 
in the flow diagram (left side of Fig. 2). As explained later on, in each iteration, (i), the 
Fourier spectrum is adjusted first (Panel 3) and then the amplitudes (Panel 4). The time series 
after the spectral adjustment is called {x1,i}; the 1 denotes that it is the time series after the 
first adjustment, the i denotes the current number of iterations. Similarly the time series after 
the amplitude adjustment is called {x2,i}.  
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2.1 Spectral adjustment 
Based on the original time series the power spectrum is estimated as 
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The spectral adjustment starts by calculating the Fourier transform ( '

kS ) of the time series 
after the last amplitude adjustment {x2,i-1} (or in the first iteration the Fourier transform of the 
initial white noise time series). The magnitudes of these Fourier coefficients are replaced by 
those of the original time series ( kM ). The phases remain unaltered in this step. If we 

define '' / kkk SS=ϕ , then the complex Fourier coefficients of {x1,i} are given by 

kkk MS ϕ= . (2) 
From Sk, {x1,i} is calculated using an inverse Fourier transform. Consequently, the time series 
in Panels 1 and 3 share the same power spectrum; the difference between their structures is 
due to differences in their distributions. 

2.2 Amplitude adjustment 
In the second step, the amplitudes are adjusted based on their ranking. A new time series is 
created with the values of {mn}, but with the order given the ranking of the {x1,i}-values. For 
example, the highest value of the iterated time series is substituted by highest value of the 
original time series. To perform this operation for all values, a sorted list is created of the 
values of the measured time series { '

nm }, where the prime denotes here that it is a sorted 
vector. Let the function rank() return the ascending rank number, i.e. return 1 for the highest 
number, 2 for the second highest, etc., then the amplitude adjusted time series is given by: 

( )
'

,2
,1 ixrankmx i = . (3) 

Since this amplitude adjustment will alter the power spectrum, both the amplitude and the 
spectral adjustments are repeated until a convergence criterion is reached (Panel 5). 

3 A stochastic IAAFT algorithm 
Schreiber and Schmitz (2000) suggested that one can start the IAAFT algorithm either with a 
random shuffle of the measurements (white noise) or with a surrogate created with the non-
iterative and less accurate Amplitude Adjusted Fourier Transform (AAFT) algorithm (Theiler 
et al., 1992). We observed that the surrogates which were initialized with the AAFT surrogate 
started with a better fitting power spectrum, but finally obtained a lower accuracy, than the 
surrogates that were initialized with white noise; compare the dashed lines in Figure 3. 
Apparently a high initial quality can cause the algorithm to get stuck in a less accurate local 
minimum, because the algorithm favours solutions that are close to the first guess. 
Consequently, we looked for ways to slow down the convergence speed. 

The SIAAFT algorithm differs from the IAAFT algorithm in three points. First of all we 
changed the way the amplitudes are adjusted. Because of this we also altered the convergence 
criterion and introduced two stages. These two stages differ in the fraction of amplitudes that 
is adjusted. See the flow diagram in Figure 4 for an overview. 

Just as the standard version of the IAAFT algorithm, the SIAAFT algorithm starts with white 
noise. In the first stage only a fraction of the amplitudes is substituted instead of all of them. 
We have tested three different methods to adjust the amplitudes. The main method, which is 
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used for all figures in this paper, is the ‘partially stochastic’ adjustment. This method 
calculates 5 vectors with equidistant indices, {{1, 6, 11, …}{2, 7, 12, …}{3, 8, 13, …}{4, 9, 
14, …}{5, 10, 15, …}}, and each iteration selects randomly one of these 5 vectors. In this 
new amplitude adjustment only the amplitudes pertaining to the ranks in the indices are 
exchanged. The ‘deterministic’ adjustment uses the same equidistant indices. However it does 
not select one randomly, but uses a fixed pattern for the indices; the first index is given by: 1, 
2, 3, 4, 5, 1, 2, …. The ‘fully stochastic’ version simulates drawing numbers without 
replacement. The differences in accuracy of the surrogates produced by these three methods 
are discussed in section 4.2. 

After the first stage, the algorithm generates a surrogate where both amplitude distribution 
and spectrum fit closely, but none exactly. As we would like to have a perfect fit of the 
amplitude distribution, a second stage is applied where all amplitudes are adjusted, just as in 
the standard IAAFT algorithm. This second stage is initialised with the surrogate from the 
first stage.  

The convergence criterion is based on the accuracy measure (∆), which is the root mean 
square (RMS) difference of the Fourier Spectra of the original kM and the surrogate '

kS : 

∑ −=∆
k

kk SM
N

2'11
σ

 (4) 

The measure is normalized by the standard deviation (σ) of the original time series for ease of 
comparison between various originals. Due to the stochastic nature of the algorithm, the last 
iterated time series is not always the best; see the noisy drawn line in Fig. 3. Thus, for the 
final result the best-converged surrogate is stored in a separate variable. The final accuracy 
depends on how many iterations one is willing to wait for the next surrogate with a better 
fitting Fourier spectrum. We use the exceedance of this number of iterations, which we call 
the iteration threshold, as termination criterion for both stages. The noisy line in Figure 3 
depicts the accuracy of a SIAAFT surrogate as a function of the number of iterations. For this 
calculation we utilized an iteration threshold of 1000 iterations. The small peak near the 
maximum number of iterations (see the arrow in Figure 3) is the reduction in accuracy that is 
typical for the beginning of the second stage; the second stage is very short compared to the 
first stage. 

The algorithm is not very sensitive to the fraction of values substituted in the amplitude 
adjustment. Figure 5 shows that the quality as function of the fraction of adjusted values has a 
broad minimum. Any value between a few percent and about 40 % will perform well. We use 
20 % in the rest of this paper. The calculation time scatters strongly, but there is a tendency 
for fractions below 40 % to be faster. Except that adjusting all values (as the IAAFT 
algorithm does) is faster. 

We tried a number of other ways to improve the accuracy of the SIAAFT algorithm. We 
found that the accuracy does not improve by making the spectral adjustment stochastic in a 
similar way as it was implemented for the amplitude adjustment. Analogous to the cooling 
scheme in simulated annealing (Vidal, 1993), we tried to gradually increase the fraction of 
amplitude adjustments in a small steps from 20 to a 100 percent. This did not lead to 
improvements. Calculating an ensemble of surrogates and selecting the best converged ones, 
is an important way to improve the accuracy. This is especially true for the IAAFT algorithm 
as its accuracy has a broad distribution; see Figure 6. 
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4 Results 
To investigate the improvements by the SIAAFT algorithm, we calculated surrogates for 13 
cases ranging from rain and clouds to theoretical statistics. These cases are described in 
section 4.1. From each of these original time series we produced 25 surrogates (except where 
indicated otherwise), and calculated the mean accuracy. All three methods for the amplitude 
adjustment of the SIAAFT algorithm (explained in Section 3) are assessed. In addition, we 
utilise two iteration thresholds: 100 and 10.000. To make the calculations well comparable, 
the results marked IAAFT were calculated with the SIAAFT algorithm, substituting all values 
in the amplitude adjustment. The results are summarized in Table 1 and described in 
section 4.2. 

4.1 Measurements and statistics 
• Fractal time series: As the first test case – a fractal time series – we used theoretical 

statistical input: an exponential amplitude distribution and a power law power spectrum 
with an exponent of -5/3, i.e. 3

52 −
∝ kSk . This exponent is typical for the inertial subrange 

of turbulence and stratiform clouds.  

• Discrete Gaussian: With the same fractal power spectral shape of the first test function, 
we used a “discrete Gaussian” amplitude distribution. This distribution was computed 
starting with a Gaussian distribution with standard deviation 3 and rounding its values to 
integers.  

• Positive Gaussian: The third case again had the same power spectral shape as the previous 
cases. Its PDF was constructed by starting with a Gaussian PDF, from which the negative 
instances were set to zero.  

• Model cumulus clouds: 52 Cumulus cases were generated with a Large Eddy Simulation 
model. These simulations represent the diurnal cycle of cumulus over land, from no 
clouds in the morning, to a maximum of 16 % mean solar reflectance in the afternoon, to 
little, but thicker clouds in the evening (Brown et al., 2002). The clouds have a resolution 
of 100 m in the horizontal and 112 m in the vertical. The number of grid boxes is 66 by 
66 horizontally. The model grid has 122 height levels, but the levels with clear air above 
and below the cloud have been removed. To maintain the vertical structure of the clouds, 
the amplitude adjustments are performed separately for every height level following 
Venema et al. (2006). 

• Daily rain sums: As input for these surrogates we used daily rain sums for 5 different 
stations in Germany (Bremen, Hamburg-Fuhlsbuettel, Hohenpeissenberg, Karlsruhe and 
Potsdam) with a length of approximately 90 years (DWD, Deutscher Wetterdienst, 
Offenbach, Germany, http://www.dwd.de/en/FundE/Klima/KLIS). For every station 8 
surrogates were calculated. 

• River discharge: These surrogates were generated based on 3 stations (Cologne, Rees, and 
Lobith) with daily discharge measurements of the river Rhine (approximately 90 years; 
GRDS, Global Runoff Data Centre of the federal institute of Hydrology, Koblenz, 
Germany, http://grdc.bafg.de). For every station 8 surrogates were calculated. 

• EEG (electroencephalogram): From the Department of Epileptology of the University of 
Bonn we used two EEGs (Andrzejak et al., 2001). The first is an EEG from within the 
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epileptic zone during an epileptic attack; the second one was recorded during a seizure 
free interval. 

• Henon map: A chaotic time series was calculated using the Henon map (Kantz and 
Schreiber, 1999). 

• Step-function: Especially the behaviour of the algorithms in case of bimodal distributions 
is interesting. One of the simplest cases of this type is a binary time series consisting of 
only ones and zeros. The first case considered, is a step-function signal with 512 ones, 
followed by 512 zeros. 

• Random binary: As an example of a more random binary function we used a signal with 
1024 numbers, with all values set to zero, except for the indices 10 to 25, 100 to 225, and 
300 to 625, which were set to unity. 

• Random sine: In a further test we created a time series by substituting the three blocks 
(with ones) of the previous test time series with the positive parts of sine functions, i.e. 
sin(x), with x=[0, π]. 

4.2 Accuracy 
The largest improvement (see Table 1) of SIAAFT over IAAFT is found for the long fractal 
time series. The accuracy of the fully stochastic SIAAFT surrogates with an iteration 
threshold of 10.000 is almost an order of magnitude better than the accuracy of the IAAFT 
surrogates. 

For the model cumulus clouds, the IAAFT algorithm obtained an accuracy of 5.8 10-4. Of the 
52 cloud fields 39 converged fully in one SIAAFT run, which is the main cause of the factor 5 
improvement in accuracy. In these fully converged cases the surrogate was identical to the 
original LES clouds except for horizontal translations and/or reflections of the field. For 
completeness: also for the 13 LES clouds that did not converge in the first run, a fully 
converged surrogate could be generated by generating multiple SIAAFT-surrogates. Thus, in 
these 13 cases the SIAAFT algorithm got stuck in a local minimum.  

In case of the step-function, the IAAFT algorithm achieves full convergence in 6 of 25 trials; 
the SIAAFT algorithm converged completely in all 25 trials. Because of computational error 
full convergence is defined as ∆ < 10-10. The fully converged surrogates were a time shifted 
version of the original time series. The random binary case is more difficult; in this case the 
IAAFT algorithm never converged fully. The accuracy was around 1 %, which is the highest 
value of all cases considered. The fully stochastic SIAAFT algorithm converged better by a 
factor of two, and it converged fully in 7 of 25 trials. For the random sine case, the SIAAFT 
algorithm did perform a little, but not statistically significantly, better than the IAAFT 
algorithm. None of the surrogates converged fully. 

It is interesting to note that in most cases the SIAAFT algorithm with deterministic amplitude 
adjustments performs worse than the two versions with stochastic adjustments. However, the 
deterministic version does perform better than the IAAFT algorithm. Thus, the improved 
performance of the SIAAFT algorithm is only partially due to its stochastic nature. 

The fully stochastic version is more accurate for the long fractal time series than the other two 
SIAAFT versions. In most cases, however, the partially stochastic version of the SIAAFT 
algorithm is just as accurate as the fully stochastic version. Since the fully stochastic SIAAFT 
version is about 20 % slower in these cases, the partially stochastic version is our first choice, 
but it is advised to test the fully stochastic version for any new application. 
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4.3 Nonlinearity testing 
An important application of surrogate modelling is nonlinearity testing. We compared the 
performance of the surrogates from the two algorithms numerically by calculating the root-
mean-square nonlinear prediction error on time series with known dynamics. We used a 
standard nonlinear prediction algorithm (Small, 2005) without distinguishing between training 
and testing dataset.  

For example, we generated an ensemble of linear time series by adding three sine functions 
with random wavelengths that were a multiple of the total length of the time series to get a 
periodic function without jumps. These time series were filtered by different static nonlinear 
functions: we discretised the values, or raised them to the third power or computed their 
absolute values. From these time series and their surrogates the nonlinear prediction error was 
calculated utilising six embedding dimensions and a delay time equal to the correlation 
length. In all cases both the IAAFT surrogates as well as the SIAAFT surrogates correctly 
identified the time series as linear. In addition, a number of standard nonlinear dynamical 
systems were combined with nonlinear static measurement functions. In none of these cases, 
we found a real advantage of the SIAAFT algorithm over the IAAFT algorithm for 
nonlinearity testing.  

Nonlinearity tests can generate false answers in case the nonlinear prediction estimate is 
calculated with an insufficient embedding dimension (thus, care has to be taken for typically 
high-dimensional geophysical systems) and for time series with bimodal distributions. In the 
latter case, the scientist is warned by a (near) significant difference in the correlation of two 
consecutive points (Schreiber and Schmitz, 2000) between the original signals and the 
surrogates. 

In some of the cases, the SIAAFT algorithm found the global minimum more often than the 
IAAFT algorithm. This prompts us to make a critical comment on nonlinearity testing with 
surrogates. One could argue that a fully converged surrogate has converged too far, that the 
algorithm could have produced a nonlinear surrogate and that it is not possible to use such a 
surrogate for nonlinearity testing. However, as soon as the Fourier phases are tuned, as the 
IAAFT and SIAAFT algorithms do, the time series is nonlinear and one cannot distinguish 
rigorously between a static and a dynamical origin of this nonlinearity. Thus, also without full 
convergence the surrogates are not fully guaranteed to represent a linear dynamical system 
filtered through a static nonlinear measurement function. 

 

5 Summary 
This paper presented a new algorithm to generate surrogate time series, which is a further 
development of the Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm. This 
Stochastic IAAFT (SIAAFT) algorithm was tested on a number of test cases, e.g. various 
fractal time series, and EEG, runoff, cloud and rain measurements. In all test cases the 
SIAAFT algorithm achieved a higher accuracy than the IAAFT algorithm, i.e. the power 
spectrum of the surrogates was closer to that of the original time series. The largest 
improvement in accuracy, almost a factor 10, was found for a fractal time series. The 
algorithm also converged to a global minimum more often. That improvements in the 
accuracy are possible will hopefully inspire other researchers in finding even more accurate 
and efficient algorithms.  

The main change in the algorithm is that the SIAAFT algorithm performs the amplitude 
adjustment only for a fraction of the values. This fraction can be selected between a few 
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percent and 40 percent. We tested three different methods for the amplitude adjustment, 
which differ in the way the amplitudes to be adjusted are selected. The method called ‘partial 
random’ was shown to be a good compromise between accuracy and efficiency. 

Reassuringly, we found that in most cases the accuracy of the IAAFT algorithm is sufficient 
for nonlinearity testing. However, for bimodal distributions, the accuracy of both algorithms 
can be insufficient. 
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Table 1. The final accuracy of the IAAFT and the SIAAFT algorithm for various test 
functions. N is the number of values of the time series. ∆(SIAAFT-102) or ∆(SIAAFT-104) 
denotes the accuracy of the SIAAFT algorithm, which stops if it does not find a better 
surrogate within 100 or 10.000 iterations, respectively. The values marked IAAFT-104 in this 
table are calculated with the SIAAFT algorithm, but all values are adjusted as in the IAAFT 
algorithm. In square brackets is the number of fully converged surrogates. For the difference 
between deterministic, partially stochastic and fully stochastic see section 4. 
Test function N ∆(IAAFT-104) ∆(SIAAFT-104) 

Deterministic 

∆(SIAAFT-102) 

Part. stochastic 

∆(SIAAFT-104) 

Part. stochastic 

∆(SIAAFT-104) 

Fully stochastic 

Fractal time 
series 

8192 1.5 10-5 4.3 10-6 7.8 10-6 2.3 10-6 1.4 10-6 

Fractal time 
series 

1024 2.7 10-4 1.7 10-4 1.3 10-4 5.1 10-5 5.9 10-5 

Discrete 
Gaussian 

1024 3.1 10-3 1.5 10-3 1.6 10-3 1.3 10-3 1.3 10-3 

Positive 
Gaussian 

1024 5.2 10-4 1.7 10-4 3.0 10-4 1.4 10-4 1.5 10-4 

Cumulus 
clouds  

 5.8 10-4   1.2 10-4 [39]  

Daily rain 1 32768 3.9 10-4 1.4 10-4 2.6 10-4 1.4 10-4 1.4 10-4 

Discharge 2 32768 1.0 10-5 3.1 10-6 4.2 10-6 3.4 10-6 3.0 10-6 

EEG epileptic 
zone 

256 2.1 10-3 1.1 10-3 1.1 10-3 7.3 10-4 7.3 10-4 

EEG seizure 4096 7.7 10-5 3.5 10-5 3.8 10-5 2.9 10-5 2.8 10-5 

Henon map 1024 1.5 10-4 6.0 10-5 6.4 10-5 4.2 10-5 3.6 10-5 

step-function 1024 4.2 10-3 [6] < 10-10 [25] < 10-10 [25] < 10-107 [25] < 10-10 [25] 

random binary 1024 1.0 10-2 5.1 10-3 [3] 7.0 10-3 5.9 10-3 [4] 5.1 10-3 [7] 

Random sine 1024 1.6 10-3 9.9 10-4 1.5 10-3 1.3 10-3 1.1 10-3 

1 Based on 40 surrogates, 8 repetitions from 5 stations. 
2 Based on 24 surrogates, 8 repetitions from 3 stations. 
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Figure 1. The reflectance of sparse cumulus clouds compared with the reflectance (R) of their 
IAAFT surrogates. The surrogate cumulus clouds have a bias toward a too high reflectance. 
The accuracy was improved by repeating the calculation and selecting the best converged 
surrogate. For every cumulus cloud, we have generated two surrogate clouds. The most 
accurate cloud (average ∆=3.4 10-3; see Eq. 4) is denoted by a cross, the least accurate 
(average ∆=4.7 10-3) one by a circle. Even in this optimised set of clouds, the accurate 
surrogates have a little less bias (∆R=8.1 10-3), than the less accurate ones (∆R=8.9 10-3). 
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Figure 2. The Iterative Amplitude Adjusted Fourier Transform algorithm illustrated with a 
LWP measurement. The left column is the flow diagram of the algorithm, the middle column 
shows example LWP time series, and the right column are the histograms of the LWP time 
series. For the explanation of the algorithm, see Section 2. 



 13

100 102 104

10-6

10-4

10-2
∆

Iteration no.

iaaft - aaft
iaaft - white noise
siaaft

Begin 2nd phase 

 
Figure 3. The convergence of the algorithms as a function of the number of iterations. As test 
statistics we used a fractal time series (N = 8192) with a power law power spectrum with an 
exponent of -5/3 and an exponential amplitude distribution. The three line types represent the 
IAAFT algorithm starting with white noise (thick dashes), the IAAFT algorithm starting with 
an AAFT surrogate (thin dashes) and the SIAAFT algorithm (noisy full line). 
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Figure 4. The flow diagram of the Stochastic Iterative Amplitude Adjusted Fourier Transform 
algorithm. The two stages are similar to the original IAAFT algorithm and differ in their 
treatment of the amplitude adjustment.  
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Figure 5. The accuracy of the SIAAFT algorithm as a function of the fraction of values that is 
adjusted in the amplitude adjustment. This was calculated with the test function described in 
Figure 3. The SIAAFT algorithm with an adjusted fraction of one is similar to the IAAFT 
algorithm. The SIAAFT algorithm used an iteration threshold of 103. An ensemble of one 
hundred surrogates was utilised to calculate the statistics. 
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Figure 6. The Probability Density Functions (PDF) and the Cumulative Distribution Functions 
(CDF) of the accuracy (∆) of the IAAFT and the SIAAFT algorithm. The SIAAFT algorithm 
used an iteration threshold of 1000 and the test function described in Figure 3. An ensemble 
of one hundred surrogates was generated to calculate these statistics. Three outliers of the 
IAAFT algorithm, were not plotted, to get a clearer plot. 


