function result = Mie_rain1(fGHz, TK, nsteps, dD) % Efficiencies of rain extinction, scattering, absorption % backscattering and asymmetric scattering, using Mie Theory and % the dielectric model of Liebe et al. (1991), see epswater. % Input: fGHz frequency in GHz, TK temperature in K, nsteps number % of diameters (D in mm), dD increment of diameter in mm % C. Mätzler, June 2002 m=sqrt(epswater(fGHz, TK)); nx=(1:nsteps)'; D=(nx-1)*dD; c0=299.793; x=pi*D*fGHz/c0; for j = 1:nsteps a(j,:)=Mie(m,x(j)); end; output_parameters='Qext, Qsca, Qabs, Qb, ' % plotting the results m1=real(m);m2=imag(m); plot(D,a(:,1:5)) legend('Qext','Qsca','Qabs','Qb','') title(sprintf('Mie Efficiencies for raindrops f=%gGHz, T=%gK, m=%g+%gi',fGHz,TK,m1,m2)) xlabel('D (mm)') ylabel('Mie Efficiency') result=a;