function result = Mie_rain1c(fGHz, TK, nsteps, dD) % Comparison of Efficiencies of rain extinction, scattering, absorption % backscattering and asymmetric scattering, using Mie Theory % between the dielectric water models of Liebe 1991 and Liebe 1993 % Input: fGHz frequency in GHz, TK temperature in K, nsteps number % of diameters (D in mm), dD increament of diameter in mm m=sqrt(epswater(fGHz, TK)); m93=sqrt(epswater93(fGHz, TK)); nx=(1:nsteps)'; D=(nx-1)*dD; c0=299.793; x=pi*D*fGHz/c0; for j = 1:nsteps a(j,:)=Mie(m,x(j)); a93(j,:)=Mie(m93,x(j)); end; % plotting the results plot(D,a(:,2),'g -',D,a93(:,2),'g.-',D,a(:,3),'r -',D,a93(:,3),'r.-',D,a(:,4),'c -',D,a93(:,4),'c.-',D,a(:,5),'m -',D,a93(:,5),'m.-') legend('Qsca','Qsca93','Qabs','Qabs93','Qb','Qb93','','93') title(sprintf('Mie Efficiencies of raindrops f=%gGHz, T=%gK',fGHz,TK)) xlabel('D (mm)') ylabel('Mie Eficiency') result.a=a; result.a93=a93;