function result = Mie_rain2(fGHz, TK, R) % Weighting functions of % Rain extinction, scattering, absorption, backscattering and % asymmetric scattering coefficient in 1/km/mm versus drop diameter % for Marshall-Palmer (MP) size distribution (Sauvageot et al. 1992) % using Mie Theory, and dielectric model of Liebe et al. 1991. % Input: % fGHz: frequency in GHz, TK: Temp. in K, R: rain rate in mm/h % C. Mätzler, June 2002. nsteps=501; dD=0.01*R^(1/6)/fGHz^0.05; % nsteps: number of D values, dD: drop-size interval in mm m=sqrt(epswater(fGHz, TK)); N0=0.08/10000; % original MP N0 in 1/mm^4 LA=4.1/R^0.21; nx=(1:nsteps)'; D=(nx-1)*dD; c0=299.793; x=pi*D*fGHz/c0; sigmag=pi*D.*D/4; NMP=N0*exp(-LA*D); sn=sigmag.*NMP*1000000; for j = 1:nsteps a(j,:)=Mie(m,x(j)); end; b(:,1)=D; b(:,2)=a(:,1).*sn; b(:,3)=a(:,2).*sn; b(:,4)=a(:,3).*sn; b(:,5)=a(:,4).*sn; b(:,6)=a(:,2).*a(:,5).*sn; % plotting the results m1=real(m);m2=imag(m); plot(b(:,1),b(:,2:6)) legend('dGext/dD','dGsca/dD','dGabs/dD','dGb/dD','d(Gsca*)/dD') title(sprintf('Rain Effects at f=%gGHz, T=%gK, R=%gmm/h',fGHz,TK,R)) xlabel('D (mm)');ylabel('dGi/dD (1/km/mm)') gext= sum(b(:,2))*dD; gsca= sum(b(:,3))*dD; gabs= sum(b(:,4))*dD; gb= sum(b(:,5))*dD; gteta=sum(b(:,6))*dD; result=[gext gsca gabs gb gteta];