% QARTS_DEMO A demonstration of Qarts % % Gives an example on how Qarts can be used. % % FORMAT [Q,f,y,Y] = qarts_demo( [ ztan, do_batch ] ) % % OUT Q Qarts setting structure. % f Frequency grid % y Calculated spectrum % Y Batc spectra % OPT ztan Tangent altitude. Default is 30 km. % do_batch Flag to include batch calculations. Default is false. % Set to true, *Y* will include 3 spectra with random % shift in tangent altitude. % 2005-06-06 Created by Patrick Erikssom. function [Q,f,y,J,ji] = qarts_jacobian_demo( ztan, atmdim ) %= Set defualts % ztan_DEFAULT = 30e3; atmdim_DEFAULT = 2; % set_defaults; %= Make sure that AMI is in the search path. Needed to read/write ARTS1 files % addpath_ami; %= Init Q structures % Q = qarts; Q1 = qarts1; H = qarts_sensor; % Q.JACOBIAN_DO = 1; %= Atmosphere % Q.ATMOSPHERE_DIM = atmdim; Q.USE_RAW_ATMOSPHERE = 1; if atmdim > 1 Q.RAW_ATM_EXPAND_1D = 1; end arts_xmldata_path = atmlab( 'ARTS_XMLDATA_PATH' ); if isnan( arts_xmldata_path ) error('You need to ARTS_XMLDATA_PATH to run this example.'); end Q.RAW_ATMOSPHERE = fullfile( arts_xmldata_path, 'atmosphere', ... 'fascod', 'tropical' ); Q.P_GRID = z2p_simple( [0:500:45e3 46e3:1e3:100e3] ); if atmdim >= 2 Q.LAT_GRID = -10:10:10; end %= Spectroscopy % Q.GAS_SPECIES{1}{1} = 'ClO'; Q.GAS_SPECIES_JAC{1}.DO = 1; Q.GAS_SPECIES_JAC{1}.METHOD = 'analytical'; %Q.GAS_SPECIES_JAC{1}.METHOD = 'perturbation'; %Q.GAS_SPECIES_JAC{1}.DX = 0.01; Q.GAS_SPECIES_JAC{1}.UNIT = 'rel'; Q.GAS_SPECIES_JAC{1}.P_GRID = z2p_simple( [25e3:4e3:71e3] );; if atmdim >= 2 Q.GAS_SPECIES_JAC{1}.LAT_GRID = -10:2:10; end % Q.GAS_SPECIES{2}{1} = 'O3'; Q.GAS_SPECIES_JAC{2} = Q.GAS_SPECIES_JAC{1}; % %Q.GAS_SPECIES{3}{1} = 'N2O'; %Q.GAS_SPECIES{4}{1} = 'H2O'; %Q.GAS_SPECIES{4}{2} = 'H2O-MPM89'; %Q.GAS_SPECIES{5}{1} = 'N2-SelfContStandardType'; % Q.F_GRID = linspace( 501.18e9, 501.58e9, 201 ); Q.STOKES_DIM = 1; % Q1.LINEFORMAT = 'Arts'; Q1.LINEDATA = fullfile( atmlab_example_data , 'lines501.4' ); %= Create absorption lookup table by ARTS1 % Q.GAS_ABS_LOOKUP = arts_abstable_from_arts1( Q, Q1, linspace(-40,40,3) ); %= RTE % Q.Z_SURFACE = 500; %Q.SURFACE_PROP_AGENDA = ... % { 'InterpAtmFieldToRteGps(surface_skin_t,t_field){}', ... % 'NumericSet(numeric_1){0.5}','surfaceSingleEmissivity(numeric_1){}' }; Q.SURFACE_PROP_AGENDA = ... { 'InterpAtmFieldToRteGps(surface_skin_t,t_field){}', ... 'surfaceFlat{"water-liebe93"}' }; % Q.IY_SPACE_AGENDA = { 'Copy(iy,i_space){}' }; Q.PRE_RTE_WSMS = { 'MatrixCBR(i_space,f_grid){}' }; % Q.PPATH_STEP_AGENDA = { 'ppath_stepGeometric{50e3}' }; Q.Y_UNIT = 'RJ'; % zplat = 600e3; Q.SENSOR_POS = Q.R_GEOID + zplat; if atmdim >= 2 Q.SENSOR_POS = [ Q.SENSOR_POS -23 ]; end Q.SENSOR_LOS = geomztan2za( Q.R_GEOID, zplat, ztan ); if nargout == 1 return end %= Calculate spectrum/spectra % f = Q.F_GRID; [y,dy,J,ji] = arts_y( Q ); %= Plot % if ~nargout figure(1); h1 = plot( f/1e9, y, 'LineWidth', 2 ); hold on h2 = plot( f/1e9,J*ones(size(J,2),1) ); hold off xlabel( 'Frequency [GHz]' ) ylabel( 'Brightness temperature [K]' ) title( sprintf( 'Odin-SMR ClO band (tangent altitude = %.1f km)', ztan/1e3)); legend( [h1 h2], 'Spectrum', 'J*ones(nx,1)' ); figure(2); i = 149; ind = ji{2}{1}:ji{2}{2}; z = p2z_simple( Q.GAS_SPECIES_JAC{2}.P_GRID ); if atmdim == 1 plot(full(J(i,ind)),z/1e3); xlabel( 'J [K/1]' ) elseif atmdim == 2 lat = Q.GAS_SPECIES_JAC{2}.LAT_GRID; ind = ji{2}{1}:ji{2}{2}; contourf(lat,z/1e3,reshape(full(J(i,ind)),length(z),length(lat))); shading flat xlabel( 'Latitude [deg]' ) ylabel( 'Altitude [km]' ) title( 'Weighting function for frequency at ozone line centre' ); end ylabel( 'Altitude [km]' ) colorbar end