isel
- UnitsAwareDataArray.isel(indexers: Mapping[Any, Any] | None = None, drop: bool = False, missing_dims: ErrorOptionsWithWarn = 'raise', **indexers_kwargs: Any) Self
Return a new DataArray whose data is given by selecting indexes along the specified dimension(s).
- Parameters:
indexers (dict, optional) – A dict with keys matching dimensions and values given by integers, slice objects or arrays. indexer can be a integer, slice, array-like or DataArray. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See Indexing and selecting data for the details. One of indexers or indexers_kwargs must be provided.
drop (bool, default: False) – If
drop=True
, drop coordinates variables indexed by integers instead of making them scalar.missing_dims ({"raise", "warn", "ignore"}, default: "raise") – What to do if dimensions that should be selected from are not present in the DataArray: - “raise”: raise an exception - “warn”: raise a warning, and ignore the missing dimensions - “ignore”: ignore the missing dimensions
**indexers_kwargs ({dim: indexer, ...}, optional) – The keyword arguments form of
indexers
.
- Returns:
indexed
- Return type:
See also
Dataset.isel DataArray.sel
- xarray-tutorial:intermediate/indexing/indexing
Tutorial material on indexing with Xarray objects
- xarray-tutorial:fundamentals/02.1_indexing_Basic
Tutorial material on basics of indexing
Examples
>>> da = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y")) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: x, y
>>> tgt_x = xr.DataArray(np.arange(0, 5), dims="points") >>> tgt_y = xr.DataArray(np.arange(0, 5), dims="points") >>> da = da.isel(x=tgt_x, y=tgt_y) >>> da <xarray.DataArray (points: 5)> Size: 40B array([ 0, 6, 12, 18, 24]) Dimensions without coordinates: points