All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:continua

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      2012 Back to top

    1. Höpfner, M., M. Milz, S. A. Buehler, J. Orphal, and G. P. Stiller (2012), The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)Geophys. Res. Lett., 39, L10706, doi:10.1029/2012GL051409.
    2. 2002 Back to top

    3. Kuhn, T., A. Bauer, M. Godon, S. A. Buehler, and K. Kuenzi (2002), Water vapor continuum: Absorption measurements at 350 GHz and model calculationsJ. Quant. Spectrosc. Radiat. Transfer, 74(5), 545–562, doi:10.1016/S0022-4073(01)00271-0.

    Books and Book Contributions

      Theses

        Technical Reports and Proposals

          Articles in Conference Proceedings and Newsletters

            Internal Reports

              External references

              1. Baranov, Y. I. and W. J. Lafferty (2011), The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 KJ. Quant. Spectrosc. Radiat. Transfer, 112(8), 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
              2. Barton, I. J. (1991), Infrared continuum water vapor absorption coefficients derived from satellite dataAppl. Opt., 30(21), 2929–2934.
              3. Bauer, A. and M. Godon (2001), Continuum for H2O-X mixtures in the H2O spectral window at 239 GHz; X=C2H4, C2H6 Are collision-induced absorption processes involved?J. Quant. Spectrosc. Radiat. Transfer, 69, 277–290.
              4. Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz lineJ. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
              5. Bauer, A., M. Godon, M. Kheddar, and J. M. Hartmann (1989), Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; Calculations below 1000 GHzJ. Quant. Spectrosc. Radiat. Transfer, 41(1), 49–54.
              6. Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHzJ. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
              7. Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHzJ. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
              8. Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1996), Absorption of a H2O-CO2 Mixture in the Atmospheric Windows at 239 GHz; H2O-CO2 Linewidths and ContinuumJ. Molec. Spectro., 45–57.
              9. Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth CalculationsJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
              10. Ben-Reuven, A. (xx), The meaning of collision broadening of spectral lines: the classical-oscillator analog, The Weizman Institutwe of Science, Rehovot Israel.
              11. Bézard, B., A. Fedorova, J.-L. Bertaux, A. Rodin, and O. Korablev (2011), The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus ExpressIcarus, 216(1), 173–183, doi:10.1016/j.icarus.2011.08.025.
              12. Birnbaum, G. (1966), Theory of Microwave Nonresonant Absorption and Relaxation in GasesPhys. Rev., 150(1), 101–109.
              13. Birnbaum, G. (1979), The shape of collision broadened lines from resonance to the far wingsJ. Quant. Spectrosc. Radiat. Transfer, 21, 597–607.
              14. Burch, D. E. (1968), Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm-1 ( 287 μ – 2 cm)J. Optical Soc. o. Am., 58(10), 1383–1394.
              15. Carlon, H. R. (1981), Infrared water vapor continuum absorption: equilibria of ions and neutral water clustersAppl. Opt., 20(8), 1316–1322.
              16. Carlon, H. R. (1978), Molecular Interpretation of the ir water vapor continuum: commentsAppl. Opt., 17(20).
              17. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
              18. Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor ContinuumAtmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
              19. Clough, S. A. and P. D. Brown (1997), Status Of the CKD Water Vapor Continuum Model, Atmospheric and Enviromental Reseach.
              20. Dagg, I. R., G. E. Reesor, and J. L. Urbaniak (1975), Collision Induced Absorption in N2, CO2, and H2 at 2.3 cm-1Can. J. Phys., 53, 1764–1776.
              21. Dagg, I. R., G. E. Reesor, and M. Wong (1978), A microwave cavity measurement of collision-induced absorption in N2 and CO2 at 4.6 cm-1Can. J. Phys., 56, 1037–1045.
              22. Dagg, I. R., A. Anderson an S. Yan, W. Smith, and L. A. A. Read (1985), Collision-induced absorption in nitrogen at low temperaturesCan. J. Phys., 63, 625–631.
              23. Davis, G. R. (1993), The far infrared continuum absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 50(6), 673–694.
              24. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vaporJ. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
              25. Echle, G. and M. Hoepfner (1111), Parameterization of continua caused by gaseous constituents, Universitaet Karlsruhe.
              26. Ellingson, R. G. and Y. Fouquart (1991), The Intercomparison of Radiation Codes in Climate Models: An OverviewJ. Geophys. Res., 96(D5), 8925–8927.
              27. Ellingson, R. G., J. Ellis, and S. Fels (1991), The Intercomparison of Radiation Codes in Climate Models: Long Wave ResultsJ. Geophys. Res., 96(D5), 8929–8953.
              28. Emmons, L. K. and R. L. de Zafra (1990), Observation of a Strong Inverse Temperature Dependence for the Opacity of Atmospheric Water Vapor in the mm Continuum near 280 GHzInt. J. Inf. Millim. Waves, 11(4), 469–489.
              29. English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengthsQ. J. R. Meteorol. Soc., 120, 603–625.
              30. English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 GhzIEEE, 1395–1404.
              31. Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate modelsJ. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
              32. Gamache, R. R., J.-M. Hartmann, and L. Rosenmann (1994), Collisional broadening of water vapour lines - I. A survey of experimental resultsJ. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 481–499, doi:10.1016/0022-4073(94)90175-9.
              33. Gebbie, H. A. (1991), Comment on: Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 95(2), 1427–1428.
              34. Giorgetta, M. and M. Wild (1995), The Water Vapour Continuum and its Representation in ECHAM4, Max-Planck-Institut fuer Meteorologie.
              35. Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth CalculationsJ. Molec. Spectro., 202, 293–202.
              36. Godon, M. and A. Bauer (1988), Helium-Broadened widths of the 183 and 380 GHz lines of water vaporChem. Phys. Lett., 147(2,3), 189–191.
              37. Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHzJ. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
              38. Golovko, V. F. (2000), Dispersion formula and continuous absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 65, 621–644.
              39. Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphereJ. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
              40. Gordley, L. L., B. T. Marshall, and D. A. Chu (1994), Linepak: algorithms for modeling spectral transmittance and radianceJ. Quant. Spectrosc. Radiat. Transfer, 52(5), 563–580.
              41. Gross, E. P. (1955), Shape of Collision-Broadened Spectral LinesPhys. Rev., 97(2), 395–403.
              42. Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The Infrared Continuum of Pure Water Vapor: Calculations and High-Temperature MeasurementsJ. Quant. Spectrosc. Radiat. Transfer, 49(6), 675–691.
              43. Haus, R. and G. Arnold (2010), Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurementsPlanet. Space Sci., 58(12), 1578–1598, doi:10.1016/j.pss.2010.08.001.
              44. Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric windowInfrared Phys., 27(2), 63–120.
              45. Ho, W., I. A. Kaufman, and P. Thaddeus (1966), Laboratory measurement of microwave absorption in models of the atmosphere of VenusJ. Geophys. Res., 71(21), 5091–5108.
              46. Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1991), Third-order linear absorption by pairs of moleculesPhys. Rev., 43(7), 3631–3639.
              47. Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor ContinuumJ. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
              48. Inamdar, A. K., V. Ramanathan, and N. G. Loeb (2004), Satellite observations of the water vapor greenhouse effect and column longwave colling rates: Relative roles of the continuum and vibration-rotation to pure rotation bandsJ. Geophys. Res., 109, doi:10.1029/2003JD003980.
              49. Jenkins, J. M., M. A. Kolodner, B. J. Butler, S. H. Suleimann, and P. G. Steffes (2002), Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of VenusIcarus, 158(2), 312–328, doi:10.1006/icar.2002.6894.
              50. Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infraredInfrared Phys., 19, 585–592.
              51. Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 118, 715–748.
              52. Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
              53. Lacis, A., Q. Ma, and R. Tipping (1998), Theoretical Calculation of Water Vapor Continuum Absorption, Biological and Environmental Research.
              54. Liebe, H. J. (1984), The Atmospheric Water Vapor Continuum Below 300 GHzInt. J. Inf. Millim. Waves, 5(2), 207–227.
              55. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
              56. Ma, Q. and R. H. Tipping (2002), Water vapor millimeter wave foreign continuum: A Lanczos calculation in the coordinate representationJ. Chem. Phys., 117(23), 10581–10596.
              57. Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of RosenkranzJ. Chem. Phys., 93(10), 7066–7075.
              58. Ma, Q. and R. H. Tipping (1990), Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 93(3), 6127–6139.
              59. Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.IJ. Chem. Phys., 95(9), 6290–6301.
              60. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. IIIJ. Chem. Phys., 97(2), 818–828.
              61. Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum AbsorptionJ. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
              62. Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHzInt. J. Inf. Millim. Waves, 6(4), 313–322.
              63. Maric, D. and J. P. Burrow (1996), Application of a Gaussian Distribution Function To Describe Molecular UV-Visible Absorption Continua. 1. TheoryJ. Phys. Chem., 100(21), 8645–8659.
              64. Mate, B., C Lugez, G. T. Fraser, and W. J. Latterty (1999), Absolute intensities for the O2 1.27 μm continuum absorptionJ. Geophys. Res., 104(D23), 30,585–30,590.
              65. Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorptionPhil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
              66. Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
              67. Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1999), Recent Developments in the Water Vapor Continuum, Atmospheric and Environmental Research, Inc., and University of Wisconsin.
              68. Occelli, R., H. Chaaban, J. M. Moynault, R. Coulon, and A. Balsamo (1991), Submillimetric and millimetric collision-induced absorption spectra in compressed gaseous nitrogen using very low-frequency optical sourceCan. J. Phys., 69, 1264–1272.
              69. Olsen, R., D. V. Rogers, and D. B. Hodge (1978), The aRbrelation in the calculation of rain attenuationIEEE Trans. Antennas Propag., 26(2), 318–329, doi:10.1109/TAP.1978.1141845.
              70. Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditionsUnknown IEEE journal, 1401–1403.
              71. Payne, V. H., E. J. Mlawer, K. E. Cady-Pereira, and J.-L. Moncet (2011), Water Vapor Continuum Absorption in the MicrowaveIEEE Geosci. Remote Sens., 49(6), 2194–2208, doi:10.1109/TGRS.2010.2091416.
              72. Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transferJ. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
              73. Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditionsJ. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
              74. Podobedov, V. B., D. F. Plusquellic, and G. T. Fraser (2005), Investigation of the water-vapor continuum in the THz region using a multipass cellJ. Quant. Spectrosc. Radiat. Transfer, 91, 287–295.
              75. Podobedov, V.B., D.F. Plusquellic, K.E. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), New measurements of the water vapor continuum in the region from 0.3 to 2.7 THzJ. Quant. Spectrosc. Radiat. Transfer, 109(3), 458–467, doi:10.1016/j.jqsrt.2007.07.005.
              76. Podobedov, V.B., D.F. Plusquellic, K.M. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), Continuum and magnetic dipole absorption of the water vapor-oxygen mixtures from 0.3 to 3.6 THzJ. Molec. Spectro., 251(1–2), 203–209, doi:10.1016/j.jms.2008.02.021.
              77. Poll, J. D. and J. L. Hunt (1981), Analysis of the far infrared spectrum of gaseous N2Can. J. Phys., 59, 1448–1458.
              78. Richard, C., I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W. J. Lafferty, G. S. Orton, K.M. Smith, and H. Tran (2012), New section of the HITRAN database: Collision-induced absorption (CIA)J. Quant. Spectrosc. Radiat. Transfer, 113, 1276–1285, doi:10.1016/j.jqsrt.2011.11.004.
              79. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and modelsRadio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
              80. Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 120, 795–807.
              81. Slanina, Z. (1988), A Theoretical Evaluation of Water Oligomer Populations in the Earth's AtmosphereJ. Atmos. Chem., 6, 185–190.
              82. Stone, N. W. B., L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith (1984), Temperature dependent collision-induced absorption in nitrogenCan. J. Phys., 62, 338–347.
              83. Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared RadiancesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
              84. Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observationsQ. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
              85. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical developmentJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
              86. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shapeJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
              87. Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vaporAppl. Opt., 24(21), 3526–3530.
              88. Thomas, M. E. (1990), Atmospheric absorption model from 0.01 to 10 wave numbers, In: Propagation Engineering: Third in a Series, pp. 355–363, Edited by Bissonnette, Luc R. and Walter B. Miller, SPIE, doi:10.1117/12.21892.
              89. Thomas, M. E. (1990), Infrared- and millimeter-wavelength continuum absorption in the atmospheric windows: Measurements and modelsInfrared Phys., 30(2), 161–174.
              90. Tipping, R. H. and Q. Ma (1995), Theory of the water vapor continuum and validationsAtmos. Res., 36, 69–94.
              91. Tobin, D. C., L. L. Strow, W. J. Lafferty, and W. B. Olson (1996), Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vaporAppl. Opt., 35(24), 4724–4734.
              92. Tomasi, C., R. Guzzi, and O. Vittori (1974), A Search for the e-Effect in the Atmospheric Water Vapor ContinuumJ. Atmos. Sci., 31, 255–260.
              93. Tretyakov, M. Y., M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov (2014), Water dimer and the atmospheric continuumPhys. Usp., 11(1), 1083–1098, doi:10.3367/UFNe.0184.201411c.1199.
              94. Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexesJ. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
              95. Vigasin, A. A. (1996), On the nature of collision-induced absorption in gaseous homonuclear diatomicsJ. Quant. Spectrosc. Radiat. Transfer, 56(3), 409–422.
              96. Vigasin, A. A. (1998), Mass-action law for highly excited dimersChem. Phys. Lett., 290, 495–501.
              97. van Vleck, J. H. (1947), The Absorption of Microwaves by OxygenPhys. Rev., 71(7), 413–424.
              98. Vogelmann, A. M., V. Ramanathan, W. C. Contant, and W. E. Hunter (1998), Observational Constraints on Non-Lorentzian Continuum Effects in the Near-Infrared Solar Spectrum using ARM Arese DataJ. Quant. Spectrosc. Radiat. Transfer, 60(2), 231–246.
              99. Waters, J. W. (1976), Absorption and Emission by Atmospheric GasesMethods of Experimental Physics, 142–176.