There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2014
Holl, G., S. Eliasson, J. Mendrok, and S. A. Buehler (2014), SPARE-ICE: synergistic Ice Water Path from passive operational sensors, J. Geophys. Res., 119(3), 1504–1523, doi:10.1002/2013JD020759.
Wetzel, G., H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang (2013), Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004, Atmos. Chem. Phys., 13, 5791–5811, doi:10.5194/acp-13-5791-2013.
Holl, G., S. A. Buehler, J. Mendrok, and A. Kottayil (2012), Optimised frequency grids for infrared radiative transfer simulations in cloudy conditions, J. Quant. Spectrosc. Radiat. Transfer, 113, 2124–2134, doi:10.1016/j.jqsrt.2012.05.022.
Höpfner, M., M. Milz, S. A. Buehler, J. Orphal, and G. P. Stiller (2012), The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2), Geophys. Res. Lett., 39, L10706, doi:10.1029/2012GL051409.
Buehler, S. A., P. Eriksson, and O. Lemke (2011), Absorption lookup tables in the radiative transfer model ARTS, J. Quant. Spectrosc. Radiat. Transfer, 112(10), 1559–1567, doi:10.1016/j.jqsrt.2011.03.008.
Thapliyal, P. K., M. V. Shukla, S. Shah, P. K. Pal, P. C. Joshi, and A. Kottayil (2011), An algorithm for the estimation of upper tropospheric humidity from Kalpana observations: Methodology and validation, J. Geophys. Res., 116, 1–16, doi:doi:10.1029/2010JD014291.
Kiefer, M., E. Arnone, A. Dudhia, M. Carlotti, E. Castelli, T. von Clarmann, B. M. Dinelli, A. Kleinert, A. Linden, M. Milz, E. Papandrea, and G. Stiller (2010), Impact of Temperature Field Inhomogeneities on the Retrieval of Atmospheric Species from MIPAS IR Limb Emission Spectra, Atmos. Meas. Tech., 3, 1487–1507, doi:10.5194/amt-3-1487-2010.
Buehler, S. A., V. O. John, A. Kottayil, M. Milz, and P. Eriksson (2010), Efficient Radiative Transfer Simulations for a Broadband Infrared Radiometer — Combining a Weighted Mean of Representative Frequencies Approach with Frequency Selection by Simulated Annealing, J. Quant. Spectrosc. Radiat. Transfer, 111(4), 602–615, doi:10.1016/j.jqsrt.2009.10.018.
Kottayil, A. (2011), Satellite and Radiosonde Measurements of Atmospheric Humidity, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, Licentiate thesis.
Holl, G. (2011), Microwave and infrared remote sensing of ice clouds: measurements and radiative transfer simulations, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, Licentiate thesis, ISBN 978-91-7439-374-3, ISSN 1402-1757.
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
Ananasso, C., R. Santoleri, S. Marullo, and D'Ortenzio. F. (2002), Remote sensing of cloud cover in the Arctic region from AVHRR data during the ARTIST experiment, Int. J. Remote Sensing, 1–20.
Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylinders, Appl. Opt., 42, 2811–2818.
Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution function, Q. J. R. Meteorol. Soc., 131, 1129–1142.
Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models, J. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, doi:10.1029/1999JD901090.
Baum, B. A. and J. D. Spinhirne (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlap, J. Geophys. Res., 105, 11793–11804, doi:10.1029/1999JD901091.
Baum, B. A., B. A. Wielicki, and P. Minnis ans L. Parker (1992), Cloud-Property retrieval Using Merged HIRS and AVHRR Data, J. Appl. Meteorol., 31, 351–369.
Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN database, Geophys. Res. Lett., 27(22), 3703–3706.
Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMs, Geophys. Res. Lett., 28(24), 4591–4594.
Berk, A., G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis (2005), MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, pp. 662–667, Edited by Shen, S. S. and P. E. Lewis, SPIE, doi:10.1117/12.606026.
Blumenstock, T., G. Kopp, F. Hase, G. Hochschild, S. Mikuteit, U. Raffalski, and R. Ruhnke (2006), Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/2001, Atmos. Chem. Phys., 6, 897–905, doi:10.5194/acp-6-897-2006.
Borysow, A. (2002), Collision-induced absorption in the infrared: A data base for modelling planetary and stellar atmospheres, University of Copenhagen.
Boulet, C., D. Robert, and L. Galatry (1980), Influence of the finite duration of collisions on the infrared line shape, J. Chem. Phys., 72(1), 751–759.
Brown, L. R. and C. Plymate (1996), H2-Broadened H216O in four Infrared Bands between 55 and 4045 cm-1, J. Quant. Spectrosc. Radiat. Transfer, 56(2), 263–282.
Bryant, C. H., P. B. Davies, and T. J. Sears (1996), The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy, Geophys. Res. Lett., 23(15), 1945–1947.
Buffey, I. P., W. B. Brown, and H. A. Gebbie (1990), A Theoretical Study of the Infrared Absorption Spectra of Large Water Clusters, J. Chem. Soc. Far. Trans., 86(13), 2357–2360.
Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas (2011), Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, doi:10.5194/acp-11-5603-2011.
Buontempo, U., S. Cunsolo, and G. Jacucci (1975), The far infrared absorption spectrum of N2 in the gas and liquid phases, J. Chem. Phys., 63(6), 2570–2576.
Carlon, H. R. (1978), Phase transition changes in the molecular absorption coefficient of water in the infrared: evidence for clusters, Appl. Opt., 17(20), 3192–3193.
Chance, K. V., K. Park, and K. M. Evenson (1998), Pressure Broadening of Far Infrared Rotational Transitions: 88.65 cm-1 H2O and 114.47 cm-1 O3, J. Quant. Spectrosc. Radiat. Transfer, 59(6), 687–688.
Chantry, G. W. (1982), The use of Fabry-Perot interferometers, etalons and resonators at infrared and longer wavelengths- an overview, J. of Phys. E: Sci. Instrum., 15, 3–8.
Chen, R. and C. Cao (2012), Physical analysis and recalibration of MetOp HIRS using IASI for cloud studies, J. Geophys. Res., 117, D03103, doi:10.1029/2011JD016427.
Cheruy, F., N. A. Scott, R. Armante, B. Tournier, and A. Chedin (1995), Contribution to the Development of Radiative Transfer Models for High Spectral Resolution Observations in the Infrared, J. Quant. Spectrosc. Radiat. Transfer, 53(5), 597–611.
Cheruy, F. and N. A. Scott (1995), Contribution to the development of radiative transfer models for high spectral resolution observations in infrared, J. Quant. Spectrosc. Radiat. Transfer, 53(6), 597–611.
Cimini, D., J. A. Shaw, E. R. Westwater, Y. Han, V. Irisov, V. Leuski, and J. H. Churnside (2003), Air temperature profile and air/sea temperature difference measurements by infrared and microwave scanning radiometers, Radio Sci., 38(3), doi:10.1029/2002RS002632.
von Clarmann, T., M. Hoepfner, B. Funke, M. Lopez-Puertas, A. Dudhia, V. Jay, F. Schreier, M. Ridolfi, S. Ceccherini, B. J. Kerridge, J. Reburn, and R. Siddans (2003), Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experiment, J. Quant. Spectrosc. Radiat. Transfer, 78, 381–407.
Clerbaux, C., A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes and, and P.-F. Coheur (2009), Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, doi:10.5194/acp-9-6041-2009.
Comstock, J. M., R. D. Entremont, D. DeSlover, G. G. Mace, S. Y. Matrosov, S. A. McFarlane, P. Minnins, D. Mitchell, K. Sassen, M. D. Shupe, D. D. Turner, and Z. Wang (2007), An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice Clouds, Bull. Amer. Met. Soc., 191–204, doi:10.1175/BAMS-88-2-191.
Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances, J. Geophys. Res., 108, doi:10.1029/2002JD002611.
Doyle, S., P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe (2008), Lumped Element Kinetic Inductance Detectors, J. Low Temp. Phys., 151(1–2), 530–536, doi:10.1007/s10909-007-9685-2.
Duda, D. P., J. D. Spinhirne, and W. D. Hart (1998), Retrieval of contrail microphysical properties during SUCCESS by the split-window method, Geophys. Res. Lett., 25(8), 1149–1152.
Engelen, R. J., E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. McNally, J.-N. Thepaut, and P. D. Watts (2004), Estimating atmospheric CO2 from advanced infrared satellite radiances witin an operational 4D-Var data assimilation system: Methodology and first results, J. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.
Filippov, N. N. and M. V. Tonkov (1996), Line mixing in the infrared spectra of simple gases at moderate and high densities, Spectrochimica Acta Part A, 52, 901–918.
Finger, G. and F. K. Kneubuehl (1984), Spectral Thermal Infrared Emission on the Terrestrial Atmosphere, Physics Department, ETH, Zuerich, Switzerland.
Fiorucci, I., G. Muscari, C. Bianchi, P. Di Girolamo, F. Esposito, G. Grieco, D. Summa, G. Bianchini, L. Palchetti, M. Cacciani, T. Di Iorio, G. Pavese D. Cimini, and R. L. de Zafra (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831.
Frey, R. A., S. A. Ackerman, and B. J. Soden (1996), Climate Parameters from Satellite Spectral Measurements. Part I: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse Parameter, J. Climate, 9, 327–344.
Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?, Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models, J. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
Gaiduk, V. I., O. F. Nielsen, and T. S. Perova (2002), Molecular model of dielectric relaxation and the far-infrared isotopic effect in liquid H2O and D2O, J. Molec. Liqu., 95, 1–25.
Gaiduk, V. I., V. V. Gaiduk, and J. McConnell (1995), The complex susceptibility of liquid water as a two-potential system of reorienting polar molecules, Physica A, 222, 46–62.
Gasster, S. D., C. H. Townes, D. Goorvitch, and F. P. J. Valero (1988), Foreign-gas collision broadening of the far-infrared spectrum of water vapor, J. Optical Soc. o. Am., 5(3), 593–601.
Giraud, M., D. Robert, and L. Galatry (1973), Intermolecule potential and width of pressure broadened spectral lines. IV. Influence of the nonrigidity of the molecules; diatomic molecules case, J. Chem. Phys., 59(5), 2204–2214.
Giver, L. P., C. Chackerian Jr., and P. Varanasi (2000), Visible and near-infrared H216O line intensity corrections for HITRAN-96, J. Quant. Spectrosc. Radiat. Transfer, 66, 101–105.
Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE Measurements, IEEE Geosci. Remote Sens. Let., 2(2), 132–135.
Han, Y., J. A. Shaw, J. H. Churnside, P. D. Brown, and S. A. Clough (1997), Infrared spectral radiance measurements in the tropical Pacific atmosphere, J. Geophys. Res., 102(D4), 4,353–4,356.
Hannon, S., L. L. Strow, and W. W. McMillan (1996), Atmospheric Infrared Fast Transmittance Models: A Comparison of Two Approaches, University of Maryland Baltimore Country.
Hartmann, J. M., J. Taine, J. Bonamy, B. Labani, and D. Robert (1987), Collisional broadening of rotation-vibration lines for asymmetric top molecules.II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range, J. Chem. Phys., 86(1), 144–156.
Henderson, G. and G. E. Ewing (1973), Infrared spectrum, structure, and properties of the O2-Ar van der Waals molecule, J. Chem. Phys., 59(5), 2280–2293.
Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgets, J. Atmos. Sci., 37, 1251–1261.
Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance Measurements, IEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
Hoogeveen, R. W. M., R. J. van der A., and A. P. H. Goede (2001), Extended wavelength InGaAs infrared (1.0–2.4μm) detector arrays on SCIAMACHY for space-based spectroscopy of the Earth atmosphere, Infrared Phys. & Tech., 42, 1–16.
Houdeau, J. P., C. Boulet, and D. Robert (1985), A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled lines, J. Chem. Phys., 82(4), 1661–1673.
Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks, J. Appl. Meteorol., 36, 1176–1190.
Husson, N., A. Chedin, and B. Bonne (1993), Review of existing spectral line data catalogs, In: High Spectral Resolution Infrared Remote Sensing for Earth's Weather and Climate Studies, pp. 443–457, Springer-Verlag.
Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli (2003), The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) Climate dataset: A Resource for Climate Research, Bull. Amer. Met. Soc., 84(6), doi:10.1175/BAMS-84-6-785.
Jin, M. and S. Liang (2006), An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations, J. Climate, 19(12), 1867–2881, doi:10.1175/JCLI3720.1.
Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus, J. Climate, 17, 4856–4870.
Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor, J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
Kahn, B. H., E. Fishbein, S. L. Nasiri, A. Eldering, E. J. Fetzer, M. J. Garay, and S.-Y. Lee (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals, J. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.
Kahn, B. H., C. K. Liang, A. Eldering, A. Gettelman Q. Yue, and K. N. Liou (2008), Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder, Atmos. Chem. Phys., 8, 1501–1518, doi:10.5194/acp-8-1501-2008.
Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby (2003), Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms, J. Hydrometeorol., 4, 1088–1104.
King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou (2004), Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data, J. Atmos. Oceanic Technol., 21, 857–875.
Labani, B., J. Bonamy, D. Robert, J. M. Hartmann, and J. Taine (1986), Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions, J. Chem. Phys., 84(8), 4256–4267.
Labani, B., J. Bonamy, D. Robert, and J. M. Hartmann (1987), Collisional broadening of rotation-vibration lines for asymmetric top molecules.III. Self-broadening case; application to H2O, J. Chem. Phys., 87(5), 2781–2789.
Latterty, W. L., A. M. Solodov, A. Weber, W. B. Olson, and J.-M. Hartmann (1996), Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modeling, Appl. Opt., 35(30), 59911–5917.
Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite Data, J. Appl. Meteorol., 38, 1182–1194.
Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer Data, J. Geophys. Res., 103, 23207–23216.
Marteau, P., C. Boulet, and D. Robert (1984), Finite duration of collisions and vibrational dephasing effects on the Ar broadened HF infrared line shapes: Asymmetric profiles, J. Chem. Phys., 80(8), 3632–3639.
Maryott, A. A. and G. Birnbaum (1967), Line Shape and Collision Effects in the Microwave Wing of Far-Infrared Rotational Lines, J. Chem. Phys., 47(9), 3200–3205.
Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk (2004), Multivariate Statistical Integration of Satellite Infrared and Microwave Radiometric Measurements for Rainfall Retrieval at the Geostationary Scale, IEEE T. Geosci. Remote, 42(5), 1018–1032, doi:10.1109/TGRS.2003.820312.
Matrosov, S. Y., B.W. Orr, R. A. Kropfli, and J. B. Snider (1994), Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer Measurements, J. Appl. Meteorol., 33, 617–626.
Matsushima, F., H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi (1999), Frequency Measurement of Pure Rotational Transitions of H217O and H218O from 0.5 to 5 THz, J. Molec. Spectro., 193, 217–223.
Miller, P. F. and H. A. Gebbie (1993), Stimulated Emission of Atmospheric Water Vapour between 2cm-1 and 30cm-1 Photoinduced by Infrared Radiation, Infrared Phys., 34(1), 23–31.
Miller, P. F. and H. A. Gebbie (1993), Temporal Effects in Millimetre Wave Aerosol Spectra and the Influence of Infrared Radiation, Infrared Phys., 34(2), 143–152.
Minnis, P., K.-N. Liou, and Y. Takano (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields, J. Atmos. Sci., 50(9), 1279–1304, doi:10.1175/1520-0469(1993)050<1279:IOCCPU>2.0.CO;2.
Minnis, P., P. W. Heck, and D. F. Young (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties, J. Atmos. Sci., 50(9), 1305–1322, doi:10.1175/1520-0469(1993)050<1305:IOCCPU>2.0.CO;2.
Mitchell, D. L., R. P. D'Entremont, and R. P. Lawson (2009), Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical Databases, J. Atmos. Sci., 67(4), 1106–1125, doi:10.1175/2009JAS3150.1.
Mlawer, E. J., S. A. Clough, P. D. Brown, T. M. Stephen, J. C. Landry, A. Goldman, and F. J. Murcray (1998), Oberserved atmospheric collision-induced absorption in near-infrared oxygen bands, J. Geophys. Res., 103(D4), 3859–3863.
Nasiri, S. L. and B. H. Kahn (2008), Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement, J. Appl. Meteorol. Clim., 47(D34), 1–2000, doi:10.1175/2008JAMC1879.1.
Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
Nolt, I. G., M. D. Vanek, N. D. Tappan, P. Minnis, J. L. Alltop, P. A. R. Ade, C. Lee, P. A. Hamilton, K. F. Evans, A. H. Evans, E. E. Evans, E. E. Clothiaux, and A. J. Baran (1999), Far infrared measurements of cirrus, xxxx, Remote Sensing of Clouds and Atmosphere.
Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy, J. Chem. Phys., 101, 5211–5214.
Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditions, J. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
Plass, G. N. (1956), The influence of the 15μ carbon-dioxide band on the atmospheric infra-red cooling rate, Q. J. R. Meteorol. Soc., 82(353), 310–324, doi:10.1002/qj.49708235307.
Platt, C. M. R. (1979), Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements, J. Appl. Meteorol., 18, 1130–1143.
Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran (1988), Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRIS, J. Appl. Meteorol. Clim., 27(4), 379–399, doi:10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.
Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell (2003), Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder, J. Geophys. Res., 108(D9), doi:10.1029/2002JD002801.
Rapp, A. D., G. Elsaesser, and C. Kummerow (2009), A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds, J. Appl. Meteorol. Clim., 48, 2242–2256.
Rathke, C., W. Armbruster, J. Fischer, E. Becker, and J. Notholf (2000), Comparison of stratus cloud properties derived from coincident airborne visible and ground-based infrared spectrometer measurements, Geophys. Res. Lett., 27(17), 2641–2644.
Riviere, P., A. Soufiani, and J. Taine (1995), Correlated-k Fictious Gas Model for H2O Infrared Radiation in the Voight Regime, J. Quant. Spectrosc. Radiat. Transfer, 53(3), 335–346.
Rodrigues, R., K. W. Jucks, N. Lacombe, G. Blanquet, J. Walrand, W. A. Traub, B. Khalil, R. le Doucen, A. Valentin, C. Camy-Peyret, L. Bonamy, and J.-M. Hartmann (1999), Model, Software, and Database for Computation of Line-Mixing Effects in Infrared Q Branches of Atmospheric CO2- I.Symmetric Isotopomers, J. Quant. Spectrosc. Radiat. Transfer, 61(2), 153–184.
Rosenfeld, D. and G. Gutman (1994), Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data, Atmos. Res., 34, 259–283.
Sheu, R.-S., J. A. Curry, and G. Liu (1996), Satellite retrieval of tropical precipitation using combined International Satellite Cloud Climatology Project DX and SSM/I Data, J. Geophys. Res., 101(D16), 21,291–21,301.
Slingo, A., K. I. Hodges, and G. J. Robinson (2004), Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7, Q. J. R. Meteorol. Soc., 130, 1449–1467, doi:10.1256/qj.03.165.
Smith, K. M. and D. A. Newnham (2000), Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2-O2, and O2-N2), J. Geophys. Res., 105(D6), 7383–7396.
Smith, G. J., D. A. Naylor, and P. A. Feldman (2001), Measurements of Atmospheric Water Vapor above Mauna Kea using an infrared Radiometer, Int. J. Inf. Millim. Waves, 22(5), 661–678.
Smith Sr., W. L., H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev (2009), Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere, Atmos. Chem. Phys., 9, 5563–5574, doi:10.5194/acp-9-5563-2009.
Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus clouds, Geophys. Res. Lett., 25(8), 1137–1140.
Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN System Satellite-Based Estimates of Tropical Rainfall, Bull. Amer. Met. Soc., 81(9), 2035–2046.
Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case study, Q. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
Stockmann, P. A., R. E. Bumgarner, S. Suzuki, and G. A. Blake (1992), Microwave and tunable far-infrared laser spectroscopy of the ammonia-water dimer, J. Chem. Phys., 96(4), 2496–2509.
Strow, L. L., H. E. Motteler, R. G. Benson, S. E. Hannon, and S. De Souza-Machado (1998), Fast Computation Of Monochromatic Infrared Atmospheric Transmittances Using Compressed Look-up Tables, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 481–493, doi:10.1016/S0022-4073(97)00169-6.
Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared Radiances, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative Effects, J. Climate, 12, 3419–3442.
Sussmann, R., T. Borsdorff, M. Rettinger, C. Camy-Peyret, P. Demoulin, P. Duchatelet, E. Mahieu, and C. Servais (2009), Technical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network — First examples for long-term records and station trends, Atmos. Chem. Phys., 9(22), 8987–8999, doi:10.5194/acp-9-8987-2009.
Svishchev, I. M. and R. J. Boyd (1998), van der Waals Complexes of Water with Oxygen and Nitrogen: Infrared Spectra and Atmospheric Implications, J. Phys. Chem., 102, 7294–7296.
Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometry, Q. J. R. Meteorol. Soc., 121, 1083–1112.
Thibault, F., V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, and C. Boulet (1997), Infrared collision-induced absorption by O2 near 6.4 μm for atmospheric applications: measurements and empirical modeling, Appl. Opt., 36(3), 563–567.
Ushio, T., D. Katagami, K. Okamoto, and T. Inoue (2007), On the Use of Split Window Data in Deriving the Cloud Motion Vector for Filling the Gap of Passive Microwave Rainfall Estimation, Sci. Onl. Let. Atm., 3, 1–4, doi:10.2151/sola.2007-001.
Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance, Appl. Opt., 40(13).
Vogel, R. L., Q. Liu, Y. Han, and F. Weng (2011), Evaluating a satellite derived global infrared land surface emissivity data set for use in radiative transfer modeling, J. Geophys. Res., 116, 1–11, doi:10.1029/2010JD014679.
Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parameters, Int. J. Remote Sensing, 18(15), 3263–3277.
Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions, J. Atmos. Sci., 34, 1408–1422.
Wylie, D. P. and P.-H. Wang (1997), Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment II, J. Geophys. Res., 102, 29893–29900.
Ku, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam (1999), A Microwave Infrared Threshold Technique to Improve the GOES Precipitation Index, J. Appl. Meteorol., 38, 569–579.
Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral region, J. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystals, Appl. Opt., 43(12).
Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds, J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
Zhong, W. and J. D. Haigh (2000), An efficient and accurate correlated-k parameterization of infrared radiative transfer for troposphere-stratosphere-mesosphere GCMs, Atm. Sci. Lett., 1(2), doi:10.1006/asle.2000.0014.
Zink, L. R. and M. Mizushima (1987), Pure Rotational Far-Infrared Transitions of 16O2 in Its Electronic and Vibrational Ground State, J. Molec. Spectro., 125, 154–158.