All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

| 2c-ice | a-train | abs lookup | absorption | active | aerosol | aerosols | age of air | aggregation | airs | albedo | algorithm | amsos | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astronomy | astrophysics | asymmetry | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | bachelor thesis | backscattering | basics | bayes | bias | biomass | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | cliccs | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud ice mission | cloud optical thickness | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | cloud top pressure | cloudice mission | clouds | cloudsat | clustering | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | collocations | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cost 723 qjrms | cross-calibration | cth | cumulus | dardar | data assimilation | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dlr-smiles | dmsp | documentation | doppler | droplet size | dynamics | earth | earthcare | ec earth | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emde | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | fuzzy inference system | fuzzy logic | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | gravitational lensing | greenhouse effect | ground-based | groundbased | habil | hadley circulation | hail | hamburg | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | hydrometeors | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | infrared sounder | instruments | inter-calibration | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | john | jupiter | kalpana | kessler scheme | lblrtm | licentiate thesis | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | master thesis | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | methane ocean | metop | mhs | microphysics | microwave | microwave humidity | microwave radiometry | milz | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | moon | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbital drift correction | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | passive | patmos-x | phase function | phd thesis | planetary evolution | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometer | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | radiosonde corrections | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | retrievals | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | sreerekha | ssm/i | ssm/t | ssmis | ssmt2 | stability | stars | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | synergy | task2 | tempera | temperature | terra | thermodynamics | time series | titan | tkuhn | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | uthmos | utls | validation | vater vapor | venus | visualization | volcanic ash | walker | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:feedbacks

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      Books and Book Contributions

        Theses

          Technical Reports and Proposals

            Articles in Conference Proceedings and Newsletters

              Internal Reports

                External references

                1. Allan, R. P., V. Ramaswamy, and A. Slingo (2002), Diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley Centre and Geophysical Fluid Dynamics Laboratory GFDL climate modelsJ. Geophys. Res., 107(D17), doi:10.1029/2001JD001131.
                2. Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior (2004), On dynamic and thermodynamic components of cloud changesClimate Dynamics, 22(2), 71–86, doi:10.1007/s00382-003-0369-6.
                3. Bony, S., et al. (2005), How Well do we Understand Climate Change Feedback Processes?J. Climate.
                4. Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M. J. Webb (2006), How Well Do We Understand and Evaluate Climate Change Feedback Processes?J. Climate, 19, 3445–3482.
                5. Bony, S., B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros (2016), Thermodynamic control of anvil cloud amountProc. Nat. Aca. Sci., doi:10.1073/pnas.1601472113.
                6. Cess, R. D. (2005), Water Vapor Feedback in Climate ModelsScience, 310, 795–796.
                7. Chou, C. and J. D. Neelin (1999), Cirrus Detrainment-Temperature FeedbackGeophys. Res. Lett., 26(9), 1295–1298.
                8. Colman, R. A. (2001), On the vertical extent of atmospheric feedbacksClimate Dynamics, 17, 391–405.
                9. Colman, R. (2003), Seasonal contributions to climate feedbacksClimate Dynamics, 80, 825–841, doi:10.1007/s00382-002-0301-5.
                10. Feldl, N. and S. Bordoni (2016), Characterizing the Hadley Circulation Response through Regional Climate FeedbacksJ. Climate, 29(2), 613-622, doi:10.1175/JCLI-D-15-0424.1.
                11. de F. Forster, P. M. and M. Collins (2003), Quantifying the water vapour feedback associated with post-Pinatubo global coolingClimate Dynamics, 25(2), 207–214.
                12. Gettelman, A. and Q. Fu (2008), Observed and Simulated Upper-Tropospheric Water Vapor FeedbackJ. Climate, 21, 3282–3289, doi:10.1175/2007JCLI2142.1.
                13. Hall, A. and S. Manabe (2000), Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycleJ. Geophys. Res., 105(D5), 6935–6944.
                14. Hall, A. and S. Manabe (2000), Suppression of ENSO in a coupled model without water vapor feedbackClimate Dynamics, 16, 393–403.
                15. Hall, A. and S. Manabe (1998), The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global WarmingJ. Climate, 12(8), 2327–2346.
                16. Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global WarmingAnnu. Rev. Energy Environ., 25, 441–475.
                17. Ingram, W. (2010), A very simple model for the water vapour feedback on climate changeQ. J. R. Meteorol. Soc., 136(646), 30–40, doi:10.1002/qj.546.
                18. Klein, S. A. and A. Hall (2015), Emergent Constraints for Cloud FeedbacksCurr. Clim. Change Rep., 1(4), 267–287, doi:10.1007/s40641-015-0027-1.
                19. Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K. Xu (2002), The iris hypothesis: a negative or positive cloud feedback?J. Climate, 15, 3–7.
                20. Millan, M. M., et al. (2005), Climate Feedbacks and Desertification: The Mediterranean ModelJ. Climate, 18, 684–701.
                21. Minschwaner, K. and A. E. Dessler (2004), Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and ObservationsJ. Climate, 17, 1272–1282, doi:10.1175/1520-0442(2004)017<1272:WVFITT>2.0.CO;2.
                22. Noda, A. T., T. Seiki, M. Satoh, and Y. Yamada (2016), High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulationsGeophys. Res. Lett., 43(5), 2307–2314, doi:10.1002/2016GL067742.
                23. Ou, S.-C. and K.-N. Liou (1995), Ice microphysics and climate temperature feedbackAtmos. Res., 35, 127–138.
                24. Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedbackAtmos. Res., 35, 127–138.
                25. Philipona, R., B. Duerr, A. Ohmura, and C. Ruckstuhl (2005), Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in EuropeGeophys. Res. Lett., 32, doi:10.1029/2006GL023624.
                26. Raval, A. and V. Ramanathan (1989), Observational determination of the greenhouse effectNature, 342, 758–761.
                27. Rieck, M., L. Nuijens, and B. Stevens (2012), Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity AtmosphereJ. Atmos. Sci., 69(8), 2538–2550, doi:10.1175/JAS-D-11-0203.1.
                28. Slingo, A., J. A. Pamment, R. P. Allan, and P. S. Wilson (2000), Water Vapor Feedbacks in the ECMWF Reanalyses and Hadley Centre Climate ModelJ. Climate, 13, 3080–3098.
                29. Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002), Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water VaporScience, 296, 727–730.
                30. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
                31. Soden, B. J. and R. Fu (1995), A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse EffectJ. Climate, 8, 2333–2351.
                32. Stainforth, D. A., T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe, and M. R. Allen (2005), Uncertainty in predictions of the climate response to rising levels of greenhouse gasesNature, 433, 403–406.
                33. Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical reviewJ. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
                34. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
                35. Su, H., R. W. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer (2006), Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLSGeophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.
                36. Watterson, I. G., M. R. Dix, and R. A. Colman (1999), A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation modelsJ. Geophys. Res., 104(D2), 1943–1956.
                37. Wetherald, R. T. and S. Manabe (1987), Cloud Feedback Processes in a General Circulation ModelJ. Atmos. Sci., 45(8), 1397–1416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.
                38. Zelinka, M. D. and D. L. Hartmann (2010), Why is longwave cloud feedback positive?J. Geophys. Res.: Atm., 115(D16), D16117, doi:10.1029/2010JD013817,.
                39. Zelinka, M. D. and D. L. Hartmann (2011), The observed sensitivity of high clouds to mean surface temperature anomalies in the tropicsJ. Geophys. Res., 116(D23), D23103, doi:10.1029/2011JD016459,.
                40. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster (2013), Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5J. Climate, 26(14), 5007–5027, doi:10.1175/JCLI-D-12-00555.1.