All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:cirrus

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      2003 Back to top

    1. Miao, J., K.-P. Johnsen, S. A. Buehler, and A. Kokhanovsky (2003), The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parametersAtmos. Chem. Phys., 3, 39–48, doi:10.5194/acp-3-39-2003.

    Books and Book Contributions

      Theses

        Technical Reports and Proposals

          Articles in Conference Proceedings and Newsletters

            Internal Reports

              External references

              1. Baran, A. J., P. N. Francis, L.C. Labonnote, and M. Doutriaux-Boucher (2001), A scattering phase function for ice cloud : Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrusQ. J. R. Meteorol. Soc., 127, 2395–2416.
              2. Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurementsQ. J. R. Meteorol. Soc., 130, 1–16.
              3. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
              4. Baran, A. J. (2009), A review of the light scattering properties of cirrusJ. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
              5. Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depthJ. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
              6. Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forwardAtmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
              7. Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model GlobalJ. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
              8. Baran, A. J., K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco (2014), On the relationship between the scattering phase function of cirrus and the atmospheric stateAtmos. Chem. Phys. Discuss., 14, 14109–14157, doi:10.5194/acpd-14-14109-2014.
              9. Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen (2014), A self-consistent scattering model for cirrus. II: The high and low frequenciesQ. J. R. Meteorol. Soc., 140(680), 1039–1057, doi:10.1002/qj.2193.
              10. Bizzarri, B., et al. (1999), Report of the Pre-Phase a industrial Study for a Cloud and Radiation Monitoring Satellite (Clouds), EU.
              11. Bond, S. T. (1996), The Potential Effect of Cirrus on Microwave Limb Sounder Retrievals, The University of Edinburgh.
              12. Boucher, O. (1999), Air traffic may increase cirrus cloudinessNature, 397, 30–31.
              13. Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi (2008), Parameterization of single scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixturesGeophys. Res. Lett., 35(16), 1–5, doi:10.1029/2008GL034695.
              14. Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus cloudsAtmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
              15. Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant (2001), Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1J. Geophys. Res., 106(D8), 7955–7966, doi:10.1029/2000JD900285.
              16. Chepfer, H., G. Brogniez, and Y. Fouquart (1998), Cirrus coulds' microphysical properties deduced from POLDER observationsJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 375–390.
              17. Chepfer, H., G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant (1999), Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1J. Quant. Spectrosc. Radiat. Transfer, 63, 521–543.
              18. Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observationsGeophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
              19. Chou, C. and J. D. Neelin (1999), Cirrus Detrainment-Temperature FeedbackGeophys. Res. Lett., 26(9), 1295–1298.
              20. Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS)J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
              21. Comstock, J. M. and C. Jakob (2004), Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru IslandGeophys. Res. Lett., 31.
              22. Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus cloudsJ. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
              23. Considine, G. and J. A. Curry (1996), A statistical model of drop-size spectra for stratocumulus cloudsQ. J. R. Meteorol. Soc., 122, 611–634.
              24. Considine, G., J. A. Curry, and B. Wielicki (1997), Modeling cloud fraction and horizontal variability in marine boundary layer cloudsJ. Geophys. Res., 102(D12), 13,517–13,525.
              25. Corti, T., B. P. Luo, Q. Fu, H. Voemel, and T. Peter (2006), The impact of cirrus clouds on tropical troposphere-to-stratosphere transportAtmos. Chem. Phys., 6, 2539–2547, doi:10.5194/acp-6-2539-2006.
              26. Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Max-Planck-Institute for Chemistry Department of Atmospheric Chemistry and University of California.
              27. Del Genio, A. D., A. B. Wolf, and G. G. Mace (2001), Observed and Simulated Cirrus Cloud Properties at the SGP CART Site, Goddard Institute for Space Studies, University of Utah, Eleventh ARM Science Team Meeting Proceedings.
              28. DelGenio, A. D. (2002), GCM simulations of cirrus for climate studies, In: Cirrus, pp. 310–326, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              29. Dowling, D. R. and L. F. Radke (1990), A summary of the physical properties of cirrus cloudsJ. Appl. Meteorol., 29, 970–978.
              30. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
              31. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
              32. Evans, K. F., S. J. Walter, and W. R. McGrath (1996), Submillimeter-Wave Radiometric Sensing of Cirrus Clouds Properties: The JPL Prototype Cloud Ice Radiometer, University of Colorado.
              33. Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter (1998), Modeling of Submillimeter Passive Remote Sensing of Cirrus CloudsJ. Appl. Meteorol., 37, 184–205.
              34. Evans, K. F., A. H., I. G. Nolt, and B. T. Marshall (1999), The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave SpectrometerJ. Appl. Meteorol., 38, 514–525.
              35. Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrusAtmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
              36. Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
              37. Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu (1992), Cirrus-cloud thermostat for tropical sea surface temperatures tested using satellite dataNature, 358, 394–397.
              38. Fu, Q. and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus CloudsJ. Atmos. Sci., 50, 2008–2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
              39. Fu, Q. and Y. Takano (1994), On the limitation of using asymmetry factor for radiative transfer in cirrus cloudsAtmos. Res., 34, 299–308.
              40. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
              41. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
              42. Fusina, F., P. Spichtinger, and U. Lohmann (2007), Impact of ice supersaturated regions and thin cirrus on radiation in the midlatitudesJ. Geophys. Res., 112, D24S14, doi:10.1029/2007JD008449.
              43. Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
              44. Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometerIEEE T. Geosci. Remote, 42(9), 1891–1899.
              45. Garrett, T. J., A. J. Heymsfield, M. J. McGill, B. A. Ridley, D. G. Baumgardner, T. P. Bui, and C. R. Webster (2004), Convective generation of cirrus near the tropopauseJ. Geophys. Res., 109, doi:10.1029/2004JD004952.
              46. Garrett, T. J., B. C. Navarro, C. H. Twohy, E. J. Jensen, D. G. Baumgardner, P. T. Bui, H. Gerber, R. L. Herman, A. J. Heymsfield, P. Lawson, P. Minnis, L. Nguyen, M. Poellot, S. K. Pope, F. P. J. Valero, and E. M. Weinstock (2005), Evolution of a Florida Cirrus AnvilJ. Atmos. Sci., 62, 2352–2372.
              47. Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experimentJ. Geophys. Res., 109, doi:10.1029/2004JD004803.
              48. Gettelman, A. and D. E. Kinnison (2007), The global impact of supersaturation in a coupled chemistry-climate modelAtmos. Chem. Phys., 7, 1629–1643, doi:10.5194/acp-7-1629-2007.
              49. Gierens, K., U. Schumann, M. Helten, H. Smit, and P.-H. Wang (2000), Ice-supersaturated regions and subvisible cirrus in the northern midlatitude upper troposphereJ. Geophys. Res., 105(D18), 22,743–22,753.
              50. Goldfarb, L., P. Keckhut, M-L. Chanin, and A. Hauchecorne (2001), Cirrus climatological results from lidar measurements at OHP (44°N, 6°E)Geophys. Res. Lett., 28, 1687–1690, doi:10.1029/2000GL012701.
              51. Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE MeasurementsIEEE Geosci. Remote Sens. Let., 2(2), 132–135.
              52. Haladay, T. and G. Stephens (2009), Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observationsJ. Geophys. Res., 114, 1–13, doi:10.1029/2008JD010675.
              53. Hallar, A. Gannet, L. M. Avallone, R. L. Herman, B. E. Anderson, and A. J. Heymsfield (2004), Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE)J. Geophys. Res., 109, D17203, doi:10.1029/2003JD004348.
              54. Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, University of Washington.
              55. Heidinger, A. K. and M. J. Pavolonis (2009), Gazing at cirrus clouds for 25 years through a split window, Part 1: MethodologyJ. Appl. Meteorol. Clim., 48(6), 1100–1116.
              56. Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
              57. Heymsfield, A. J. and J. Iaquinta (2000), Cirrus crystal terminal velocitiesJ. Atmos. Sci., 57, 916–938.
              58. Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particlesJ. Atmos. Sci., 59, 3–29.
              59. Heymsfield, A. J. and G. M. McFarquahar (2002), Mid-latitude and Tropical Cirrus, In: Cirrus, pp. 78–101, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              60. Heymsfield, A. J., A. Bansemer, P.R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns.J. Atmos. Sci., 59, 3457–3491.
              61. Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
              62. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
              63. Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil CirrusGeophys. Res. Lett., 31.
              64. Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysicsJ. Atmos. Sci., 62, 41–64.
              65. Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft ProbesJ. Atmos. Oceanic Technol., 23, 361–380.
              66. Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE IIJ. Atmos. Sci., 52, 4302–4326.
              67. Heymsfield, A. J. and G. M. McFarquhar (1996), High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall IslandsJ. Atmos. Sci., 53(17), 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
              68. Heymsfield, A. J., L. Miloshevich, and C. Twohy (1998), Upper-tropospheric relative humidity observations and implications for cirrus ice nucleationGeophys. Res. Lett., 25(9), 1343–1346.
              69. Hobbs, P. V. (ed.) (1993), Aerosol-Cloud-Climate Interactions, , Vol. 54, Academic Press.
              70. Hong, G., G. Heygster, and K. Kunzi (2006), Effect of Cirrus Clouds on the Diurnal Cycle of Tropical Deep Convective CloudsJ. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.
              71. Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus CloudsAtmos. Res., 59–60, 89–113.
              72. Jensen, E. J., J. B. Smith, L. Pfister, J. V. Pittman, E. M. Weinstock, D. S. Sayres, R. L. Herman, R. F. Troy, K. Rosenlof, T. L. Thompson, A. M. Fridlind, P. K. Hudson, D. J. Cziczo, A. J. Heymsfield, C. Schmitt, and J. C. Wilson (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydrationAtmos. Chem. Phys., 5, 851–862, doi:10.5194/acp-5-851-2005.
              73. Jensen, E. and L. Pfister (2005), Implications of persistent ice superaturation in clod cirrus for stratosphere water vaporGeophys. Res. Lett., 32, L01808, doi:10.1029/2004GL021125.
              74. Jensen, E. J., W. G. Read, J. Mergenthaler, B. J. Sandor, L. Pfister, and A. Tabazadeh (1999), High Humidities and Subvisible Cirrus Near the Tropical TropopauseGeophys. Res. Lett., 26(15), 2347–2350.
              75. Joos, H., P. Spichtinger, U. Lohmann, J.-F. Gayet, and A. Minikin (2008), Orographic cirrus in the global climate model ECHAM5J. Geophys. Res., 113, D18205, doi:10.1029/2007JD009605.
              76. Joos, H., P. Spichtinger, and U. Lohmann (2009), Orographic cirrus in a future climateAtmos. Chem. Phys., 9, 7825–7845, doi:10.5194/acp-9-7825-2009.
              77. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol sizeJ. Geophys. Res., 107, doi:10.1029/2001JD001429.
              78. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosolsJ. Geophys. Res., 107, doi:10.1029/2001JD000470.
              79. Kärcher, B. (2002), Properties of subvisible cirrus clouds formed by homogeneous freezingAtmos. Chem. Phys., 2, 161–170, doi:10.5194/acp-2-161-2002.
              80. Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezingJ. Geophys. Res., 108, doi:10.1029/2002JD003220.
              81. Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formationAtmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
              82. Kärcher, B. (2004), Cirrus clouds in the tropical tropopause layer: Role of heteorogeneous ice nucleiGeophys. Res. Lett., 31.
              83. Kärcher, B. (2005), Supersaturation, dehydration, and denitrification in Arctic cirrusAtmos. Chem. Phys., 5, 1757–1772, doi:10.5194/acp-5-1757-2005.
              84. Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic CirrusJ. Climate, 17, 4856–4870.
              85. Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vaporJ. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
              86. Kahn, B. H., C. K. Liang, A. Eldering, A. Gettelman Q. Yue, and K. N. Liou (2008), Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared SounderAtmos. Chem. Phys., 8, 1501–1518, doi:10.5194/acp-8-1501-2008.
              87. Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer ModelingJ. Atmos. Sci., 54, 2320–2344.
              88. Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts (1999), Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystalsJ. Geophys. Res., 104(13), 31721–31730, doi:10.1029/1999JD900267.
              89. Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus typesAtmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
              90. Kuebbeler, M., M. Hildebrandt, J. Meyer, C. Schiller, T. Hamburger, T. Jurkat, A. Minikin, A. Petzold, M. Rautenhaus, H. Schlager, U. Schumann, C. Voigt, P. Spichtinger, J. F. Gayet, C. Gourbeyre, and M. Kramer (2010), Thin and subvisible cirrus and contrails in a subsaturated environmentAtmos. Chem. Phys. Discuss., 10, 31153–31186, doi:10.5194/acpd-10-31153-2010.
              91. Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General FeaturesAtmos. Res., 66, 203–227.
              92. Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Brogniez (1998), Measurement errors in cirrus cloud microphysical propertiesAnn. Geophys., 16, 266–276.
              93. Lawson, R. P., B. Baker, B. Pilson, and Q. X. Mo (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus cloudsJ. Atmos. Sci., 63("12"), 3186–3203.
              94. Lawson, R. P., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layerAtmos. Chem. Phys., 8(6), 1609–1620, doi:10.5194/acp-8-1609-2008.
              95. Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESSGeophys. Res. Lett., 25(9), 1331–1334.
              96. Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitlyJ. Atmos. Sci., 59(15), 2305–2329.
              97. Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ ObservationsJ. Atmos. Sci., 55, 1928–1939.
              98. Liou, K. N. (2005), Cirrus clouds and Climate, The McGraw Hill Companies.
              99. Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspectiveMon. Weather Rev., 114, 1167–1199.
              100. Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCMJ. Geophys. Res., 107, doi:10.1029/2001JD000767.
              101. Lohmann, U., B. Kärcher, and C. Timmreck (2003), Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCMJ. Geophys. Res., 108(D18), doi:10.1029/2002JD003185.
              102. Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCMJ. Geophys. Res., 109, doi:10.1029/2002JD003185.
              103. Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCMJ. Geophys. Res., 108, doi:10.1029/2003JD004443.
              104. Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation modelJ. Geophys. Res., 100, 16,305–16,323.
              105. Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?J. Climate, 15, 2806–2820.
              106. Luo, Z. and W. B. Rossow (2004), Characterizing Tropical Cirrus Life Cycle, Evlolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite ObservationsJ. Climate, 17, 4541–4563.
              107. Lynch, D. K., K. Sassen, D. Starr, and G. Stephens (ed.) (2002), Cirrus, Oxford University Press.
              108. Lynch, D. K. (2002), Cirrus History and definition, In: Cirrus, pp. 3–10, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              109. Lynch, D. K. and K. Sassen (2002), Subvisual cirrus, In: Cirrus, pp. 256–264, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              110. Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar DataJ. Climate, 14, 2185–2203.
              111. Mace, G. G., S. Benson, and E. Vernon (2005), On the Relationship Between Cirrus Clouds and the Large-Scale Atmospheric State as Revealed by 6 Years of Ground-Based Data, University of Utah, Submitted to the Journal of Climate.
              112. Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer DataJ. Geophys. Res., 103, 23207–23216.
              113. Mace, G. G., K. Sassen, S. Kinne, and T. P. Ackerman (1998), An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case studyGeophys. Res. Lett., 25(8), 1133–1136, doi:10.1029/98GL00232.
              114. Mannozzi, L., F. di Guiseppe, and R. Rizzi (1999), Cirrus Cloud Optical Properties in Far InfraredPhys. Chem. Earth, 24(3), 269–273.
              115. Masuda, K., H. Ishimoto, and T. Takashima (2002), Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurementsJ. Quant. Spectrosc. Radiat. Transfer, 75, 39–51.
              116. Matrosov, S. Y., B.W. Orr, R. A. Kropfli, and J. B. Snider (1994), Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer MeasurementsJ. Appl. Meteorol., 33, 617–626.
              117. McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific ExperimentJ. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
              118. McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEXJ. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
              119. Meyer, K., P. Yang, and B.-C. Gao (2004), Optical Thickness of Tropical Cirrus Clouds Derived From the MODIS 0.66- and 1.375-μm channelsIEEE T. Geosci. Remote, 42(4), 833–841.
              120. Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
              121. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, Cirrus Trends, and ClimateJ. Climate, 17, 1671–1685.
              122. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, cirrus trends, and climateJ. Climate, 1671–1685.
              123. Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1997), Transformation of Contrails into Cirrus during SUCCESS, NASA Langley Research Center, Analytical Services and Materials.
              124. Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1998), Transformation of Contrails into Cirrus during SUCCESSGeophys. Res. Lett., 25, 1157–1160.
              125. Minnis, P. (1111), Satellite Remote Sensing of Cirrus: An Overview, NASA Langley Research Center.
              126. Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study AnalysisJ. Atmos. Sci., 53(20), 2952–2987.
              127. Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ DataJ. Appl. Meteorol., 41, 197–217.
              128. Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
              129. Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analysesJ. Geophys. Res., 101(D1), 1931–1942.
              130. Nolt, I. G., M. D. Vanek, N. D. Tappan, P. Minnis, J. L. Alltop, P. A. R. Ade, C. Lee, P. A. Hamilton, K. F. Evans, A. H. Evans, E. E. Evans, E. E. Clothiaux, and A. J. Baran (1999), Far infrared measurements of cirrus, xxxx, Remote Sensing of Clouds and Atmosphere.
              131. O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus cloudsJ. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
              132. Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCAGeophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
              133. Posselt, D. J., T. S. L'Ecuyer, and G. L. Stephens (2008), Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithmJ. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
              134. Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran (1988), Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRISJ. Appl. Meteorol. Clim., 27(4), 379–399, doi:10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.
              135. Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995)Int. J. Climatol., 25, 1103–1125.
              136. Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey (2003), Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical TropopauseJ. Climate, 16, 3428–3446.
              137. Sandor, B. J., E. J. Jensen, E. M. Stone, W. G. Read, J. W. Waters, and J. L. Mergenthaler (2000), Upper Tropospheric Humidity and Thin CirrusGeophys. Res. Lett., 27(17), 2645–2648.
              138. Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic PropertiesJ. Atmos. Sci., 58, 481–496.
              139. Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar DepolarizationJ. Atmos. Sci., 58, 2103–2112.
              140. Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative PropertiesJ. Atmos. Sci., 58, 2113–2127.
              141. Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical ModelJ. Appl. Meteorol., 41, 620–628.
              142. Sassen, K., K.-N. Liou, Y. Takano, and V. I. Khvorostyanov (2003), Diurnal effects in the composition of cirrus cloudsGeophys. Res. Lett., 30, doi:1029/2003GL017034.
              143. Sassen, K., Z. Wang, and D. Liu (2008), Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurementsJ. Geophys. Res., 113, 1–12, doi:10.1029/2008JD009972.
              144. Sassen, K. and B. S. Cho (1992), Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological ResearchJ. Appl. Meteorol., 1275–1285.
              145. Schlimme, I., A. Macke, and J. Reichardt (2005), The Impact of Ice Crystal Shapes, Size Distributions, and Spatial Structures of Cirrus Clouds on Solar Radiative FluxesJ. Atmos. Sci., 62, 2274–2283.
              146. Schmitt, C. G. and A. J. Heymsfield (2009), The Size Distribution and Mass-Weighted Terminal Velocity of Low-Latitude Tropopause Cirrus Crystal PopulationsJ. Atmos. Sci., 66, 2013–2028, doi:10.1175/2009JAS3004.1.
              147. Schröder, F., B. Kärcher, C. Duroure, J. Ström, A. Petzold, J.-F. Gayet, B. Strauss, P. Wendling, and S. Borrmann (2000), On the Transition of Contrails into Cirrus CloudsJ. Atmos. Sci., 57, 464–480, doi:10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2.
              148. Schumann, U. (2002), Contrail cirrus, In: Cirrus, pp. 231–255, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              149. Sherwood, S. C. (1999), On moistening of the tropical troposphere by cirrus cloudsJ. Geophys. Res., 104(13), 11949–11960, doi:10.1029/1999JD900162.
              150. Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus cloudsGeophys. Res. Lett., 25(8), 1137–1140.
              151. Soden, B. J. (2004), The impact of tropical convection and cirrus an upper tropospheric humidity: A Lagrangian analysis of satellite measurementsGeophys. Res. Lett., 31, L20104, doi:10.1029/2004GL020980.
              152. Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda, and F. G. Rose (2013), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS dataGeophys. Res. Lett., 40, doi:10.1002/GRL.50168.
              153. Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J.-F. Gayet (2004), On the distribution of relative humidity in cirrus cloudsAtmos. Chem. Phys., 4, 365–397, doi:10.5194/acp-4-639-2004.
              154. Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1a: Model description and validationAtmos. Chem. Phys., 9, 685–706, doi:10.5194/acp-9-685-2009.
              155. Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1b: Structuring cirrus clouds by dynamicsAtmos. Chem. Phys., 9, 707–719, doi:10.5194/acp-9-707-2009.
              156. Spinhirne, J. D., W. H. Hart, and D. P. Duda (1998), Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensingGeophys. Res. Lett., 25(8), 1153–1156.
              157. Stephens, G. L. (2002), Cirrus, climate and global change, In: Cirrus, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
              158. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
              159. Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
              160. Ström, J., M. Seifert, B. Kärcher, J. Ovarlez, A. Minikin, J.-F. Gayet, R. Krejci, A. Petzold, F. Auriol, W. Haag, R. Busen, U. Schumann, and H. C. Hansson (2003), Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experimentAtmos. Chem. Phys., 3, 1807–1816, doi:10.5194/acp-3-1807-2003.
              161. Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
              162. Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphereAtmos. Res., 72, 403–423.
              163. Stubenrauch, C. J. and U. Schumann (2005), Impact of air traffic on cirrus coverageGeophys. Res. Lett., 32, L14813, doi:10.1029/2005GL022707.
              164. Stubenrauch, C. J. and U. Schumann (2005), Survey of Cirrus and atmospheric properties from TOVS Path-B: Natural variability and impact of air traffic on cirrus coverage14th International TOVS Study Conference Proceed., Beijing, China, 25 May-1 Jun.
              165. Stubenrauch, C. J., F. Eddounia, J. M. Edwards, and A. Macke (2007), Evaluation of cirrus parameterizations for radiative flux computations in climate models using TOVS–ScaRaB satellite observationsJ. Climate, 20(17), 4459–4475.
              166. Sundqvist, H. (2002), Cirrus, chap. On cirrus modeling for general circulation and climate models, pp. 297–309, Oxford University Press.
              167. Sunilkumar, S. V. and K. Parameswaran (2005), Temperature dependence of tropical cirrus properties and radiative effectsJ. Geophys. Res., 110, doi:10.1029/2004JD005426.
              168. Um, J. and G. M. McFarquhar (2011), Dependence of the single-scattering properties of small ice crystals on idealized shape modelsAtmos. Chem. Phys., 11, 3159–3171, doi:10.5194/acp-11-3159-2011.
              169. Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radianceAppl. Opt., 40(13).
              170. Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (2001), Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurementsJ. Geophys. Res., 106(15), 15251–15264, doi:10.1029/2000JD900262.
              171. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ DataJ. Appl. Meteorol., 41, 218–229.
              172. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative PropertiesJ. Atmos. Sci., 59, 2291–2302.
              173. Wang, Z., D. N. Whiteman, B. B. Demoz, and I. Veselovskii (2004), A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidarGeophys. Res. Lett., 31, L15101, doi:10.1029/2004GL020004.
              174. Wang, J. R. and P. Racette (1998), Airborne Millimeter-wave Radiometric Observations of Cirrus Clouds, Laboratory for Hydrospheric Processes.
              175. Wang, J. R., P. Racette, J. D. Spinhirne, K. F. Evans, and W. D. Hart (1998), Observations of cirrus clouds with airborne MIR CLS, and MAS during SUCCESSGeophys. Res. Lett., 25, 1145–1148, doi:10.1029/97GL03194.
              176. Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (1999), Observations and Retrievals of Cirrus Cloud Parameters Using Multichannel Millimeter-wave Radiometric MeasurementsJ. Geophys. Res.
              177. Wendisch, M., P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer (2005), Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrusJ. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.
              178. Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne CampaignsGeophys. Res. Lett., 31.
              179. Winker, D. M. and C. R. Trepte (1998), Laminar cirrus observed near the tropical tropopause by LITEGeophys. Res. Lett., 25(17), 3351–3354.
              180. Wu, D. L., J. H. Jiang, and C.P. Davis (2006), EOS MLS Cloud Ice Measurements and Cloudy-Sky Radiative Transfer ModelIEEE T. Geosci. Remote, 44(5), 1156–1165.
              181. Wylie, D. P., W. P. Menzel, and K. I. Strabala (1994), Four years of global cirrus cloud statistics using HIRSJ. Climate, 7(12), 1972–1986.
              182. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystalsJ. Geophys. Res., 105(D4), 4699–4718.
              183. Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral regionJ. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
              184. Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formationAtmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
              185. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
              186. Zhang, Y., M. Laube, and E. Raschke (1994), Numerical Simulations of Cirrus PropertiesBeitr. Phys. Atm., 67(2), 109–120.
              187. Zhang, Y., A. Macke, and F. Albers (1999), Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcingAtmos. Res., 52, 59–75.