There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2011
Kuhn, T., M. E. Earle, A. F. Khalizov, and J. J. Sloan (2011), Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets, Atmos. Chem. Phys., 11, 2853–2861, doi:10.5194/acp-11-2853-2011.
Earle, M. E., T. Kuhn, A. F. Khalizov, and J. J. Sloan (2010), Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach, Atmos. Chem. Phys., 10(16), 7945–7961, doi:10.5194/acp-10-7945-2010.
Bailey, M. P. and J. Hallett (2009), A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies, J. Atmos. Sci., 66(9), 2888–2899, doi:10.1175/2009JAS2883.1.
Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals, Q. J. R. Meteorol. Soc., doi:10.1002/qj.731.
Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model Global, J. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
Baran, A. J., K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco (2014), On the relationship between the scattering phase function of cirrus and the atmospheric state, Atmos. Chem. Phys. Discuss., 14, 14109–14157, doi:10.5194/acpd-14-14109-2014.
Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models, J. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteorol., 44, 1885–1895.
Baumgardner, D. and B. E. Gandrud (1998), A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloud, Geophys. Res. Lett., 25(8), 1129–1132.
Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach, J. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
Brown, P. R. A. and H. A. Swann (1997), Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data, Q. J. R. Meteorol. Soc., 123, 2245–2275.
Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds, Atmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
Chandrasekar, V., W. Li, and B. Zafar (2005), Estimation of raindrop size distribution from spaceborne radar observations, IEEE T. Geosci. Remote, 43(5), 1078–1086, doi:10.1109/TGRS.2005.846130.
Chen, R., Z. Li, R. J. Kuligowski, R. Ferraro, and F. Weng (2011), A study of warm rain detection using A-Train satellite data, Geophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
Claveau, C., A. Henry, D. Hurtmans, and A. Valentin (2001), Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Kr and nitrogen in the spectral range 1850–2140 cm°-1, J. Quant. Spectrosc. Radiat. Transfer, 68, 273–298.
Clough, S. A., Y. Beers, G. P. Klein, and L. S. Rothman (1973), Dipole moment of water from Stark measurements of H2O, HDO, and D2O, J. Chem. Phys., 59(5), 2254–2259.
Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds, J. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
Curtiss, L. A. and C. L. Eisgruber (1984), A theoretical study of the interaction of N2 with water molecules. (H2O)n: N2, n = 1-8.a), J. Chem. Phys., 80(5), 2022–2029.
DeFrees, J. D., J. S. Blinkley, and A. D. McLean (1984), The quantum mechanical calculation of rotational spectra. A comparison of methods for C2H2, HCN, HNC, HCO+, N2H+, CO, and N2. Precictions for HCNH+, COH+, HBO, HBNH, and HBF+, J. Chem. Phys., 80(8), 3720–3725.
Donovan, D. P. (2003), Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements, J. Geophys. Res., 108(D18), doi:10.1029/2003JD003469.
Duda, D. P., J. D. Spinhirne, and W. D. Hart (1998), Retrieval of contrail microphysical properties during SUCCESS by the split-window method, Geophys. Res. Lett., 25(8), 1149–1152.
Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis (2009), A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework, J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.
Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain (2009), Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics, J. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton (2005), Parametrization of Ice Particle Size Distributions For Mid-latitude Stratiform Cloud, Q. J. R. Meteorol. Soc., 131, 1997–2019.
Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus, Atmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate Models, J. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1, Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
Gerber, H., C. H. Twohy, B. Gandrud, A. J. Heymsfield, G. M. McFarquhar, P. J. DeMott, and D. C. Rogers (1998), Measurements of wave-cloud microphysical properties with two new aircraft probes, Geophys. Res. Lett., 25(8), 1117–1120.
Goodman, J., R. F. Pueschel, E. J. Jensen, S. Verma, G. V. Ferry, S. D. Howard, S. A. Kinne, and D. Baumgardner (1998), Shape and Size of Contrails Ice Particles, Geophys. Res. Lett., 25(9), 1327–1330, doi:10.1029/97GL03091.
Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 59, 3–29.
Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layers, J. Appl. Meteorol., 42(20), 1369–1390.
Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal Velocities, J. Atmos. Sci., 60, 2592–2611.
Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate models, J. Atmos. Sci., 60, 2592–2611.
Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil Cirrus, Geophys. Res. Lett., 31.
Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot (2004), Effective Ice Particle Densities Derived from Aircraft Data, J. Atmos. Sci., 61, 982–1003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.
Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysics, J. Atmos. Sci., 62, 41–64.
Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes, J. Atmos. Oceanic Technol., 23, 361–380.
Heymsfield, A. J. and C. D. Westbrook (2010), Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field Measurements, J. Atmos. Sci., 67, 2469–2482, doi:10.1175/2010JAS3379.1.
Heymsfield, A. J. and C. M. R. Platt (1984), A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water Content, J. Atmos. Sci., 41(5), 846–855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.
Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II, J. Atmos. Sci., 52, 4302–4326.
Heymsfield, A. J. and G. M. McFarquhar (1996), High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall Islands, J. Atmos. Sci., 53(17), 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
Holt, A. R., R. J. Cummings, G. J. G. Upton, and W. J. Bradford (2008), Rain rates, drop size information, and precipitation type, obtained from one-way differential propagation phase and attenuation along a microwave link, Radio Sci., 43, RS5009, doi:10.1029/2007RS003773.
Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus Clouds, Atmos. Res., 59–60, 89–113.
Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol size, J. Geophys. Res., 107, doi:10.1029/2001JD001429.
Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, doi:10.1029/2001JD000470.
Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezing, J. Geophys. Res., 108, doi:10.1029/2002JD003220.
Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
Kessler, E. (1969), On the Distribution and Continuity of Water Substance in Atmospheric Circulation, Meteorological Monograph, 10, 1–84, ASIN B0007DQFF4.
Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysics, Atmos. Res., 55, 159–224.
Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling, J. Atmos. Sci., 54, 2320–2344.
Kneifel, Stefan, U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler (2010), Snow scattering signals in ground-based passive microwave radiometer measurements, J. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856.
Knollenberg, R. G. and D. M. Hunten (1980), The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment, J. Geophys. Res., 85(A13), 8039–8058, doi:10.1029/JA085iA13p08039.
Knollenberg, R. G., K. Kelly, and J. C. Wilson (1993), Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus, J. Geophys. Res., 98(D5), 8639–8664.
Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigation, Atmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. W. Barker (2001), Microphysical properties of continental clouds from in-situ measurements, Q. J. R. Meteorol. Soc.
Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical Characterization of Mixed Phase Clouds, Q. J. R. Meteorol. Soc., 129, 39–65.
Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMs, J. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
Kuebbeler, M., M. Hildebrandt, J. Meyer, C. Schiller, T. Hamburger, T. Jurkat, A. Minikin, A. Petzold, M. Rautenhaus, H. Schlager, U. Schumann, C. Voigt, P. Spichtinger, J. F. Gayet, C. Gourbeyre, and M. Kramer (2010), Thin and subvisible cirrus and contrails in a subsaturated environment, Atmos. Chem. Phys. Discuss., 10, 31153–31186, doi:10.5194/acpd-10-31153-2010.
Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General Features, Atmos. Res., 66, 203–227.
Lawson, R. P., K. Stamnes, J. Stamnes, P. Zmarzly, J. Koskuliks, C. Roden, Q. Mo, and M. Carrithers (2010), Deployment of a Tethered Balloon System for Microphysics and Radiative Measurements in Mixed-Phase Clouds at Ny-Ålesund and South Pole, J. Atmos. Oceanic Technol., Preliminary accepted version, doi:10.1175/2010JTECHA1439.1.
Lawson, R. P., S. Woods, and H. Morrison (2015), The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds, J. Atmos. Sci., 72(6), 2429–2445, doi:10.1175/JAS-D-14-0274.1.
Lawson, R. P. and A. M. Blyth (1998), A comparison of optical measurements of liquid water content and drop size distribution in adiabatic regions of Florida cumuli, Atmos. Res., 47–48, 671–690.
Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS, Geophys. Res. Lett., 25(9), 1331–1334.
L'Ecuyer, T. S., P. Gabriel, K. Leesman, S. J. Cooper, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid Clouds, J. Appl. Meteorol. Clim., 45, 20–41.
Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitly, J. Atmos. Sci., 59(15), 2305–2329.
Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ Observations, J. Atmos. Sci., 55, 1928–1939.
Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCM, J. Geophys. Res., 109, doi:10.1029/2002JD003185.
Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAM, Atmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?, J. Climate, 15, 2806–2820.
Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar Data, J. Climate, 14, 2185–2203.
Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer Data, J. Geophys. Res., 103, 23207–23216.
McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment, J. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
Milbrandt, J. A. and M. K. Yau (2005), A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description, J. Atmos. Sci., 62, 3065–3081, doi:10.1175/JAS3535.1.
Milbrandt, J. A. and R. Mctaggart (2010), Sedimentation-Induced Errors in Bulk Microphysics Schemes, J. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.
Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
Miloshevich, L. M. and A. J. Heymsfield (1997), A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency Analysis, J. Atmos. Oceanic Technol., 14, 753–768.
Minnis, P. and W. L. Smith Jr. (1998), Cloud and radiative fields derived from GOES-8 during SUCCESS and the ARM-UAV spring 1996 flight series, Geophys. Res. Lett., 25(8), 1113–1116.
Mitchell, D. L. (1996), Use of Mass- and Area Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities, J. Atmos. Sci., 53(12), 1710–1723.
Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study Analysis, J. Atmos. Sci., 53(20), 2952–2987.
Morrison, H., J. A. Curry, and V. I. Khvorostyanov (2005), A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description, J. Atmos. Sci., 62, 1665–1677, doi:10.1175/JAS3446.1.
Morrison, H. and J. A. Mibrandt (2015), Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests, J. Atmos. Sci., 72, 287–311, doi:10.1175/JAS-D-14-0065.1.
Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data, J. Appl. Meteorol., 41, 197–217.
Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of Ice Crystal Shapes in Midlatitude Ice Clouds from Three Years of Lidar Observations over the SIRTA Observatory, J. Atmos. Sci., 63(11), 2978–2991.
Okamoto, H., K. Sato, and Y. Hagihara (2010), Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals, J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.
O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus clouds, J. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA, Geophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
Park, C.-Y., Y. Kim, and Y. Kim (2001), The multi-coefficient correlated quantum mechanical calculations for structures, energies, and harmonic frequencies of HF and H2O dimers, J. Chem. Phys., 115(7), 2926–2935.
Rao, G. V. and R. D. Tamin (1995), Microphysical characteristics of monsoon clouds and cloud sublayers as revealed my the MONEX aircraft observations, Atmos. Res., 38, 333–350.
Reed, A. E., F. Weinhold, L. A. Curtiss, and D. J. Pochatko (1986), Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3, J. Chem. Phys., 84(10), 5687–5705.
Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties, J. Atmos. Sci., 58, 481–496.
Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization, J. Atmos. Sci., 58, 2103–2112.
Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties, J. Atmos. Sci., 58, 2113–2127.
Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model, J. Appl. Meteorol., 41, 620–628.
Savijärvi, H. and A. Määttänen (2010), Boundary-layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136, 1497–1505, doi:10.1002/qj.650.
Seifert, A. and K. D. Beheng (2006), A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description, Met. Atm. Phys., 92(1), 45–66, doi:10.1007/s00703-005-0112-4.
Shupe, M. D., T. Uttal, S. Matrosov, and S. Frisch (2001), Cloud Water Contents and Hydrometer Sizes During the FIRE-Arctic Cloud Experiment, J. Geophys. Res., 106, 15015–15028.
Solomon, S., S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winker, and M. P. McCormick (1997), Heterogeneous chlorine chemistry in the tropopause region, J. Geophys. Res., 102(D17), 21,411–21.429.
Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case study, Q. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
Spinhirne, J. D., W. H. Hart, and D. P. Duda (1998), Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensing, Geophys. Res. Lett., 25(8), 1153–1156.
Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere, Atmos. Res., 72, 403–423.
Tomita, H. (2008), New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud Ice, J. Meteorol. Soc. Jpn., 86A, 121–142, doi:10.2151/jmsj.86A.121.
Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data, J. Appl. Meteorol., 41, 218–229.
Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties, J. Atmos. Sci., 59, 2291–2302.
Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne Campaigns, Geophys. Res. Lett., 31.
Wolters, E. L. A., B. J. J. M. van den Hurk, and R. A. Roebeling (2011), Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH, Hydrol. Earth Syst. Sci., 15, 437–451, doi:10.5194/hess-15-437-2011.
Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles, J. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
Yang, P., H.-L. Wei, B. A. Baum, H.-L. Huang, A. J. Heymsfield, Y. X. Hu, B.-C. Gao, and D. D. Turner (2003), The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window region, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1171–1188, doi:10.1016/S0022-4073(02)00348-5.
Yaron, D., K. I. Peterson, D. Zolandz, W. Klemperer, F. J. Lovas, and R. D. Suenram (1990), Water hydrogen bonding: The structure of the water-carbon monoxide complex, J. Chem. Phys., 92(12), 7095–7105.
Young, D. F., P. Minnis, D. Baumgardner, and H. Gerber (1998), Comparison of in situ and satellite-derived cloud properties during SUCCESS, Geophys. Res. Lett., 25(8), 1125–1128.
Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.
Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds, J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.