All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:microphysics

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      2011 Back to top

    1. Kuhn, T., M. E. Earle, A. F. Khalizov, and J. J. Sloan (2011), Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water dropletsAtmos. Chem. Phys., 11, 2853–2861, doi:10.5194/acp-11-2853-2011.
    2. 2010 Back to top

    3. Earle, M. E., T. Kuhn, A. F. Khalizov, and J. J. Sloan (2010), Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approachAtmos. Chem. Phys., 10(16), 7945–7961, doi:10.5194/acp-10-7945-2010.

    Books and Book Contributions

      Theses

        Technical Reports and Proposals

          Articles in Conference Proceedings and Newsletters

            Internal Reports

              External references

              1. Bailey, M. and J. Hallet (2003), Growth rates and habits of ice crystals between -20° and -70°J. Atmos. Sci., 61, 514–544.
              2. Bailey, M. P. and J. Hallett (2009), A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field StudiesJ. Atmos. Sci., 66(9), 2888–2899, doi:10.1175/2009JAS2883.1.
              3. Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystalsQ. J. R. Meteorol. Soc., doi:10.1002/qj.731.
              4. Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forwardAtmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
              5. Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model GlobalJ. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
              6. Baran, A. J., K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco (2014), On the relationship between the scattering phase function of cirrus and the atmospheric stateAtmos. Chem. Phys. Discuss., 14, 14109–14157, doi:10.5194/acpd-14-14109-2014.
              7. Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and modelsJ. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
              8. Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and ModelsJ. Appl. Meteorol., 44, 1885–1895.
              9. Baumgardner, D. and B. E. Gandrud (1998), A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloudGeophys. Res. Lett., 25(8), 1129–1132.
              10. Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approachJ. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
              11. Breon, F.-M. and B. Dubrulle (2004), Horizontally Oriented Plates in CloudsJ. Atmos. Sci., 61, 2888–2898.
              12. Brown, P. R. A. and H. A. Swann (1997), Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar dataQ. J. R. Meteorol. Soc., 123, 2245–2275.
              13. Buckingham, A. D. (1967), Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, The University of Bristol.
              14. Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus cloudsAtmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
              15. Chandrasekar, V., W. Li, and B. Zafar (2005), Estimation of raindrop size distribution from spaceborne radar observationsIEEE T. Geosci. Remote, 43(5), 1078–1086, doi:10.1109/TGRS.2005.846130.
              16. Chen, R., Z. Li, R. J. Kuligowski, R. Ferraro, and F. Weng (2011), A study of warm rain detection using A-Train satellite dataGeophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
              17. Claveau, C., A. Henry, D. Hurtmans, and A. Valentin (2001), Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Kr and nitrogen in the spectral range 1850–2140 cm°-1J. Quant. Spectrosc. Radiat. Transfer, 68, 273–298.
              18. Clough, S. A., Y. Beers, G. P. Klein, and L. S. Rothman (1973), Dipole moment of water from Stark measurements of H2O, HDO, and D2OJ. Chem. Phys., 59(5), 2254–2259.
              19. Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus cloudsJ. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
              20. Considine, G. and J. A. Curry (1996), A statistical model of drop-size spectra for stratocumulus cloudsQ. J. R. Meteorol. Soc., 122, 611–634.
              21. Curtiss, L. A. and C. L. Eisgruber (1984), A theoretical study of the interaction of N2 with water molecules. (H2O)n: N2, n = 1-8.a)J. Chem. Phys., 80(5), 2022–2029.
              22. DeFrees, J. D., J. S. Blinkley, and A. D. McLean (1984), The quantum mechanical calculation of rotational spectra. A comparison of methods for C2H2, HCN, HNC, HCO+, N2H+, CO, and N2. Precictions for HCNH+, COH+, HBO, HBNH, and HBF+J. Chem. Phys., 80(8), 3720–3725.
              23. Donovan, D. P. (2003), Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurementsJ. Geophys. Res., 108(D18), doi:10.1029/2003JD003469.
              24. Dowling, D. R. and L. F. Radke (1990), A summary of the physical properties of cirrus cloudsJ. Appl. Meteorol., 29, 970–978.
              25. Duda, D. P., J. D. Spinhirne, and W. D. Hart (1998), Retrieval of contrail microphysical properties during SUCCESS by the split-window methodGeophys. Res. Lett., 25(8), 1149–1152.
              26. Dyke, T. R. and J. S. Muenter (1973), Electric dipole moments of low J states of H2O and D2OJ. Chem. Phys., 59(6), 3125–3127.
              27. Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis (2009), A comparison of heterogeneous ice nucleation parameterizations using a parcel model frameworkJ. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.
              28. Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain (2009), Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysicsJ. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
              29. Fermi, E. (1966), Molecules, Crystals, and Quantum Statistics, Dell'Accademia D'Italia.
              30. Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton (2005), Parametrization of Ice Particle Size Distributions For Mid-latitude Stratiform CloudQ. J. R. Meteorol. Soc., 131, 1997–2019.
              31. Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrusAtmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
              32. Fu, Q. and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus CloudsJ. Atmos. Sci., 50, 2008–2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
              33. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
              34. Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
              35. Gerber, H., C. H. Twohy, B. Gandrud, A. J. Heymsfield, G. M. McFarquhar, P. J. DeMott, and D. C. Rogers (1998), Measurements of wave-cloud microphysical properties with two new aircraft probesGeophys. Res. Lett., 25(8), 1117–1120.
              36. Goodman, J., R. F. Pueschel, E. J. Jensen, S. Verma, G. V. Ferry, S. D. Howard, S. A. Kinne, and D. Baumgardner (1998), Shape and Size of Contrails Ice ParticlesGeophys. Res. Lett., 25(9), 1327–1330, doi:10.1029/97GL03091.
              37. Hanesch, M. (1999), Fall Velocity and Shape of Snowflakes, Swiss Federal Institute of Technology.
              38. Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particlesJ. Atmos. Sci., 59, 3–29.
              39. Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
              40. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
              41. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal VelocitiesJ. Atmos. Sci., 60, 2592–2611.
              42. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate modelsJ. Atmos. Sci., 60, 2592–2611.
              43. Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil CirrusGeophys. Res. Lett., 31.
              44. Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot (2004), Effective Ice Particle Densities Derived from Aircraft DataJ. Atmos. Sci., 61, 982–1003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.
              45. Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysicsJ. Atmos. Sci., 62, 41–64.
              46. Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft ProbesJ. Atmos. Oceanic Technol., 23, 361–380.
              47. Heymsfield, A. J. and C. D. Westbrook (2010), Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field MeasurementsJ. Atmos. Sci., 67, 2469–2482, doi:10.1175/2010JAS3379.1.
              48. Heymsfield, A. J. and C. M. R. Platt (1984), A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water ContentJ. Atmos. Sci., 41(5), 846–855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.
              49. Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE IIJ. Atmos. Sci., 52, 4302–4326.
              50. Heymsfield, A. J. and G. M. McFarquhar (1996), High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall IslandsJ. Atmos. Sci., 53(17), 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
              51. Holt, A. R., R. J. Cummings, G. J. G. Upton, and W. J. Bradford (2008), Rain rates, drop size information, and precipitation type, obtained from one-way differential propagation phase and attenuation along a microwave linkRadio Sci., 43, RS5009, doi:10.1029/2007RS003773.
              52. Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus CloudsAtmos. Res., 59–60, 89–113.
              53. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol sizeJ. Geophys. Res., 107, doi:10.1029/2001JD001429.
              54. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosolsJ. Geophys. Res., 107, doi:10.1029/2001JD000470.
              55. Kärcher, B. (2002), Properties of subvisible cirrus clouds formed by homogeneous freezingAtmos. Chem. Phys., 2, 161–170, doi:10.5194/acp-2-161-2002.
              56. Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezingJ. Geophys. Res., 108, doi:10.1029/2002JD003220.
              57. Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formationAtmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
              58. Kärcher, B. (2004), Cirrus clouds in the tropical tropopause layer: Role of heteorogeneous ice nucleiGeophys. Res. Lett., 31.
              59. Kessler, E. (1969), On the Distribution and Continuity of Water Substance in Atmospheric CirculationMeteorological Monograph, 10, 1–84, ASIN B0007DQFF4.
              60. Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysicsAtmos. Res., 55, 159–224.
              61. Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer ModelingJ. Atmos. Sci., 54, 2320–2344.
              62. Kneifel, Stefan, U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler (2010), Snow scattering signals in ground-based passive microwave radiometer measurementsJ. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856.
              63. Knollenberg, R. G. and D. M. Hunten (1980), The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer ExperimentJ. Geophys. Res., 85(A13), 8039–8058, doi:10.1029/JA085iA13p08039.
              64. Knollenberg, R. G., K. Kelly, and J. C. Wilson (1993), Measurements of high number densities of ice crystals in the tops of tropical cumulonimbusJ. Geophys. Res., 98(D5), 8639–8664.
              65. Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigationAtmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
              66. Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. W. Barker (2001), Microphysical properties of continental clouds from in-situ measurementsQ. J. R. Meteorol. Soc.
              67. Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical Characterization of Mixed Phase CloudsQ. J. R. Meteorol. Soc., 129, 39–65.
              68. Korolev, A. and G. Isaac (2003), Roundness and Aspect Ratio of Particles in Ice cloudsJ. Atmos. Sci., 60, 1795–1808.
              69. Korolev, A. V. and I. P. Mazin (2003), Supersaturation of Water Vapor in CloudsJ. Atmos. Sci., 60, 2957–2974.
              70. Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus typesAtmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
              71. Krasnopolsky, V. A. (1985), Chemical Composition of Venus CloudsPlanet. Space Sci., 33(1), 109–117, doi:10.1016/0032-0633(85)90147-3.
              72. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMsJ. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
              73. Kuebbeler, M., M. Hildebrandt, J. Meyer, C. Schiller, T. Hamburger, T. Jurkat, A. Minikin, A. Petzold, M. Rautenhaus, H. Schlager, U. Schumann, C. Voigt, P. Spichtinger, J. F. Gayet, C. Gourbeyre, and M. Kramer (2010), Thin and subvisible cirrus and contrails in a subsaturated environmentAtmos. Chem. Phys. Discuss., 10, 31153–31186, doi:10.5194/acpd-10-31153-2010.
              74. Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General FeaturesAtmos. Res., 66, 203–227.
              75. Lawson, R. P., K. Stamnes, J. Stamnes, P. Zmarzly, J. Koskuliks, C. Roden, Q. Mo, and M. Carrithers (2010), Deployment of a Tethered Balloon System for Microphysics and Radiative Measurements in Mixed-Phase Clouds at Ny-Ålesund and South PoleJ. Atmos. Oceanic Technol., Preliminary accepted version, doi:10.1175/2010JTECHA1439.1.
              76. Lawson, R. P., S. Woods, and H. Morrison (2015), The Microphysics of Ice and Precipitation Development in Tropical Cumulus CloudsJ. Atmos. Sci., 72(6), 2429–2445, doi:10.1175/JAS-D-14-0274.1.
              77. Lawson, R. P. and A. M. Blyth (1998), A comparison of optical measurements of liquid water content and drop size distribution in adiabatic regions of Florida cumuliAtmos. Res., 47–48, 671–690.
              78. Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESSGeophys. Res. Lett., 25(9), 1331–1334.
              79. L'Ecuyer, T. S., P. Gabriel, K. Leesman, S. J. Cooper, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid CloudsJ. Appl. Meteorol. Clim., 45, 20–41.
              80. Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitlyJ. Atmos. Sci., 59(15), 2305–2329.
              81. Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ ObservationsJ. Atmos. Sci., 55, 1928–1939.
              82. Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCMJ. Geophys. Res., 109, doi:10.1029/2002JD003185.
              83. Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAMAtmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
              84. Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?J. Climate, 15, 2806–2820.
              85. Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar DataJ. Climate, 14, 2185–2203.
              86. Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP SiteJ. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
              87. Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer DataJ. Geophys. Res., 103, 23207–23216.
              88. Maetzler, C. (2002), Drop-Size Distribution and Mie Computations for Rain, University of Bern.
              89. McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific ExperimentJ. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
              90. McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEXJ. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
              91. McFarquhar, G. M. and A. J. Heymsfield (1998), The Definition and Significance of an Effective Radius for Ice CloudsJ. Atmos. Sci., 55, 2039–2052.
              92. Milbrandt, J. A. and M. K. Yau (2005), A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme descriptionJ. Atmos. Sci., 62, 3065–3081, doi:10.1175/JAS3535.1.
              93. Milbrandt, J. A. and R. Mctaggart (2010), Sedimentation-Induced Errors in Bulk Microphysics SchemesJ. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.
              94. Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
              95. Miloshevich, L. M. and A. J. Heymsfield (1997), A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency AnalysisJ. Atmos. Oceanic Technol., 14, 753–768.
              96. Minnis, P. and W. L. Smith Jr. (1998), Cloud and radiative fields derived from GOES-8 during SUCCESS and the ARM-UAV spring 1996 flight seriesGeophys. Res. Lett., 25(8), 1113–1116.
              97. Mitchell, D. L. (1996), Use of Mass- and Area Dimensional Power Laws for Determining Precipitation Particle Terminal VelocitiesJ. Atmos. Sci., 53(12), 1710–1723.
              98. Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study AnalysisJ. Atmos. Sci., 53(20), 2952–2987.
              99. Morrison, H., J. A. Curry, and V. I. Khvorostyanov (2005), A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: DescriptionJ. Atmos. Sci., 62, 1665–1677, doi:10.1175/JAS3446.1.
              100. Morrison, H. and J. A. Mibrandt (2015), Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized TestsJ. Atmos. Sci., 72, 287–311, doi:10.1175/JAS-D-14-0065.1.
              101. Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ DataJ. Appl. Meteorol., 41, 197–217.
              102. Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of Ice Crystal Shapes in Midlatitude Ice Clouds from Three Years of Lidar Observations over the SIRTA ObservatoryJ. Atmos. Sci., 63(11), 2978–2991.
              103. Okamoto, H., K. Sato, and Y. Hagihara (2010), Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signalsJ. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.
              104. Ono, A. (1969), The Shape and Riming Properties of Ice Crystals in Natural CloudsJ. Atmos. Sci., 26, 138–147.
              105. O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus cloudsJ. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
              106. Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedbackAtmos. Res., 35, 127–138.
              107. Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCAGeophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
              108. Park, C.-Y., Y. Kim, and Y. Kim (2001), The multi-coefficient correlated quantum mechanical calculations for structures, energies, and harmonic frequencies of HF and H2O dimersJ. Chem. Phys., 115(7), 2926–2935.
              109. Parungo, F. (1995), Ice Crystals in High Clouds and ContrailsAtmos. Res., 38, 249–262.
              110. Pawlowska, H., J.-L. Brenguier, and L. Schueller (1999), Microphysical and Radiative Properties of StratocumulusPhys. Chem. Earth, 24(8), 927–932.
              111. Rao, G. V. and R. D. Tamin (1995), Microphysical characteristics of monsoon clouds and cloud sublayers as revealed my the MONEX aircraft observationsAtmos. Res., 38, 333–350.
              112. Reed, A. E., F. Weinhold, L. A. Curtiss, and D. J. Pochatko (1986), Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3J. Chem. Phys., 84(10), 5687–5705.
              113. Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic PropertiesJ. Atmos. Sci., 58, 481–496.
              114. Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar DepolarizationJ. Atmos. Sci., 58, 2103–2112.
              115. Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative PropertiesJ. Atmos. Sci., 58, 2113–2127.
              116. Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical ModelJ. Appl. Meteorol., 41, 620–628.
              117. Sassen, K. and C.-Y. Hsueh (1998), Contrail properties derived from high-resolution polarization lidar studies during SUCCESSGeophys. Res. Lett., 25(8), 1165–1168.
              118. Savijärvi, H. and A. Määttänen (2010), Boundary-layer simulations for the Mars Phoenix lander siteQ. J. R. Meteorol. Soc., 136, 1497–1505, doi:10.1002/qj.650.
              119. Seifert, A. and K. D. Beheng (2006), A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model descriptionMet. Atm. Phys., 92(1), 45–66, doi:10.1007/s00703-005-0112-4.
              120. Shupe, M. D., T. Uttal, S. Matrosov, and S. Frisch (2001), Cloud Water Contents and Hydrometer Sizes During the FIRE-Arctic Cloud ExperimentJ. Geophys. Res., 106, 15015–15028.
              121. Solomon, S., S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winker, and M. P. McCormick (1997), Heterogeneous chlorine chemistry in the tropopause regionJ. Geophys. Res., 102(D17), 21,411–21.429.
              122. Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case studyQ. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
              123. Spelsberg, D. and W. Meyer (1994), Static dipole polarizabilities of N2, O2, F2, and H2OJ. Chem. Phys., 101(2), 1282–1288.
              124. Spinhirne, J. D., W. H. Hart, and D. P. Duda (1998), Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensingGeophys. Res. Lett., 25(8), 1153–1156.
              125. Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphereAtmos. Res., 72, 403–423.
              126. Stubenrauch, C. J. and U. Schumann (2005), Impact of air traffic on cirrus coverageGeophys. Res. Lett., 32, L14813, doi:10.1029/2005GL022707.
              127. Tomita, H. (2008), New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud IceJ. Meteorol. Soc. Jpn., 86A, 121–142, doi:10.2151/jmsj.86A.121.
              128. Toon, O. B. and R. C. Miake-Lye (1998), Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS)Geophys. Res. Lett., 25(8), 1109–1112.
              129. Tuckermann, R., S. Bauerecker, and B. Neidhart (2001), Schwebende TroepfchenPhysik in unserer Zeit, 32(2), 69–75.
              130. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ DataJ. Appl. Meteorol., 41, 218–229.
              131. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative PropertiesJ. Atmos. Sci., 59, 2291–2302.
              132. Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne CampaignsGeophys. Res. Lett., 31.
              133. Wolters, E. L. A., B. J. J. M. van den Hurk, and R. A. Roebeling (2011), Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPHHydrol. Earth Syst. Sci., 15, 437–451, doi:10.5194/hess-15-437-2011.
              134. Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow ParticlesJ. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
              135. Yang, P., H.-L. Wei, B. A. Baum, H.-L. Huang, A. J. Heymsfield, Y. X. Hu, B.-C. Gao, and D. D. Turner (2003), The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window regionJ. Quant. Spectrosc. Radiat. Transfer, 79–80, 1171–1188, doi:10.1016/S0022-4073(02)00348-5.
              136. Yaron, D., K. I. Peterson, D. Zolandz, W. Klemperer, F. J. Lovas, and R. D. Suenram (1990), Water hydrogen bonding: The structure of the water-carbon monoxide complexJ. Chem. Phys., 92(12), 7095–7105.
              137. Young, D. F., P. Minnis, D. Baumgardner, and H. Gerber (1998), Comparison of in situ and satellite-derived cloud properties during SUCCESSGeophys. Res. Lett., 25(8), 1125–1128.
              138. Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparisonAtmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.
              139. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.