All Publications
Below is the combined list of references from refs_sat.bib and
refs_external.bib. It is intended for our group's internal use.
|
2c-ice
|
a-train
|
abs lookup
|
absorption
|
active
|
aerosol
|
aerosols
|
age of air
|
aggregation
|
airs
|
albedo
|
algorithm
|
amsos
|
amsu
|
annual cycle
|
anomalies
|
aqua
|
ar4
|
ar5
|
arctic
|
arm
|
arts
|
arts-dev
|
asr
|
assimilation
|
astronomy
|
astrophysics
|
asymmetry
|
atmosphere
|
atmospheric composition
|
atmospheric dynamics
|
atmospheric profiles
|
atsr-2
|
avhrr
|
bachelor thesis
|
backscattering
|
basics
|
bayes
|
bias
|
biomass
|
book
|
calculation
|
calculations
|
calibration
|
calipso
|
ccn
|
cdr
|
ceres
|
cfmip
|
chemistry
|
cia
|
ciraclim
|
cirrus
|
cirrus anvil sublimation
|
cirrus cloud
|
cirrus clouds
|
cirrusstudy
|
ciwsir/cloudice
|
claus
|
cliccs
|
climate
|
climate change
|
climate dynamics
|
climate feedbacks
|
climate sensitivity
|
climate sensivity
|
climate variability
|
climatology
|
cloud feedback
|
cloud forcing
|
cloud fraction
|
cloud ice
|
cloud ice mission
|
cloud optical thickness
|
cloud properties
|
cloud radiative effects
|
cloud radiative forcing
|
cloud regimes
|
cloud top pressure
|
cloudice mission
|
clouds
|
cloudsat
|
clustering
|
cmip3
|
cmip5
|
cmip6
|
cmsaf
|
co2
|
collocation
|
collocations
|
comparison
|
computer science
|
continua
|
contrail
|
convection
|
convective clouds
|
convective processes
|
convective self-aggregation
|
correlated k
|
cosmic background
|
cosmic rays
|
cosp
|
cost 723 qjrms
|
cross-calibration
|
cth
|
cumulus
|
dardar
|
data assimilation
|
data bases
|
dda
|
deep convection
|
delta m
|
dimer
|
disort
|
diurnal cycle
|
dlr-smiles
|
dmsp
|
documentation
|
doppler
|
droplet size
|
dynamics
|
earth
|
earthcare
|
ec earth
|
echam
|
ecmwf
|
effective radius
|
electromagnetism
|
electron content
|
elevation
|
elevation satellite-2
|
emd
|
emde
|
emissivity
|
enso
|
eof-pca-svd
|
erbe
|
error assessment
|
ers
|
eruption
|
esa planetary
|
exoplanets
|
extraterrestrial
|
fall speed
|
far-infrared
|
faraday-voigt
|
fcdr
|
feedback
|
feedbacks
|
fingerprinting
|
flux uav
|
forcing
|
forest fire
|
fox19_airborne_amt.pdf
|
friend
|
fun
|
fuzzy inference system
|
fuzzy logic
|
gcm
|
genesis
|
geostationary
|
gerrit_erca
|
global warming
|
gnss
|
goes
|
gps
|
gras
|
graupel
|
gravitational lensing
|
greenhouse effect
|
ground-based
|
groundbased
|
habil
|
hadley circulation
|
hail
|
hamburg
|
heating rate
|
heating rates
|
herschel
|
hiatus
|
hirs
|
history
|
hsb
|
humidity
|
hydrological sensitivity
|
hydrological sensivity
|
hydrometeors
|
iasi
|
ice
|
ice clouds
|
ice crystal growth
|
ice nucleation
|
ice water
|
icesat-2
|
ici
|
icon
|
icz
|
in situ
|
infrared
|
infrared sounder
|
instruments
|
inter-calibration
|
intercalibration
|
intercomparison
|
interference
|
inverse modelling
|
ipcc
|
ir
|
ir/vis
|
iris
|
isccp
|
ismar
|
isotopes
|
itcz
|
iwc
|
iwp
|
iwv
|
john
|
jupiter
|
kalpana
|
kessler scheme
|
lblrtm
|
licentiate thesis
|
lidar
|
limb effect
|
limb sounding
|
limb-correction
|
linemixing
|
lineshape
|
liquid water
|
liquid water path
|
longwave radiation
|
low-cloud feedback
|
magnetic field
|
magnetism
|
mars
|
mas
|
mass-dimension relation
|
master thesis
|
masters thesis
|
math
|
megha-tropiques
|
mendrok
|
mesoscale organization
|
meteorology
|
meteosat
|
methane ocean
|
metop
|
mhs
|
microphysics
|
microwave
|
microwave humidity
|
microwave radiometry
|
milz
|
mipas
|
mirs
|
misr
|
mixed phase
|
mls
|
model
|
modeling
|
models
|
modis
|
monte carlo
|
moon
|
mspps
|
msu
|
mth
|
multi-moment scheme
|
multisensor
|
mwhs
|
mwi
|
net radiation
|
neural network
|
nicam
|
nlte
|
noaa
|
nonsphericity
|
npoess
|
observation
|
ocean
|
ocean reflection
|
ocean-atmosphere interactions
|
odin
|
olr
|
one-moment scheme
|
open loop
|
optical
|
optical depth
|
optical properties
|
optics
|
orbital drift
|
orbital drift correction
|
orbits
|
ozone
|
pacific ocean
|
particle orientation
|
particle shape
|
particle size
|
particle size distribution
|
passive
|
patmos-x
|
phase function
|
phd thesis
|
planetary evolution
|
polarimetry
|
polarization
|
polder
|
potss
|
precipitation
|
profile datasets
|
programming
|
projection
|
promet
|
propagation modeling
|
python
|
radar
|
radiation
|
radiation profiles
|
radiative convective equilibrium
|
radiative equilibrium
|
radiative feedback
|
radiative fluxes
|
radiative forcing
|
radiative processes
|
radiative transfer
|
radiative-convective equilibrium
|
radiative-equilibrium
|
radio occultation
|
radiometer
|
radiometers
|
radiosonde
|
radiosonde cloud liquid
|
radiosonde correction
|
radiosonde corrections
|
rain
|
reanalysis
|
refractive index
|
relative humidity
|
remote sensing
|
retrieval
|
retrievals
|
review
|
rodgers
|
rttov
|
sahara
|
sahel
|
sampling
|
sand/dust
|
sar
|
satellite
|
satellite missions
|
satellite observations
|
satellite simulator
|
sbuehler_habil
|
scattering
|
scattering databases
|
scintillations
|
scout-amma
|
self-aggregation
|
sensor geometry
|
seviri
|
shallow convection
|
simulated annealing
|
single scattering
|
smiles
|
sno
|
snow
|
snowfall
|
software
|
soil
|
solar
|
soot
|
sounders
|
spectral information
|
spectroscopy
|
split window technique
|
sreerekha
|
ssm/i
|
ssm/t
|
ssmis
|
ssmt2
|
stability
|
stars
|
statistics
|
ste
|
stereo
|
stratosphere
|
submillimeter
|
submm
|
sun
|
supersaturation
|
surface
|
synergies
|
synergy
|
task2
|
tempera
|
temperature
|
terra
|
thermodynamics
|
time series
|
titan
|
tkuhn
|
toa radiation
|
top of the atmosphere
|
total column
|
tovs
|
trade-wind clouds
|
trajectory analysis
|
trend
|
trmm
|
tropical circulation
|
tropical convection
|
tropical meteorology
|
tropics
|
tropopause
|
troposphere
|
ttl
|
turbulence
|
tutorial
|
two-moment scheme
|
upper troposphere
|
uth
|
uthmos
|
utls
|
validation
|
vater vapor
|
venus
|
visualization
|
volcanic ash
|
walker
|
walker circulation
|
walker rirculation
|
water
|
water cycle
|
water dimer
|
water vapor
|
water vapor continuum
|
water vapour
|
water vapour path
|
water-vapour
|
wind
|
zeeman
|
Hide tag cloud
Filtered by keyword:lineshape
There is currently a filter applied. To see the complete list of publications,
clear the filter.
Group references
In the Pipeline
Articles
2010 
- Takagi, M., K. Suzuki, H. Sagawa, P. Baron, J. Mendrok, Y. Kasai, and Y. Matsuda (2010), Influence of CO2 line profiles on radiative and radiative-convective equilibrium states of the Venus lower atmosphere, J. Geophys. Res., E06014, doi:10.1029/2009JE003488.
Books and Book Contributions
Theses
Technical Reports and Proposals
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
- Albers, J. and J. M. Deutch (1973), On the Rate Equation Description of the Spectral Lines, Chem. Phys., 89–98.
- Allard, N. and J. Kielkopf (1982), The effect of neutral nonresonant collisions on atomic spectral lines, Rev. Mod. Phys., 54(4), 1103–1182.
- Anderson, P. W. (1949), Pressure Broadening in the Microwave and Infra-Red Regions, Phys. Rev., 76(5), 647–661.
- Anderson, P. W. (1952), A Method of Synthesis of the Statistical and Impact Theories of Pressure Broadening, Phys. Rev., 809.
- Armstrong, B. H. (1967), Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 7, 61–88.
- Baranger, M. (1958), General Impact Theory of Pressure Broadening, Phys. Rev., 112(3), 855–865.
- Baranger, M. (1958), Problem of Overlapping Line in the Theory of Pressure Broadening, Phys. Rev., 111(2), 494–504.
- Baranger, M. (1958), Simplified Quantum-Mechanical Theory of Pressure Broadening, Phys. Rev., 111(2), 481–493.
- Barlow, H. M. and A. L. Cullen (1950), Micro-Wave measurements, University College London, University of Sheffield.
- Belov, S. P., A. F. Krupnov, V. N. Markov, A. A. Mel'nikov, V. A. Skvortsov, and M. Y. Tret'yakov (1983), Study of Microwave Pressure Lineshifts: Dynamic and Isotopic Dependences, J. Molec. Spectro., 101, 258–270.
- Ben-Aryeh, Y. and A. Sorgen (1971), Self-Broadening of Molecular Spectral Lines. I. General Theory, Phys. Rev., 4(6), 2170–2188.
- Ben-Reuven, A. (1965), Transition from Resonant to Nonresonant Line Shape in Microwave Absorption, Phys. Rev., 14(10), 349–351.
- Ben-Reuven, A. (1966), Impact Broadening of Microwave Spectra, Phys. Rev., 145(1), 7–22.
- Ben-Reuven, A. (1971), Resonance Broadening of Spectral Lines, Phys. Rev., 4(6), 2215–2120.
- Benedict, W. S. and L. D. Kaplan (1959), Calculation of Line Widths in H2O-N2 Collisions, J. Chem. Phys., 30(2), 388–399.
- Benedict, W. S., R. Herman, G. E. Moore, and S. Silverman (1962), The Strengths, Widths, and Shapes of Lines in the Vibration-Rotation Bands of CO, Astrophys. J., 135, 277–297.
- Birnbaum, G. and E. R. Cohen (1976), Theory of line shape in pressure-induced absorption, Can. J. Phys., 54, 593–602.
- Birnbaum, G. (1979), The shape of collision broadened lines from resonance to the far wings, J. Quant. Spectrosc. Radiat. Transfer, 21, 597–607.
- Birnbaum, G., S.-I. Chu, A. Dalgarno, L. Frommhold, and E. L. Wright (1984), Theory of collision-induced translation-rotation spectra: H2-He, Phys. Rev., 29(2), 595–603.
- Bloom, S. and H. Margenau (1953), Quantum Theory of Spectral Line Broadening, Phys. Rev., 90(5), 791–794.
- Boone, C. D., K. A. Walker, and P. F. Bernath (2011), An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications, J. Quant. Spectrosc. Radiat. Transfer, 112(6), 980–989, doi:10.1016/j.jqsrt.2010.11.013.
- Boulet, C., D. Robert, and L. Galatry (1980), Influence of the finite duration of collisions on the infrared line shape, J. Chem. Phys., 72(1), 751–759.
- Breene, R. G. Jr. (1957), Line Shape, Rev. Mod. Phys., 29(1), 94–143.
- Buffa, G. and O. Tarrini (1983), Comparison of Pressure Shift Impact Calculations with Experimental Results, J. Molec. Spectro., 101, 271–277.
- Chaussard, F., X. Michaut, R. Saint-Loup, H. Berger, P. Joubert, B. Lance, J. Bonamy, and D. Robert (2000), Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified model, J. Chem. Phys., 112(1), 158–166.
- Ch'en, S.-Y. and M. Takeo (1957), Broadening and Shift of Spectral Lines Due to the Presence of Foreign Gases, Rev. Mod. Phys., 29(1), 20–73.
- Chou, S.-I., D. S. Baer, and R. K. Hanson (1999), Spectral Intensity and Lineshape Measurements in the First Overtune Band of HF Using Tunable Diode Lasers, J. Molec. Spectro., 195, 123–131.
- Ciurylo, R. and A. S. Pine (2000), Speed-dependent line mixing profiles, J. Quant. Spectrosc. Radiat. Transfer, 67, 375–393.
- Ciurylo, R., A. S. Pine, and J. Szudy (2001), A generalized speed-dependent line profile combining soft and hard partially correlated Dicke-narrowing collisions, J. Quant. Spectrosc. Radiat. Transfer, 68, 257–271.
- Ciurylo, R. and J. Szudy (2001), Line-mixing and collision-time asymmetry of spectral line shape, Phys. Rev., 63, 042814-1–042714-6.
- Cooper, J. (1967), Broadening of Isolated Lines in the Impact Approximation Using a Density Matrix Formulation, Rev. Mod. Phys., 39(1), 167–177.
- Dattagupta, S. and L. A. Turski (1985), Boltzmann-Lorentz model of collisional broadening of spectra, Phys. Rev., 32(3), 1439–1446.
- Davies, R. W. (1975), Many-body treatment of pressure shifts associated with collisional broadening, Phys. Rev., 12(3), 927–946.
- del Toro Iniesta, J. C. (2003), Introduction to Spectropolarimetry, Cambridge University Press, ISBN 0-521-81827-3.
- de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant Planets, Icarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
- De Souza-Machade, S., L. L. Strow, D. Tobin, H. Motteler, and S. Hannon (2002), UMBC-LBL vers 7: An Algorithm to Compute Line-by-Line Spectra, University of Maryland Baltimore Country.
- Dicke, R. H. (1953), The Effect of Collision upon the Doppler Width of Spectral Lines, Phys. Rev., 89(2), 472–473.
- Dicke, R. H. (1953), The Effect of Collisions upon the Doppler Width of Spectral Lines, Phys. Rev., 89(2), 472–473, doi:10.1103/PhysRev.89.472.
- Dillon, T. A., E. W. Smith, J. Cooper, and M. Mizushima (1970), Semiclassical Treatment of Strong Collision in Pressure Broadening, Phys. Rev., 2(5), 1839–18846.
- Dillon, T. A. and J. T. Godfrey (1972), Pressure Broadening of the O2 Microwave Spectrum, Phys. Rev., 5(2), 599–605.
- Drayson, S. R. (1976), Rapid computation of the Voigt profile, J. Quant. Spectrosc. Radiat. Transfer, 16, 611–614.
- Drouin, B. J., J. Fischer, and R. R. Gamache (2002), Temperature dependent pressure induced lineshape of O3 rotational transitions in air, J. Quant. Spectrosc. Radiat. Transfer, 83, 63–81.
- Drouin, B. J. (2004), Temperature dependent pressure-induced lineshape of the HCl J = 1 ← 0 rotational in nitrogen and oxygen, J. Quant. Spectrosc. Radiat. Transfer, 83, 321–331.
- Dryagin, Y. A., V. V. Parshin, A. F. Krupnov, N. Gopalsami, and A. C. Raptis (1996), Precision Broadband Wavemeter for Millimeter and Submillimeter Range, IEEE T. Microw. Theory, 44(9), 1610–1613.
- Duggan, P., P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond (1993), Testing the validity of the optical diffusion coefficient: Line-shape measurements of CO perturbed by N2, Phys. Rev., 48(3), 2077–2083.
- Edwards, D. P. and L. L. Strow (1991), Spectral Line Shape Considerations for Limb Temperatur Sounders, J. Geophys. Res., 96(D11), 20,859–20,868.
- Evenson, K. M. and M. Mizushima (1972), Laser Magnetic Resonance of the O2 Molecule Using 119- and 78-μm H2O Laser Lines, Phys. Rev., 6(5), 2197–2204.
- Fano, U. (1963), Pressure Broadening as a Prototype of Relaxation, Phys. Rev., 131(1), 259–268, doi:10.1103/PhysRev.131.259.
- Filippov, N. N. and M. V. Tonkov (1996), Line mixing in the infrared spectra of simple gases at moderate and high densities, Spectro. Acta Part A: Molec. and Biomolec. Spectro., 52(8), 901–918, doi:10.1016/0584-8539(96)01669-8.
- Foley, H. M. (1946), The Pressure Broadening of Spectral Lines, Phys. Rev., 69(11–12), 616–628.
- Futurelle, R. P. (1972), Unified Theory of Spectral Line Broadening in Gases, Phys. Rev., 5(5), 2162–2182.
- Galatry, L. (1961), Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines, Phys. Rev., 122(4), 1218–1223.
- Gallagher, A. (1996), Line Shape and Radiation Transfer, University of Colorado and National Institute of Standards and Technology.
- Gamache, R. R. and J.-M. Hartmann (2004), Collisional parameters of the H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer, 83, 119–147.
- Gamache, R. R., A. Goldman, and L. S. Rothman (1998), Improved Spectral Parameters for the three most abundant Isotopomers of the Oxygen Molecule, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 495–509.
- Gamache, R. R., R. Lynch, and S. P. Neshyba (1998), New Developments in the Theory of Pressure-Broadening and Pressure-Shifting of Spectral Lines of H2O: The Complex Robert-Bonamy Formalism, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 319–335.
- Gamache, R. R., E. Arie, C. Boursier, and J.-M. Hartmann (1998), Pressure-broadening and pressure-shifting of spectral lines of ozone, Spectrochimica Acta, 54, 35–63.
- Gao, B., G. C. Tabisz, M. Trippenbach, and J. Cooper (1991), Spectral line shape arising from collisional interference between electric-dipole-allowed and collision-induced transitions, Phys. Rev., 44(11), 7379–7391.
- Gersten, J. I. and H. M. Foley (1969), Theory of Pressure Broadeing of Microwave Spectral Lines, Phys. Rev., 182(1), 24–38.
- Gordon, R. G. (1966), Semiclassical Theory of Spectra and Relaxation in Molecular Gases, J. Chem. Phys., 45(5), 1649–1655.
- Gordon, R. G. (1967), On the Pressure Broadening of Molecular Multiplet Spectra, J. Chem. Phys., 46(2), 448–455.
- Gross, E. P. (1955), Shape of Collision-Broadened Spectral Lines, Phys. Rev., 97(2), 395–403.
- Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6, J. Chem. Phys., 109(20), 8747–8750.
- Heer, C. V. (1972), Statistical Mechanics, Kinetic Theory, and Stochastic Processes, Ohio State University.
- Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmed, Radio Sci., 21(3), 447–451.
- Houdeau, J. P., C. Boulet, and D. Robert (1985), A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled lines, J. Chem. Phys., 82(4), 1661–1673.
- Huber, D. L. and J. H. van Vleck (1966), The Role of Boltzmann Factors in Line Shape, Rev. Mod. Phys., 38(1), 187–204, doi:10.1103/RevModPhys.38.187.
- Hui, A. K., B. H. Armstrong, and A. A. Wray (1977), Rapid computation of the Voigt and complex error functions, J. Quant. Spectrosc. Radiat. Transfer, 19, 509–516.
- Johri, G. K., P. Gupta, and M. Johri (2000), Theoretical study of molecular collisions and microwave linewidth, J. Quant. Spectrosc. Radiat. Transfer, 66, 215–221.
- Kolb, A. C. and H. Griem (1958), Theory of Line Broadening in Multiplet Spectra, Phys. Rev., 111(2), 514–521.
- Kuntz, M. (1997), A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function, J. Quant. Spectrosc. Radiat. Transfer, 57, 819–824.
- Lance, B. and D. Robert (1998), An analytical model for collisional effects on spectral line shape from the Doppler to the collision regime, J. Chem. Phys., 109(19), 8283–8288.
- Loss, D., A: Thellung, and L. A. Turski (1990), Quantum Boltzmann-Lorentz model approach to the line-shape problem, Phys. Rev., 41(6), 3005–3015.
- Ma, Q. and R. H. Tipping (2000), The density matrix of H2O-N2 in the coordinate representation: A Monte Carlo calculation on the far-wing line shape, J. Chem. Phys., 112(2), 574–584.
- Ma, Q. and R. H. Tipping (2002), The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O-H2, J. Chem. Phys., 116(10), 4102–4115.
- Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.I, J. Chem. Phys., 95(9), 6290–6301.
- Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the water vibrational bands II, J. Chem. Phys., 96(12), 8655–8663.
- Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III, J. Chem. Phys., 97(2), 818–828.
- Ma, Q. and R. H. Tipping (1994), A near-wing correction to the quasistatic far-wing line shape theory, J. Chem. Phys., 100(4), 2537–2546.
- Ma, Q. and R. H. Tipping (1998), The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2, J. Chem. Phys., 108(9), 3386–3399.
- Ma, Q., R. H. Tipping, and C. Boulet (1998), A Far-Wing Line Shape Theory which Satisfies the Detailed Balance Principle, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 245–257.
- Ma, Q., R. H. Tipping, G. Birnbaum, and C. Boulet (1998), Sum Rules and the Symmetry of the Memory Function in Spectral Line Shape Theories, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 259–271.
- Ma, Q. and R. H. Tipping (1999), The averaged density matrix in the coordinate representation: Application to the calculation on the far-wing line shapes for CO2, J. Chem. Phys., 111(13), 5909–5921.
- Margenau, H. (1933), Pressure Effects on Spectral Lines.II., Phys. Rev., 43, 129–134.
- Margenau, H. (1935), Theory of Pressure Effects of Foreign Gases on Spectral Lines, Rev. Mod. Phys., 48, 755–765.
- Margenau, H. and W. W. Watson (1936), Pressure Effects on Spectral Lines, Rev. Mod. Phys., 8, 22–53.
- Margenau, H. and R. Meyerott (1954), Quantum Theory of Line Broadening by an Ionic Plasma, Yale University.
- Margenau, H. and M. Lewis (1959), Structure of Spectral Lines from Plasmas, Rev. Mod. Phys., 31(3), 569–615.
- Marteau, P., C. Boulet, and D. Robert (1984), Finite duration of collisions and vibrational dephasing effects on the Ar broadened HF infrared line shapes: Asymmetric profiles, J. Chem. Phys., 80(8), 3632–3639.
- Maryott, A. A. and G. Birnbaum (1967), Line Shape and Collision Effects in the Microwave Wing of Far-Infrared Rotational Lines, J. Chem. Phys., 47(9), 3200–3205.
- Meyer, R., H. Mannstein, R. Meerkoetter, U. Schumann, and P. Wendling (2002), Regional radiative forcing by line-shaped contrails derived from satellite data, J. Geophys. Res., 107(D10), doi:10.1029/2001JD000426.
- Minnis, P., U. Schumann, D. R. Doelling, K. M. Gierens, and D. W. Fahey (1999), Global distribution of contrail radiative forcing, Geophys. Res. Lett., 26(13), 1853–1856.
- Mizushima, M. (1951), The Theory of Pressure Broadening and Its Application to Microwave Spectra, Phys. Rev., 83(1), 94–102.
- Osborn, T. A., M. F. Kondrat'eva, G. C. Tabisz, and B. R. McQuarrie (1999), Mixed Weyl Symbol Calculus and Spectral Line Shape Theory, J. Optical Soc. o. Am., 32, 4143–4169.
- Ouyang, X. and P. L. Varghese (1989), Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines, Appl. Opt., 28(8), 1538–1545.
- Ozanne, L., J.-P. Bouanich, R. Rodrigues, J.-M. Hartmann, G. Blanquet, and J. Walrand (1998), Diode-Laser Measurements of He- and N2- Broadening Coefficients and Line-Mixing Effects in the Q-Branch of the ν$_1−\nu$2 Band of CO2, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 337–344.
- Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines, IEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
- Peach, G. (1975), The Width of Spectral Lines, Contemp. Phys., 16(1), 17–34.
- Pickett, H. M. (1980), Effects of velocity averaging on the shapes of absorption lines, J. Chem. Phys., 73, 919–928, doi:10.1063/1.440145.
- Pickett, H. M., E. A. Cohen, and D. E. Brinza (1981), Pressure Broadening of Oxygen and its Implications for Cosmic Background Measurements, Astrophys. J., 248, 49–51.
- Pieroni, D., N. Van-Thanh, C. Brodbeck, C. Claveau, A. Valentin, J. M. Hartmann, T. Gabard, J.-P. Champion, D. Bermejo, and J.-L. Domenech (1999), Experimental and theoretical study of line mixing in methane spectra. I. The N2-broadenend band at room temperatur, J. Chem. Phys., 110(16), 7717–7732.
- Pine, A. S. (1997), Line Mixing Sum Rules for the Analysis of Multiplet Spectra, J. Quant. Spectrosc. Radiat. Transfer, 57(2), 145–155.
- Priem, D., J.-M. Colmont, F. Rohart, G. Wlodarczak, and R. R. Gamache (2000), Relaxation and Lineshape of the 500.4.-GHz Line of Ozone Perturbed by N2 and O2, J. Molec. Spectro., 204, 204–215.
- Puzzarini, C., L. Dore, and G. Cazzoli (2002), A Comparison of Lineshape Models in the Analysis of Modulated and Natural Rotational Line Profiles: Application to the Pressure Broadening of OCS and CO, J. Molec. Spectro., 216, 428–436, doi:10.1029/jmsp.2002.8663.
- Rabitz, H. (1974), Rotation and Rotation-Vibration Pressure-Broadened Spectral Lineshapes, Princeton University.
- Rautian, S. G. (1111), Collision Anisotropy and Impact Contour of Spectral Lines, Institute of Automation and Electrometry.
- Robert, D., J. M. Thuet, J. Bonamy, and S. Temkin (1993), Effect of speed-changing collisions on spectral line shape, Phys. Rev., 47(2), 771–773.
- Robert, D. and L. Bonamy (1998), Memory effects in speed-changing collisions and their consequences for spectral lineshape: I. Collision regime, The European Physical Journal D, 2, 245–252.
- Rodgers, C. D. (1976), Collisional narrowing: its effect on the equivalent widths of spectral lines, Appl. Opt., 15(3), 714–716.
- Roney, P. L. (1994), Theory of spectral line shape. II. Collision time theory and the line wing, J. Chem. Phys., 101(2), 1050–1060.
- Roney, P. L. (1994), Theory of spectral line shape. I. Formulation and line coupling, J. Chem. Phys., 101(2), 1037–1049.
- Rosenkranz, P. W. (1985), Pressure broadening of rotational bands. I. A statistical theory, J. Chem. Phys., 83(12), 6139–6144.
- Rosenkranz, P. W. and D. H. Staelin (1988), Polarized thermal microwave emission from oxygen in the mesosphere, Radio Sci., 23(5), 721–729.
- Rosenkranz, P. W. (1990), Oxygen Line Emission as a measure of Temperature in the Upper Stratosphere and Mesosphere, University of Maryland.
- Schmuecker, N., C. Trojan, T. Giesen, R. Schieder, K. M. T. Yamada, and G. Winnewisser (1997), Pressure Broadening and Shift of Some H2O Lines in the ν2 Band: Revisited, J. Molec. Spectro., 184, 250–256.
- Schreier, F. (1992), The Voigt and complex error function: a comparison of computational methods, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 743–762.
- Schuller, F. (1998), Extended Impact Theory of Pressure Broadening of Spectral Lines for Van der Waals Interaction Potentials, J. Quant. Spectrosc. Radiat. Transfer, 60(1), 43–51.
- Shippony, Z. and W. G. Read (2003), A highly accurate Voigt function algorithm, J. Quant. Spectrosc. Radiat. Transfer, 50(6), 635–646.
- Sinclair, P. M., J. W. Forsman, J. R. Drummond, and A. D. May (1993), Line mixing and state-to-state rotational relaxation rates in D2 determined from the Raman Q branch, Phys. Rev., 48(4), 3030–3035.
- Smith, W. V. and R. Howard (1950), Microwave Collision Diameters II. Theory and Correlation with Molecular Quadrupole Moments, Phys. Rev., 79(1), 132–136.
- Smith, E. W. and M. Giraud (1979), Pressure broadening of the O2 microwave spectrum, J. Chem. Phys., 71(11), 4209–4217.
- Spiering, F. R., M. B. Kiseleva, N. N. Filippov, H. Naus, B. van Lieshout, C. Weijenborg, and W. J. van der Zande (2010), Line mixing and collision induced absorption in the oxygen A-band using cavity ring-down spectroscopy, J. Chem. Phys., 133(11), 114305, doi:10.1063/1.3460924.
- Strow, L. L., D. C. Tobin, and S. E. Hannon (1994), A Compilation of First-Order Line-Mixing Coefficient for CO2 Q-Branches, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 281–294.
- Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared Radiances, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
- Tennyson, J., P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. Domenica De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. Hoa Ngo, and O. L. Polyansky (2014), Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report), Pure Appl. Chem., 86(12), 1931–1943, doi:10.1515/pac-2014-0208.
- Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vapor, Appl. Opt., 24(21), 3526–3530.
- Tinkham, M. and M. W. P. Strandberg (1955), Interaction of Molecular Oxygen with a Magnetic Field, Phys. Rev., 97(4), 951–966.
- Tinkham, M. and M. W. P. Strandberg (1955), Line Breadths in the Microwave Magnetic Resonance Spectrum of Oxygen, Phys. Rev., 99(2), 537–539.
- Tobin, D. C. (1996), Infrared Spectral Lineshapes of Water Vapor and Carbon Dioxid, University of Maryland, PhD Thesis.
- Van de Hulst, H. C. and J. J. M. Reesinck (1947), Line Breadths and Voigt Profiles, Astrophys. J., 106, 121–127.
- Van Vleck, J. H. (1945), On the Shape of Collision-Broadened Lines, Rev. Mod. Phys., 17(2–3), 227–236.
- Van Vleck, J. H. and H. Margenau (1949), Collision Theories of Pressure Broadening of Spectral Lines, Phys. Rev., 76(8), 1211–1214.
- Varghese, P. L. and R. K. Hanson (1984), Collisional narrowing effects on spectral line shape measured at high resolution, Appl. Opt., 23(14), 2376–2385.
- Wells, R. J. (1999), Rapid approximation to the Voigt/Faddeeva function and its derivatives, J. Quant. Spectrosc. Radiat. Transfer, 62, 29–48.
- Wilson, J. and J. F. B. Hawkes (1987), Lasers, Principles and Applications, Newcastle upon Tyne Polytechnic.
- Wodkiewicz, K. and N. H. Cong (1111), Stochastic Model of Line Shapes, Warsaw University.
- Yamada, M. M., M. Kobayashi, H. Habara, T. Amano, and B. J. Drouin (2003), Submillimeter-wave measurements of the pressure broadening of BrO, J. Quant. Spectrosc. Radiat. Transfer, 83, 391–399.