All Publications
Below is the combined list of references from refs_sat.bib and
refs_external.bib. It is intended for our group's internal use.
|
2c-ice
|
a-train
|
abs lookup
|
absorption
|
active
|
aerosol
|
aerosols
|
age of air
|
aggregation
|
airs
|
albedo
|
algorithm
|
amsos
|
amsu
|
annual cycle
|
anomalies
|
aqua
|
ar4
|
ar5
|
arctic
|
arm
|
arts
|
arts-dev
|
asr
|
assimilation
|
astronomy
|
astrophysics
|
asymmetry
|
atmosphere
|
atmospheric composition
|
atmospheric dynamics
|
atmospheric profiles
|
atsr-2
|
avhrr
|
bachelor thesis
|
backscattering
|
basics
|
bayes
|
bias
|
biomass
|
book
|
calculation
|
calculations
|
calibration
|
calipso
|
ccn
|
cdr
|
ceres
|
cfmip
|
chemistry
|
cia
|
ciraclim
|
cirrus
|
cirrus anvil sublimation
|
cirrus cloud
|
cirrus clouds
|
cirrusstudy
|
ciwsir/cloudice
|
claus
|
cliccs
|
climate
|
climate change
|
climate dynamics
|
climate feedbacks
|
climate sensitivity
|
climate sensivity
|
climate variability
|
climatology
|
cloud feedback
|
cloud forcing
|
cloud fraction
|
cloud ice
|
cloud ice mission
|
cloud optical thickness
|
cloud properties
|
cloud radiative effects
|
cloud radiative forcing
|
cloud regimes
|
cloud top pressure
|
cloudice mission
|
clouds
|
cloudsat
|
clustering
|
cmip3
|
cmip5
|
cmip6
|
cmsaf
|
co2
|
collocation
|
collocations
|
comparison
|
computer science
|
continua
|
contrail
|
convection
|
convective clouds
|
convective processes
|
convective self-aggregation
|
correlated k
|
cosmic background
|
cosmic rays
|
cosp
|
cost 723 qjrms
|
cross-calibration
|
cth
|
cumulus
|
dardar
|
data assimilation
|
data bases
|
dda
|
deep convection
|
delta m
|
dimer
|
disort
|
diurnal cycle
|
dlr-smiles
|
dmsp
|
documentation
|
doppler
|
droplet size
|
dynamics
|
earth
|
earthcare
|
ec earth
|
echam
|
ecmwf
|
effective radius
|
electromagnetism
|
electron content
|
elevation
|
elevation satellite-2
|
emd
|
emde
|
emissivity
|
enso
|
eof-pca-svd
|
erbe
|
error assessment
|
ers
|
eruption
|
esa planetary
|
exoplanets
|
extraterrestrial
|
fall speed
|
far-infrared
|
faraday-voigt
|
fcdr
|
feedback
|
feedbacks
|
fingerprinting
|
flux uav
|
forcing
|
forest fire
|
fox19_airborne_amt.pdf
|
friend
|
fun
|
fuzzy inference system
|
fuzzy logic
|
gcm
|
genesis
|
geostationary
|
gerrit_erca
|
global warming
|
gnss
|
goes
|
gps
|
gras
|
graupel
|
gravitational lensing
|
greenhouse effect
|
ground-based
|
groundbased
|
habil
|
hadley circulation
|
hail
|
hamburg
|
heating rate
|
heating rates
|
herschel
|
hiatus
|
hirs
|
history
|
hsb
|
humidity
|
hydrological sensitivity
|
hydrological sensivity
|
hydrometeors
|
iasi
|
ice
|
ice clouds
|
ice crystal growth
|
ice nucleation
|
ice water
|
icesat-2
|
ici
|
icon
|
icz
|
in situ
|
infrared
|
infrared sounder
|
instruments
|
inter-calibration
|
intercalibration
|
intercomparison
|
interference
|
inverse modelling
|
ipcc
|
ir
|
ir/vis
|
iris
|
isccp
|
ismar
|
isotopes
|
itcz
|
iwc
|
iwp
|
iwv
|
john
|
jupiter
|
kalpana
|
kessler scheme
|
lblrtm
|
licentiate thesis
|
lidar
|
limb effect
|
limb sounding
|
limb-correction
|
linemixing
|
lineshape
|
liquid water
|
liquid water path
|
longwave radiation
|
low-cloud feedback
|
magnetic field
|
magnetism
|
mars
|
mas
|
mass-dimension relation
|
master thesis
|
masters thesis
|
math
|
megha-tropiques
|
mendrok
|
mesoscale organization
|
meteorology
|
meteosat
|
methane ocean
|
metop
|
mhs
|
microphysics
|
microwave
|
microwave humidity
|
microwave radiometry
|
milz
|
mipas
|
mirs
|
misr
|
mixed phase
|
mls
|
model
|
modeling
|
models
|
modis
|
monte carlo
|
moon
|
mspps
|
msu
|
mth
|
multi-moment scheme
|
multisensor
|
mwhs
|
mwi
|
net radiation
|
neural network
|
nicam
|
nlte
|
noaa
|
nonsphericity
|
npoess
|
observation
|
ocean
|
ocean reflection
|
ocean-atmosphere interactions
|
odin
|
olr
|
one-moment scheme
|
open loop
|
optical
|
optical depth
|
optical properties
|
optics
|
orbital drift
|
orbital drift correction
|
orbits
|
ozone
|
pacific ocean
|
particle orientation
|
particle shape
|
particle size
|
particle size distribution
|
passive
|
patmos-x
|
phase function
|
phd thesis
|
planetary evolution
|
polarimetry
|
polarization
|
polder
|
potss
|
precipitation
|
profile datasets
|
programming
|
projection
|
promet
|
propagation modeling
|
python
|
radar
|
radiation
|
radiation profiles
|
radiative convective equilibrium
|
radiative equilibrium
|
radiative feedback
|
radiative fluxes
|
radiative forcing
|
radiative processes
|
radiative transfer
|
radiative-convective equilibrium
|
radiative-equilibrium
|
radio occultation
|
radiometer
|
radiometers
|
radiosonde
|
radiosonde cloud liquid
|
radiosonde correction
|
radiosonde corrections
|
rain
|
reanalysis
|
refractive index
|
relative humidity
|
remote sensing
|
retrieval
|
retrievals
|
review
|
rodgers
|
rttov
|
sahara
|
sahel
|
sampling
|
sand/dust
|
sar
|
satellite
|
satellite missions
|
satellite observations
|
satellite simulator
|
sbuehler_habil
|
scattering
|
scattering databases
|
scintillations
|
scout-amma
|
self-aggregation
|
sensor geometry
|
seviri
|
shallow convection
|
simulated annealing
|
single scattering
|
smiles
|
sno
|
snow
|
snowfall
|
software
|
soil
|
solar
|
soot
|
sounders
|
spectral information
|
spectroscopy
|
split window technique
|
sreerekha
|
ssm/i
|
ssm/t
|
ssmis
|
ssmt2
|
stability
|
stars
|
statistics
|
ste
|
stereo
|
stratosphere
|
submillimeter
|
submm
|
sun
|
supersaturation
|
surface
|
synergies
|
synergy
|
task2
|
tempera
|
temperature
|
terra
|
thermodynamics
|
time series
|
titan
|
tkuhn
|
toa radiation
|
top of the atmosphere
|
total column
|
tovs
|
trade-wind clouds
|
trajectory analysis
|
trend
|
trmm
|
tropical circulation
|
tropical convection
|
tropical meteorology
|
tropics
|
tropopause
|
troposphere
|
ttl
|
turbulence
|
tutorial
|
two-moment scheme
|
upper troposphere
|
uth
|
uthmos
|
utls
|
validation
|
vater vapor
|
venus
|
visualization
|
volcanic ash
|
walker
|
walker circulation
|
walker rirculation
|
water
|
water cycle
|
water dimer
|
water vapor
|
water vapor continuum
|
water vapour
|
water vapour path
|
water-vapour
|
wind
|
zeeman
|
Hide tag cloud
Filtered by keyword:spectroscopy
There is currently a filter applied. To see the complete list of publications,
clear the filter.
Group references
In the Pipeline
Articles
2011 
- Buehler, S. A., P. Eriksson, and O. Lemke (2011), Absorption lookup tables in the radiative transfer model ARTS, J. Quant. Spectrosc. Radiat. Transfer, 112(10), 1559–1567, doi:10.1016/j.jqsrt.2011.03.008.
2010 
- Sato, T. O., A. Mizoguchi, J. Mendrok, H. Kanamori, and Y. Kasai (2010), Measurement of the pressure broadening coefficient of the 625 GHz transition of H2O2 in the sub-millimeter-wave region, J. Quant. Spectrosc. Radiat. Transfer, 111(6), 821–825, doi:10.1016/j.jqsrt.2009.11.022.
2009 
- Sagawa, H., J. Mendrok, T. Seta, H. Hoshina, P. Baron, K. Suzuki, I. Hosako, C. Otani, P. Hartogh, and Y. Kasai (2009), Pressure broadening coefficients of H2O induced by CO2 for Venus atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 110(18), 2027–2036, doi:10.1016/j.jqsrt.2009.05.003.
Books and Book Contributions
Theses
Technical Reports and Proposals
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
- Althorpe, S. C. and D. C. Clary (1994), Calculation of the intermolecular bound states for water dimer, J. Chem. Phys., 101(5), 3603–3609.
- Amano, T. and E. Hirota (1974), Microwave Spectrum of the Molecular Oxygen in the Excited Vibrational State, J. Molec. Struct., 53, 346–363.
- Arnold, F., J. Curtius, B. Sierau, V. Buerger, R. Busen, and U. Schumann (1999), Detection of massive negative chemiions in the exhause plume of a jet aircraft in flight, Geophys. Res. Lett., 36(11), 1577–1580.
- Bacic, Z. and R. E. Miller (1996), Molecular Clusters: Structure and Dynamics of Weakly Bound Systems, J. Chem. Phys., 1000, 12945–12959.
- Baker, E. A. M. and B. Walker (1982), Fabry-Perot interferometers for use at submillimetre wavelengths, J. of Phys. E: Sci. Instrum., 15, 25–31.
- Baldecchi, M. G., B. Carli, M. Carlotti, G. Di Lonardo, F. Forni, F. Mencaraglia, and A. Trombetti (1984), High resolution molecular spectroscopy in the submillimetre region, Int. J. Inf. Millim. Waves, 5(3), 381–401.
- Ball, C. D., J. M. Dutta, M. M. Beaky, T. M. Goyette, and F. C. De Lucia (1999), Variable-temperature pressure broadening of H2S by O2 and N2, J. Quant. Spectrosc. Radiat. Transfer, 61(6), 775–780, doi:10.1016/S0022-4073(98)00065-X.
- Battaglia, A., A. Gozzini, and G. Boudouris (1970), Experimental Study of Confocal Fabry-Perot Microwave Resonators, Insituto di Fisicia dell'Universita, Universite de Grenoble.
- Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMs, Geophys. Res. Lett., 28(24), 4591–4594.
- Beringer, R. and J. G. Castler Jr. (1951), Microwave Magnetic Resonance Spectrum of Oxygen, Phys. Rev., 81(1), 82–88.
- Birnbaum, G. (1967), Microwave Pressure Broadening and ITs Application to Intermolecular Forces, North American Aviation Science Center.
- Birnbaum, G. (1111), Collision Induced Spectroscopy: Absorption and Light Scattering, Gaithersburg MD, University of Texas at Austin, University of Manitoba.
- Blake, N. O. (1990), A quantum electrodynamical study of intermolecular line broadening and line shift, J. Chem. Phys., 93(9), 6165–6183.
- Blake, G. A. (1111), Microwave and Terahertz Spectroscopy, Encyclopedia of Chemical Physics and Physical Chemistry.
- Blanes, B. L. and G. E. Ewing (1976), Van der Waals Molecule, Annu. Rev. Phys. Chem., 27, 553–586.
- Bleaney, B. (1947), The Radio-Frequency Spectroscopy of Gases, Rep. Prog. Phys., 12, 178–204.
- Boissoles, J., C. Boulet, R. H. Tipping, A. Brown, and Q. Ma (2003), Theoretical calculation of the translation-rotation collision-induced absorption in N2-N2, O2-O2, and N2-O2 pairs, J. Quant. Spectrosc. Radiat. Transfer, 82, 505–516.
- Braly, L. B., K. Liu, M. G. Brown, F. N. Keutsch, R. S. Fellers, and R. J. Saykally (2000), Terahertz laser spectroscopy of the wate dimer intermolecular vibrations. II. (H2O)2, J. Chem. Phys., 112(23), 10314–10326.
- Brocks, G. and A van der Avoird (1985), Infrared spectra of the van der Waals molecule (N2)2, Molecular Physics, 55(1), 11–32.
- Brown, L. R., C. B. Farmer, C. P. Rinsland, and R. A. Toth (1987), Molecular line parameters for the atmospheric trace molecule spectroscopy experiment, Appl. Opt., 26(23), 5154–5182.
- Brown, L. R. and D. B. Peterson (1994), An Empirical Expression for Linewidths of Ammonia from Far-Infrared Measurements, J. Molec. Spectro., 168(2), 593–606, doi:10.1006/jmsp.1994.1305.
- Brown, L. R., M. R. Gunson, R. A. Toth, F. W. Irion, C. P. Rinsland, and A. Goldman (1996), 1995 Atmospheric Trace Molecule Spectroscopy (ATMOS) linelist, Appl. Opt., 35(16), 2828–2848.
- Bryant, C. H., P. B. Davies, and T. J. Sears (1996), The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy, Geophys. Res. Lett., 23(15), 1945–1947.
- Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1950), The Fine Structur of the Microwave Absorption Spectrum of Oxygen, Phys. Rev., 79(4), 651–655.
- Bussery, B. and P. E. S. Wormer (1993), A van der Waals intermolecular potential for (O2)2, J. Chem. Phys., 99(2), 1230–1239.
- Carli, B. (19884), The high resolutions submillimetre spectrum of the stratosphere, J. Quant. Spectrosc. Radiat. Transfer, 32(5/6), 397–405.
- Carli, B. (1985), Spectroscopy: an ill-posed problem, SPIE, 553, 90–96.
- Carli, B., M. Carlotti, F. Mencaraglia, and E. Rossi (1987), Far-infrared high-resolution Fourier transform spectrometer, Appl. Opt., 26(18), 3818–3822.
- Chance, K., P. Denatale, M. Bellini, M. Inguscio, G. Dilonardo, and L. Fusina (1994), Pressure Broadening of the 2.4978-THz Rotational Lines of HO2 by N2 and O2, J. Molec. Spectro., 163(1), 67–70, doi:10.1006/jmsp.1994.1007.
- Chance, K., K. W. Jucks, D. G. Johnson, and W. A. Traub (1994), The smithsonian astrophysical observatory database SAO92, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 447–457.
- Clarke, R. N. and C. B. Rosenberg (1982), Fabry-Perot and open resonators at micorwave and millimetre wave frequencies, 2–300 GHz, J. of Phys. E: Sci. Instrum., 15, 9–21.
- Colmont, J.-M., B. Bakri, F. Rohart, and G. Wlodarczak (2003), Experimental determination of pressure-broadening parameters of millimeter-wave transitions of HNO2 perturbed by N2 and O2, and of their temperature dependences, J. Molec. Spectro., 220, 52–57.
- Colthup, N. B. (1987), Infrared Spectroscopy, Encyclopedia of Physical Science and Technology, 6, 626–647.
- Cook, R. L. (1987), Molecular Microwave Spectroscopy, Encyclopedia of Physical Science and Technology, 8, 496–531.
- Davies, R. W., R. H. Tipping, and S. A. Clough (1982), Dipole autocorrelation function for molecular pressure broadening: A quantum theory which satisfies the fluctuation-dissipation theorem, Phys. Rev., 26(6).
- Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
- de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant Planets, Icarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
- Devaraj, K., P. G. Steffes, and B. M. Karpowicz (2011), Reconciling the centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions: Extensive millimeter-wavelength measurements and a consistent model, Icarus, 212(1), 224–235, doi:10.1016/j.icarus.2010.12.010.
- Doicu, A., F. Schreier, and M. Hess (2004), Iterative regularization methods for atmospheric remote sensing, J. Quant. Spectrosc. Radiat. Transfer, 83, 47–61.
- Dumesh, B. S. and L. A. Surin (1996), Two highly sensitive microwave cavity spectrometers, Rev. Sci. Inst., 67(10), 3458–3465.
- Dunn, T. M. (1987), Molecular Optical Spectroscopy, Encyclopedia of Physical Science and Technology, 8, 532–553.
- Dyke, T. R., K. M. Mack, and J. S. Muenter (1977), The structure of water dimer from molecular beam electric resonance spectroscopy, J. Chem. Phys., 66(2), 498–510.
- Fischer, J., R. R. Gamache, A. Goldman, L. S. Rothman, and A. Perrin (2003), Total internal partition sums for molecular species in the 2000 edition of the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer, 82(1–4), 401–412, doi:10.1016/S0022-4073(03)00166-3.
- Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate models, J. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
- Frommhold, L. (1111), Collision-Induced Spectroscopy, University of Texas.
- Funke, B., G. P. Stiller, T. von Clarmann, G. Echle, and H. Fischer (1998), CO2 Line Mixing in MIPAS Limb Emission Spectra and its Influence on Retrieval of Atmospheric Parameters, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 215–230.
- Gagliardi, G., G. Rusciano, and L. Gianfrani (2000), Narrow H218O lines and new absolute frequency references in the near-IR, J. Opt. A: Pure Appl. Opt., 2, 310–313.
- Gamache, R. R. and A. Goldman (2001), Einstein A coefficient, integrated band intensity, and population factors: application to the a1Δg – X3Σg- (0,0) O2 band, J. Quant. Spectrosc. Radiat. Transfer, 69, 389–401.
- Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: II. Comparison with measurement, J. Quant. Spectrosc. Radiat. Transfer.
- Gamache, Robert R., Anne L. Laraia, and Julien Lamouroux (2011), Half-widths, their temperature dependence, and line shifts for the HDO-CO2 collision system for applications to CO2-rich planetary atmospheres, Icarus, 213(2), 720–730, doi:10.1016/j.icarus.2011.03.021.
- Gamache, R. R., B. Vispoel, M. Rey, A. Nikitin, V. Tyuterev, O. Egorov, I. E. Gordon, and V. Boudon (2021), Total internal partition sums for the HITRAN2020 database, J. Quant. Spectrosc. Radiat. Transfer, 271, 107713, doi:10.1016/j.jqsrt.2021.107713.
- Gamache, R. R., R. L. Hawkins, and L. S. Rothman (1990), Total Internal Partition Sums in the Temperature Range 70–3000 K: Atmospheric Linear Molecules, J. Molec. Spectro., 142, 205–219.
- Gamache, R. R. and L. S. Rothman (1992), Extension of the HITRAN database to non-lite applications, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 519–525.
- Gamache, R. R., F. R. Lynch, J. J. Plateaux, and A. Barbe (1997), Halfwidths and line shifts of water vapour broadened by CO2: measurements and complex Robert-Bonamy formalism calculations, J. Quant. Spectrosc. Radiat. Transfer, 57(4), 485–496, doi:10.1016/S0022-4073(96)00148-3.
- Gebbie, H. A. (1991), Comment on: Water vapor continuum in the millimeter spectral region, J. Chem. Phys., 95(2), 1427–1428.
- Goldman, A., M. T. Coffey, J. W. Hannigan, W. G. Mankin, K. V. Chance, and C. P. Rinsland (2003), HBr and HI line parameters update for atmospheric spectroscopy databases, J. Quant. Spectrosc. Radiat. Transfer, 82, 313–317.
- Golubiatnikov, G. Y. and A. F. Krupnov (2003), Microwave study of the rotational spectrum of oxygen molecule in the range up to 1.12 THz, J. Molec. Spectro., 217, 282–287.
- Golubiatnikov, G. Y., M. A. Koshelev, and A. F. Krupnov (2003), Reinvestigation of pressure broadening parameters at 60-GHz band and single 118.75 GHz oxygen lines at room temperature, J. Molec. Spectro., 222, 191–197.
- Gopalsami, N., A. C. Raptis, and J. Meier (2002), Millimeter-wave cavity ringdown spectroscopy, Rev. Sci. Inst., 73(2), 259–262.
- Gordon, I. E., S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak (2017), The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 203, 3–69, doi:10.1016/j.jqsrt.2017.06.038.
- Gordon, R. G. (1973), Correlation Functions for Molecular Motion, Harvard University.
- Gordy, W. (1948), Microwave Spectroscopy, Rev. Mod. Phys., 20(4), 668–717.
- Gordy, W. and R. L. Cook (1970), Microwave Molecular Spectra, Chemical Applications of Spectroscopy.
- Groenenboom, G. C., P. E. S. Wormer, A. van der Avoird, E. M. Mas, R. Bukowski, and K. Szalewicz (2000), Water pair potential of near spectroscopic accuracy. II. Vibration- rotation- tunneling levels of the water dimer, J. Chem. Phys., 113(16), 6702–6715.
- Gubner, J. A. (1994), A New Serie for Approximating Voigt Functions, J. of Phys. A: Math. Gen., 27(19), L745–L749.
- Han, Y., P. van Delst, and F. Weng (2010), An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channels, J. Geophys. Res., 115, D15109, doi:10.1029/2010JD013878.
- Hansson, A. and J. K. G. Watson (2005), A comment on Hönl–London factors, J. Molec. Struct., 233(2), 169–173, doi:10.1016/j.jms.2005.06.009.
- Hartmann, J.-M. and H. Tran G. C. Toon (2009), Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions, Atmos. Chem. Phys., 9(19), 7303–7312, doi:10.5194/acp-9-7303-2009.
- Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6, J. Chem. Phys., 109(20), 8747–8750.
- Hill, C., I. E. Gordon, L. S. Rothman, and J. Tennyson (2013), A new relational database structure and online interface for the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer, 130, 51–61, doi:10.1016/j.jqsrt.2013.04.027.
- Hill, E. and J. H. Van Vleck (1928), On the Quantum Mechanics of the Rotational Distortion of Multiplet in Molecular Spectra, Phys. Rev., 32, 250–272.
- Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window, Infrared Phys., 27(2), 63–120.
- Holstein, B. R. (2000), The van der Waals interaction, University of Massachusetts.
- Hoogeveen, R. W. M., R. J. van der A., and A. P. H. Goede (2001), Extended wavelength InGaAs infrared (1.0–2.4μm) detector arrays on SCIAMACHY for space-based spectroscopy of the Earth atmosphere, Infrared Phys. & Tech., 42, 1–16.
- Howard, B. J. (1975), The Structur and Properties of van der Waals Molecules, University of Southampton.
- Husson, N., B. Bonnet, N. A. Scott, and A. Chedin (1992), Management and study of spectroscopic information: the GEISA program, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 509–518.
- Husson, N., A. Chedin, and B. Bonne (1993), Review of existing spectral line data catalogs, In: High Spectral Resolution Infrared Remote Sensing for Earth's Weather and Climate Studies, pp. 443–457, Springer-Verlag.
- Husson, N., B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, and Vl. G. Tyuterev (1994), The GEISA data base in 1993: a PC/AT compatible computers' new version, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 425–438.
- Hutson, J. M. (1990), Atom-asymmetric top van der Waals complexes: Angular momentum coupling in AR-H2O, J. Chem. Phys., 92(1), 157–167.
- Jacquemart, D., A. Laraia, F. Kwabia Tchana, R. R. Gamache, A. Perrin, and N. Lacome (2010), Formaldehyde around 3.5 and 5.7-μm: Measurement and calculation of broadening coefficients, J. Quant. Spectrosc. Radiat. Transfer, 111(9), 1209–1222, doi:10.1016/j.jqsrt.2010.02.004.
- Jacquinet-Husson, N., L. Crepeau, R. Armante, C. Boutammine, A. Chédin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, D. Chris Benner, Y. Benilan, B. Bézard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.-M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinböhl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, Li-Hong Xu, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Müller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A.-C. Vandaele, and J. Vander Auwera (2011), The 2009 edition of the GEISA spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 112(15), 2395–2445, doi:10.1016/j.jqsrt.2011.06.004.
- Jacquinot, P. (1960), New Developments in Interference Spectroscopy, Rep. Prog. Phys., 23, 268–289.
- Jolie, J. and N. Stritt (2000), Neutrino Induced Doppler Broadening, Journal of Research of the National Institute of Standards and Technology, 105(1), 89–96.
- Kalmykov, Y. P. and S. V. Titov (1999), Dielectric relaxation and extended rotational diffusion of asymmetric top molecules with account of finite duration of collisions, J. Molec. Struct., 479, 123–133.
- Karman, T., I.E. Gordon, A. van der Avoird, Y. I. Baranov, C. Boulet, B. J. Drouin, G. C. Groenenboom, M. Gustafsson, J.-M. Hartmann, R. L. Kurucz, L. S. Rothman, K. Sun, K. Sung, R. Thalman, H. Tran, E. H. Whishnow, R. Wordsworth, A. A. Vigasin, R. Volkamer, and W. J. van der Zande (in press 2019), Update of the HITRAN collision-induced absorption section, Icarus, doi:10.1016/j.icarus.2019.02.034.
- Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions, Icarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
- Kasuga, T., H. Kuze, and T. Shimizu (1978), Determinations of relaxation rate constants on the 22 GHz rotational transition of H2O by coherent transient spectroscopy, J. Chem. Phys., 69(11), 5195–5198.
- Kikuchi, K., Y. Fujii, and J. Inatani (2002), Simple FTS Measurement System for Submillimeter SIS Mixer, Int. J. Inf. Millim. Waves, 23(7), 1019–1027.
- King, W. C. and W. Gordy (1954), One-to-Two Millimeter Wave Spectroscopy. IV. Experimental Methody and Results for OCS, CH3F, and H2O, Phys. Rev., 93(3), 407–412.
- Kissel, A., H.-D. Kronfeldt, B. Sumpf, Yu. N. Ponomarev, and B. A. Tikhomirov (2001), Line broadening and line shift of H2S absorption lines in the ν2 band – collisions with H2O and Ar in a three component mixture, J. Quant. Spectrosc. Radiat. Transfer, 69(5), 573–583, doi:10.1016/S0022-4073(00)00102-3.
- Krupnov, A. F., M. Yu. Tretyakov, V. V. Parshin, V. N. Shanin, and S. E. Myasnikova (2000), Modern Millimeter-Wave Resonator Spectroscopy of Broad Lines, J. Molec. Spectro., 107–115, doi:10.1006/jmsp.2000.8104.
- Krupnov, A. F. (1996), Present state of submillimeterwave spectroscopy at the Nizhnii Novgorod Laboratory, Spectrochimica Acta Part A, 52, 967–993.
- Krupnov, A. F., M. Y. Tretyakov, V. V. Parshin, V. N. Shanin, and M. I. Kirillov (1999), Precision Resonator Microwave Spectroscopy in Millimeter and Submillimeter Range, Int. J. Inf. Millim. Waves, 20, 1731–1737.
- Kuntz, M. (1997), A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function, J. Quant. Spectrosc. Radiat. Transfer, 57, 819–824.
- Lamb Jr., W. E. (1946), Theory of a Microwave Spectroscope, Phys. Rev., 70(5–6), 308–317.
- Laraia, A. L., R. R. Gamache, J. Lamouroux, I. E. Gordon, and L. S. Rothman (2011), Total internal partition sums to support planetary remote sensing, Icarus, 215(1), 391–400, doi:10.1016/j.icarus.2011.06.004.
- Lawson, J. D. (1970), Some Attributes of Real and Virtual Photons, Contemp. Phys., 11(6), 575–580.
- Learner, R. C. M. (1982), A simple (and unexpected) experimental law relating to the number of weak line in a complex spectrum, J. Phys. B.: A7. Mol. Phys, 24, L891–L895.
- Le Moal, M. F. and F. Severin (1986), N2 and H2 broadening parameters in the fundamental band of CO, J. Quant. Spectrosc. Radiat. Transfer, 35(2), 145–152, doi:10.1016/0022-4073(86)90111-1.
- Lepere, M., A. Henry, A. Valentin, and C. Camy-Peyret (2001), Diode-Laser Spectroscopy: Line Profiles of CO2 in the Region of 1.39 μm, J. Molec. Struct., 208, 25–31.
- Li, J. S., K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao (2008), Self-, N2-, and O2-broadening coefficients for the 12C16O2 transitions near-IR measured by a diode laser photoacoustic spectrometer, J. Molec. Spectro., 252(1), 9–16, doi:10.1016/j.jms.2008.03.018.
- Liebe, H. J. and T. A. Dillon (1969), Accurate Foreign-Gas-Broadening Parameters of the 22-GHz H2O Line from Refraction Spectroscopy, J. Chem. Phys., 50(2), 727–732.
- Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford (1992), Atmospheric 60 GHz oxygen spectrum: new laboratory measurements and line parameters, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 629–643.
- Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
- Lisak, D., A. Cygan, D. Bermejo, J. L. Domenech, J. T. Hodges, and H. Tran (2015), Application of the Hartmann-Tran profile to analysis of H2O spectra, J. Quant. Spectrosc. Radiat. Transfer, 164, 221–230, doi:10.1016/j.jqsrt.2015.06.012.
- Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), Pressure Broadening of H2O in the (301) ← (000) Band: Effects of Angular Momentum and Close Intermolecular Interactions, J. Quant. Spectrosc. Radiat. Transfer, 59(6), 615–626.
- Ma, Q. and R. H. Tipping (2002), The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O-H2, J. Chem. Phys., 116(10), 4102–4115.
- Ma, Q., R. H. Tipping, and R. R. Gamache (2010), Uncertainties associated with theoretically calculated N2-broadened half-widths of H2O lines, Mol. Phys., 108(17), 2225–2252, doi:10.1080/00268976.2010.505209.
- Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of Rosenkranz, J. Chem. Phys., 93(10), 7066–7075.
- Ma, Q. and R. H. Tipping (1990), Water vapor continuum in the millimeter spectral region, J. Chem. Phys., 93(3), 6127–6139.
- Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.I, J. Chem. Phys., 95(9), 6290–6301.
- Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the water vibrational bands II, J. Chem. Phys., 96(12), 8655–8663.
- Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III, J. Chem. Phys., 97(2), 818–828.
- Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum Absorption, J. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
- Margottin-Maclou, M., P. Dahoo, A. Henry, A. Valentin, and L. Henry (1988), Self-, N2-, and O2-broadening parameters in the $\nu_3$ and $\nu_1$ + $\nu_3$ bands of 12C16O2, J. Molec. Spectro., 131(1), 21–35, doi:10.1016/0022-2852(88)90102-6.
- Markov, V. N., Y. Xu, and W. Jaeger (1998), Microwave-submillimeter wave double-resonance spectrometer for the investigation of van der Waals complexes, Rev. Sci. Inst., 69(12), 4061–4067.
- Matsushima, F., H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi (1999), Frequency Measurement of Pure Rotational Transitions of H217O and H218O from 0.5 to 5 THz, J. Molec. Spectro., 193, 217–223.
- McKellar, A. R. W. (1988), Infrared spectra of the (N2)2 and N2-Ar van der Waals molecules, J. Chem. Phys., 88(7), 4190–4196.
- McKnight, J. S. and W. Gordy (1968), Measurement of the Submillimeter-Wave Rotational Transition of Oxygen at 424 kMc/sec, Phys. Rev. L, 21(27), 1787–1789.
- Mizushima, M. and R. M. Hill (1954), Microwave Spectrum of O2, Phys. Rev., 93(4), 745–748.
- Mizushima, M., J. S. Wells, K. M. Evenson, and W. M. Welch (1972), Laser Magnetic Resonance of the O2 Molecule Using the 337-μm HCN Laser, Phys. Rev., 29(13), 831–833.
- Mlawer, E. J., D. D. Turner, S. N. Paine, L. Palchetti, G. Bianchini, V. H. Payne, K. E. Cady-Pereira, R. L. Pernak, M. J. Alvarado, D. Gombos, J. S. Delamere, M. G. Mlynczak, and J. C. Mast (2019), Analysis of Water Vapor Absorption in the Far-Infrared and Submillimeter Regions Using Surface Radiometric Measurements From Extremely Dry Locations, J. Geophys. Res.: Atm., 124(14), 8134–8160, doi:10.1029/2018JD029508.
- Mlawer, E. J., K. E. Cady-Pereira, J. Mascio, and I. E. Gordon (2023), The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 306, 108645, doi:10.1016/j.jqsrt.2023.108645.
- Odintsova, T. A., M. Y. Tretyakov, A. F. Krupnov, and C. Leforestier (2014), The water dimer millimeter-wave spectrum at ambient conditions: A simple model for practical applications, J. Quant. Spectrosc. Radiat. Transfer, 140(08), 75–80, doi:10.1016/j.jqsrt.2014.02.016.
- Oka, T. (1973), Collision-Induced Transitions between Rotational Levels, National Research Council of Canada.
- Palmer, I. J., W. B. Brown, and I. H. Hillier (1996), Simulation of the charge transfer absorption of the H2O/O2 van der Waals complex using high level ab initio calculations, J. Chem. Phys., 104(9), 3198–3204.
- Park, J. H. (1984), Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing, Appl. Opt., 23(15), 2604–2613.
- Paul, J. B., L. Lapson, and J. G. Anderson (2001), Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment, Appl. Opt., 40(27), 4904–4910.
- Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy, J. Chem. Phys., 101, 5211–5214.
- Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines, IEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
- Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
- Pickett, H. M. (1980), Effects of velocity averaging on the shapes of absorption lines, J. Chem. Phys., 73, 919–928, doi:10.1063/1.440145.
- Pickett, H.M., R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller (1998), Submillimeter, millimeter, and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer, 60(5), 883–890, doi:10.1016/S0022-4073(98)00091-0.
- Pine, A. S. (1997), N2 and Ar Broadening and Line Mixing in the P and R Branches of the ν3 Band of CH4, J. Quant. Spectrosc. Radiat. Transfer, 57(2), 157–176.
- Plass, G. N. (1956), The influence of the 15μ carbon-dioxide band on the atmospheric infra-red cooling rate, Q. J. R. Meteorol. Soc., 82(353), 310–324, doi:10.1002/qj.49708235307.
- Polyansky, O. L., J. Tennyson, and N. F. Zobov (1999), Spectroscopy from first principles: a breaktrough in water line assignments, Spectrochimica Acta Part A, 55, 659–693.
- Poynter, R. L. and H. M. Pickett (1985), Submillimeter, millimeter, and microwave spectral line catalog, Appl. Opt., 24(14), 2235–2240.
- Predoi-Cross, A., C. Holladay, H. Heung, J.-P. Bouanich, G. Ch. Mellau, R. Keller, and D. R. Hurtmans (2008), Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations, J. Molec. Spectro., 251(1–2), 159–175, doi:10.1016/j.jms.2008.02.010.
- Predoi-Cross, A., K. Hambrook, R. Keller, C. Povey, I. Schofield, D. Hurtmans, H. Over, and G. Ch. Mellau (2008), Spectroscopic lineshape study of the self-perturbed oxygen A-band, J. Molec. Spectro., 248(2), 85–110, doi:10.1016/j.jms.2007.11.007.
- Prigent, C., P. Abba, P. Encrenaz, and C. Guillou (1992), Transfert radiatif en ondes millimetrique pour la teledetction a vocation meteorologique, L'Onde Electrique, 72(3), 47–53.
- Puliafito, E., R. Bevilacqua, J. Oliverio, and W. Degenhardt (1995), Retrieval error comparison for several inversion techniques used in limb-scanning millimeter-wave spectroscopy, J. Geophys. Res., 100(D7), 14,257–14,267.
- Rinsland, C. P., et al. (1998), Spectroscopic parameters for ozone and its isotopes: recent measurements, outstanding issus, and prospects for improvements to HITRAN, J. Quant. Spectrosc. Radiat. Transfer.
- Roney, P. L. (1994), Theory of spectral line shape. II. Collision time theory and the line wing, J. Chem. Phys., 101(2), 1050–1060.
- Roney, P. L. (1994), Theory of spectral line shape. I. Formulation and line coupling, J. Chem. Phys., 101(2), 1037–1049.
- Rosenkranz, P. W. (1975), Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Trans. Antennas Propag., AP-23(4), 498–506.
- Rosenkranz, P. W. (1985), Pressure broadening of rotational bands. I. A statistical theory, J. Chem. Phys., 83(12), 6139–6144.
- Rosenkranz, P. W. (1987), Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1, J. Chem. Phys., 87(1), 163–170.
- Rosenkranz, P. W. (1988), Interference Coefficients For Overlapping Oxygen Lines In Air, J. Quant. Spectrosc. Radiat. Transfer, 39(4), 287–297.
- Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 5–44.
- Rothman, L. S., N. Jacquinet-Husson, C. Boulet, and A. M. Perrin (2005), History and future of the molecular spectroscopic databases, Comptes Rendus Phys., 6(8), 897–907, doi:10.1016/j.crhy.2005.09.001.
- Rothman, L. S., D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204, doi:10.1016/j.jqsrt.2004.10.008.
- Rothman, L. S., I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013.
- Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson (2010), HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150, doi:10.1016/j.jqsrt.2010.05.001.
- Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, doi:10.1016/j.jqsrt.2013.07.002.
- Rothman, L. S., R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith (1987), The HITRAN database: 1986 edition, Appl. Opt., 26(19), 4058–4097.
- Rothman, L. S., C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi (1998), The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer, 60, 665–710.
- Schlapp, R. (1937), Fine Structure in the 3-sigma Ground State of the Oxygen Molecule, and the Rotational Intensity Distribution in the Atmospheric Oxygen Band, Phys. Rev., 51, 342–345.
- Schreier, F. (1992), The Voigt and complex error function: a comparison of computational methods, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 743–762.
- Schuller, F. (1998), Extended Impact Theory of Pressure Broadening of Spectral Lines for Van der Waals Interaction Potentials, J. Quant. Spectrosc. Radiat. Transfer, 60(1), 43–51.
- Setzer, B. J. and H. M. Pickett (1977), Pressure broadening measurements of the 118.750 GHz oxygen transition, J. Chem. Phys., 67(1), 340–343.
- Shephard, M. W., A. Goldman, S. A. Clough, and E. J. Mlawer (2003), Spectroscopic improvements providing evidence of formic acid in AERI-LBLRTM validation spectra, J. Quant. Spectrosc. Radiat. Transfer, 82, 383–390.
- Šimečková, M., D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman (2006), Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer, 98, 130–155, doi:10.1016/j.jqsrt.2005.07.003.
- Steinbach, W. and W. Gordy (1973), Millimeter and Submillimeter Wave Spectrum of 18O2, Phys. Rev., 8(4), 1753–1757.
- Stockmann, P. A., R. E. Bumgarner, S. Suzuki, and G. A. Blake (1992), Microwave and tunable far-infrared laser spectroscopy of the ammonia-water dimer, J. Chem. Phys., 96(4), 2496–2509.
- Stogryn, D. E. and J. O. Hirschfelder (1959), Contribution of Bound, Metastable, and Free Molecules to the Second Virial Coefficient and Some Properties of Double Molecules, J. Chem. Phys., 31(6), 1531–1545.
- Strandberg, M. W. P., C. Y. Meng, and J. G. Ingersoll (1949), The Microwave Absorption Spectrum of Oxygen, Phys. Rev., 75(10), 1524–1528.
- Strow, L. L., S. Hannon, and W. W. McMillan (1996), The AIRS Forward Transmittance Model, University of Maryland Baltimore Country.
- Surin, L. A., B. S. Dumesh, F. Lewen, D. A. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak (2001), Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes, Rev. Sci. Inst., 72(6), 2535–2542.
- Tennyson, J., P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. Domenica De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. Hoa Ngo, and O. L. Polyansky (2014), Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report), Pure Appl. Chem., 86(12), 1931–1943, doi:10.1515/pac-2014-0208.
- Tennyson, J. (1111), Variational calculations of rotation-vibration spectra, University College London.
- Tinkham, M. and M. W. P. Strandberg (1955), Theory of the Fine Structure of the Molecular Oxygen Ground State, Phys. Rev., 97(4), 937–951.
- Tipping, R. H. and Q. Ma (1995), Theory of the water vapor continuum and validations, Atmos. Res., 36, 69–94.
- Tretyakov, M. Yu., V. V. Parshin, E. A. Myasnikova, M. A. Koshelev, and A. F. Krupnov (2001), Real Atmosphere Laboratory Measurements of the 118-GHz Oxygen Line: Shape, Shift, and Broadening of the Line, J. Molec. Spectro., 110–112, doi:10.1006/jmsp.2001.8363.
- Tretyakov, M. Y., G. Y. Golubiatnikov, V. V. Parshin, M. A. Koshelev, S. E. Myasnikova, A. F. Krupnov, and P. W. Rosenkranz (2004), Experimental study of the line mixing coefficient for 118.75 GHz oxygen line, J. Molec. Spectro., 223, 31–38.
- Tretyakov, M. Y., M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov (2014), Water dimer and the atmospheric continuum, Phys. Usp., 11(1), 1083–1098, doi:10.3367/UFNe.0184.201411c.1199.
- Tretyakov, M. Y. (2016), Spectroscopy underlying microwave remote sensing of atmospheric water vapor, J. Molec. Spectro., doi:10.1016/j.jms.2016.06.006.
- Tsao, C. J. and B. Curnutte (1961), Line-widths of pressure-broadened spectral lines, J. Quant. Spectrosc. Radiat. Transfer, 2, 41–91.
- van Exter, M., C. Fattinger, and D. Grischkowsky (1989), Terahertz time-domain spectroscopy of water vapor, Optics Letters, 14(20), 1128–1130.
- Van Vleck, J. H. (1927), On Dielectric constants and magnetic susceptibilities in the new Quantum Mechanics, Phys. Rev., 29, 727–744.
- Varanasi, P. (1975), Measurement of line widths of CO of planetary interest at low temperatures, J. Quant. Spectrosc. Radiat. Transfer, 15(2), 191–196, doi:10.1016/0022-4073(75)90017-5.
- Vigasin, A. A. (1998), Mass-action law for highly excited dimers, Chem. Phys. Lett., 290, 495–501.
- Wada, A., H. Kanamori, and S. Iwata (1998), Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion, J. Chem. Phys., 109(21), 9434–9438.
- Watson, J. K. G. (2008), Hönl–London factors for multiplet transitions in Hund's case a or b, J. Molec. Struct., 252(1), 5–8, doi:10.1016/j.jms.2008.04.014.
- Welch, W. M. and M. Mizushima (1972), Molecular Parameters of the O2 Molecule, Phys. Rev., 5(6), 2692–2695.
- Wilheit, T. T. and A. H. Barrett (1970), Microwave Spectrum of Molecular Oxygen, Phys. Rev., 1(1), 213–215.
- Wormer, P. E. S. and A. van der Avoird (2000), Intermolecular Potentials, Internal Motions, and Spectra of van der Waals and Hydrogen-Bonded Complexes, Chem. Rev., 100, 4109–4143.
- Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling method, Rev. Sci. Inst., 67(7), 2496–2501.
- Zimmerer, P. W. and M. Mizushima (1961), Precise Measurements of the Microwave Absorption Frequencies of the Oxygen Molecule and the Velocity of Light, Phys. Rev., 121(1), 152–155.
- Zou, Q. and P. Varanasi (2003), Laboratory measurements of the spectroscopic line parameters of water vapor in the 610–2100 and 3000–4050 cm-1 regions at lower-tropospheric temperatures, J. Quant. Spectrosc. Radiat. Transfer.