| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:intercomparison

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Bhawar, R., P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, D. Müller, S. Pal, M. Wirth, and V. Wulfmeyer (2011), The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systemsQ. J. R. Meteorol. Soc., 137, 325–348, doi:10.1002/qj.697.
  2. Bock, O., M.-N. Bouin, A. Walpersdorf, J. P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over AfricaQ. J. R. Meteorol. Soc., 133, 2011–2027, doi:10.1002/qj.185.
  3. Bokoye, A. I., A. Royer, N. T. O'Neill, P. Cliche, L. J. B. McArthur, P. M. Teillet, G. Fedosejevs, and J.-M. Thériault (2003), Multisensor analysis of integrated atmospheric water vapor over Canada and AlaskaJ. Geophys. Res., 108(D15), 4480, doi:10.1029/2002JD002721.
  4. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organizationGeosci. Model Dev., 9(5), 1937–1958, doi:10.5194/gmd-9-1937-2016.
  5. Illingworth, A. J., R. J. Hogan, E. J. O'Connor, D. Bouniol, J. Delanoë, J. Pelon, A. Protat, M. E. Brooks, N. Gaussiat, D. R. Wilson, D. P. Donovan, H. Klein Baltink, G-J. van Zadelhoff, J. D. Eastment, J. W. F. Goddard, C. L. Wrench, M. Haeffelin, O. A. Krasnov, H. W. J. Russchenberg, J-M. Piriou, F. Vinit, A. Seifert, A. M. Tompkins, and U. Willén (2007), Cloudnet — Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based ObservationsBull. Amer. Met. Soc., 88(6), 883–898, doi:10.1175/BAMS-88-6-883.
  6. Johnsen, K.-P., J. Miao, and S. Q. Kidder (2004), Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B dataPhys. Chem. Earth, 29, 251–255, doi:10.1016/j.pce.2004.01.005.
  7. Li, Z., J.-P. Muller, and P. Cross (2003), Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurementsJ. Geophys. Res., 108(D20), 4651, doi:10.1029/2003JD003372.
  8. Martin, L., C. Mätzler, T. J. Hewison, and D. Ruffieux (2006), Intercomparison of integrated water vapour measurementsMet. Zeit., 15(1), 57–64, doi:10.1127/0941-2948/2006/0098.
  9. Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham (2001), Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBIJ. Atmos. Oceanic Technol., 80, 830–850, doi:10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.
  10. Ning, T., R. Haas, G. Elgered, and U. Willén (2012), Multi-technique comparisons of 10 years of wet delay estimates on the west coast of SwedenJ. Geodesy, 86(7), 565–575, doi:10.1007/s00190-011-0527-2.
  11. Ohtani, R. and I. Naito (2000), Comparisons of GPS-derived precipitable water vapors with radiosonde observations in JapanJ. Geophys. Res., 105(D22), 26917–26929, doi:10.1029/2000JD900362.
  12. Oreopoulos, L., E. Mlawer, J. Delamere, T. Shippert, J. Cole, B. Fomin, M. Iacono, Z. Jin, J. Li, J. Manners, P. Räisänen, F. Rose, Y. Zhang, M. J. Wilson, and W. B. Rossow (2012), The Continual Intercomparison of Radiation Codes: Results from Phase IJ. Geophys. Res., 117(D06118), doi:10.1029/2011JD016821.
  13. Palm, M., C. Melsheimer, S. Noël, S. Heise, J. Notholt, J. Burrows, and O. Schrems (2010), Integrated water vapor above Ny Ålesund, Spitsbergen: a multisensor intercomparisonAtmos. Chem. Phys., 10, 1215–1226, doi:10.5194/acp-10-1215-2010.
  14. Sapucci, L. F., L. A. T. Machado, J. F. G. Monico, and A. Plana-Fattori (2007), Intercomparison of integrated water vapor estimates from multisensors in the Amazonian regionJ. Atmos. Oceanic Technol., 24, 1880–1894, doi:10.1175/JTECH2090.1.
  15. Schneider, M., P. M. Romero, F. Hase, T. Blumenstock, E. Cuevas, and R. Ramos (2010), Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92Atmos. Meas. Tech., 3, 323–338, doi:10.5194/amt-3-323-2010.
  16. Sierk, B., B. Bürki, H. Becker-Ross, R. Neubert, L. P. Kruse, and H.-G. Kahle (1997), Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurementsJ. Geophys. Res., 102(B10), 22411–22424.