Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:clouds

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcingNature, 432(7020), 1014–1017, doi:10.1038/nature03174.
  2. Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley (1998), Discriminating Clear-sky from Clouds with MODISJ. Geophys. Res., 103(D24), 32141–32157.
  3. Allan, R. P. (2011), Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphereMet. Appl., 18, 324–333, doi:10.1002/met.285.
  4. Altshuler, E. E. (1989), Cloud Attenuation at Millimeter WavelengthsIEEE Trans. Antennas Propag., 37(11), 1473–1479.
  5. Ananasso, C., R. Santoleri, S. Marullo, and D'Ortenzio. F. (2002), Remote sensing of cloud cover in the Arctic region from AVHRR data during the ARTIST experimentInt. J. Remote Sensing, 1–20.
  6. Astin, I. (1997), A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverageSur. Geophy., 18, 384–403.
  7. Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff (1995), Radar and Radiation Properties of Ice CloudsJ. Appl. Meteorol., 34, 2329–2345.
  8. Atreya, S. K., A. S. Wong, K. H. Baines, M. H. Wong, and T. C. Owen (2005), Jupiter's ammonia clouds—localized or ubiquitous?Planet. Space Sci., 53(5), 498–507, doi:10.1016/j.pss.2004.04.002.
  9. d' Auria, G., F. S. Marzano, N. Pierdicca, and R. P. Nossai (1998), Remotely sensing cloud properties from microwave radiometric observations by using a modeled clouds databaseRadio Sci., 33(2), 369–392.
  10. Austin, R. T. and G. L. Stephens (2001), Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formulationJ. Geophys. Res., 106(D22), 28,233–28,242.
  11. Baker, B. A. and R. P. Lawson (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave cloudsJ. Atmos. Sci., 63("12"), 3160–3185.
  12. Baker, B. (1991), On the Nucleation of Ice in Highly Supersaturated Regions of CloudsJ. Atmos. Sci., 48(16), 1904–1907.
  13. Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurementsQ. J. R. Meteorol. Soc., 130, 1–16.
  14. Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forwardAtmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
  15. Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen (2014), A self-consistent scattering model for cirrus. II: The high and low frequenciesQ. J. R. Meteorol. Soc., 140(680), 1039–1057, doi:10.1002/qj.2193.
  16. Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan (2011), A 3D cloud-construction algorithm for the EarthCARE satellite missionQ. J. R. Meteorol. Soc., 137(657), 1042–1058, doi:10.1002/qj.824.
  17. Barstow, J. K., C. C. C. Tsang, C. F. Wilson, P. G. J. Irwin, F. W. Taylor, K. McGouldrick, P. Drossart, G. Piccioni, and S. Tellmann (2012), Models of the global cloud structure on Venus derived from Venus Express observationsIcarus, 217, 542–560, doi:10.1016/j.icarus.2011.05.018.
  18. Battaglia, A., C. Simmer, and H. Czekala (2006), Three-dimensional effects in polarization signatures as observed from precipitating clouds by low frequency ground-based microwave radiometersAtmos. Chem. Phys., 6, 4383–4394, doi:10.5194/acp-6-4383-2006.
  19. Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau (2006), Implementation of 1D+4D-Var Assimilation of Precipitation Affected Microwave Radiances at ECMWF, Part I: 1D-Var, European Centre for Medium-Range Weather Forecasts ECMWF,Technical Memorandum.
  20. Bauer, P., P. Lopez, D. Salmond, A. Benedetti, S. Saarinen, and M. Bonazzola (2006), Implementation of 1D+4D-Var Assimilation of Precipitation Affected Microwave Radiances at ECMWF, Part II: 4D-Var, European Centre for Medium-Range Weather Forecasts ECMWF,Technical Memorandum.
  21. Bauer, P., E. Moreau, F. Chevallier, and U. O'Keeffe (2006), Multiple-scattering microwave radiative transfer for data assimilation applications, SAF research report ,Technical Memorandum.
  22. Bauer, P., A. J. Geer, P. Lopez, and D. Salmond (2010), Direct 4D-Var assimilation of all-sky radiances. Part I: ImplementationQ. J. R. Meteorol. Soc., 136(652), 1868–1885, doi:10.1002/qj.659.
  23. Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and modelsJ. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
  24. Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phaseJ. Geophys. Res., 105, 11781–11792, doi:10.1029/1999JD901090.
  25. Baum, B. A. and J. D. Spinhirne (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlapJ. Geophys. Res., 105, 11793–11804, doi:10.1029/1999JD901091.
  26. Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D.King, Y.-X. Hu, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband ModelsJ. Appl. Meteorol., 44, 1896–1911.
  27. Baum, B. A., B. A. Wielicki, and P. Minnis ans L. Parker (1992), Cloud-Property retrieval Using Merged HIRS and AVHRR DataJ. Appl. Meteorol., 31, 351–369.
  28. Baumgardner, D. and B. E. Gandrud (1998), A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloudGeophys. Res. Lett., 25(8), 1129–1132.
  29. Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approachJ. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
  30. Benson, J. L., D. M. Kass, and A. Kleinböhl (2011), Mars' north polar hood as observed by the Mars Climate SounderJ. Geophys. Res., 116, E03008, doi:10.1029/2010JE003693.
  31. Berthier, S., P. Chazette, J. Pelon, and B. Baum (2008), Comparison of cloud statistics from spaceborne lidar systemsAtmos. Chem. Phys., 8, 6965–6977, doi:10.5194/acp-8-6965-2008.
  32. Berton, R. P. H. (1999), Statistical distributions of water content and size for clouds above EuropeAnn. Geophys., 385–397.
  33. Bézard, B., J. P. Balatueau, and A. Marten (1983), Study of the Deep Cloud Structure in the Equatorial Region of Jupiter from Voyager Infrared and Visible DataIcarus, 54(3), 434–455.
  34. Bizzarri, B., et al. (1999), Report of the Pre-Phase a industrial Study for a Cloud and Radiation Monitoring Satellite (Clouds), EU.
  35. Boers, R., J. B. Jensen, and P. B. Krummel (1998), Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differencesQ. J. R. Meteorol. Soc., 124, 151–168.
  36. Bony, S., B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G. Shepherd, S. C. Sherwood, A. P. Siebesma, A. H. Sobel, M. Watanabe, and M. J. Webb (2015), Clouds, circulation and climate sensitivityNature Geosci., 8(4), 261–268, doi:10.1038/NGEO2398.
  37. Bony, S., B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros (2016), Thermodynamic control of anvil cloud amountProc. Nat. Aca. Sci., doi:10.1073/pnas.1601472113.
  38. Bony, S., B. Stevens, F. Ament, S. Bigorre, P. Chazette, S. Crewell, J. Delanoe, K. Emanuel, D. Farrell, C. Flamant, S. Gross, L. Hirsch, J. Karstensen, B. Mayer, L. Nuijens, J. H. Ruppert Jr., I. Sandu, P. Siebesma, S. Speich, F. Szczap, J. Totems, R. Vogel, M. Wendisch, and M. Wirth (2017), EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and CirculationSur. Geophy., 38(6), 1529–1568, doi:10.1007/s10712-017-9428-0.
  39. Bosisio, A. V. and C. Mallet (1998), Influence of cloud temperature on brightness temperature and consequences for water retrievalRadio Sci., 33(4), 929–939.
  40. Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi (2008), Parameterization of single scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixturesGeophys. Res. Lett., 35(16), 1–5, doi:10.1029/2008GL034695.
  41. Breon, F.-M. and S. Colzy (2000), Global distribution of Cloud Droplet Effective Radius from POLDER polarization measurementsGeophys. Res. Lett., 27(24), 4065–4068.
  42. Breon, F.-M. and B. Dubrulle (2004), Horizontally Oriented Plates in CloudsJ. Atmos. Sci., 61, 2888–2898.
  43. Brown, P. R. A. and H. A. Swann (1997), Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar dataQ. J. R. Meteorol. Soc., 123, 2245–2275.
  44. Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas (2011), Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRIAtmos. Chem. Phys., 11, 5603–5624, doi:10.5194/acp-11-5603-2011.
  45. Burnet, F. and J. L. Brenguier (1999), Validation of Droplet Spectra and Liquid Water Content MeasurementsPhys. Chem. Earth, 24(3), 249–254.
  46. Cahalan, R. F., L. Oreopoulos, A. Marshak, K. F. Evans, A. B. Davis, R. Pincus, K. H. Yetzer, B. Mayer, R. Davies, T. P. Ackerman, H. W. Barker, E. E. Clothiaux, R. G. Ellingson, M. J. Garay, E. K. Assianov, S. Kinne, A. Macke, W. O'Hirok, P. T. Partain, S. M. Prigarin, A. N. Rublev, G. L. Stephens, F. Szczap, E. E. Takara, T. Várnai, G. Wen, and T. B. Zhuravleva (2005), The I3RC. Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy AtmospheresBull. Amer. Met. Soc., 86(9), 1275–1293, doi:10.1175/BAMS-86-9-1275.
  47. Cantrell, W. and A. Heymsfield (2005), Production of Ice in Tropospheric CloudsBull. Amer. Met. Soc., 795–807.
  48. Castanet, L., J. Lemorton, T. Konefal, A. K. Shukla, P. A. Watson, and C. L. Wrench (2001), Comparison of various methods for combining propagation effects and predicting loss in low-availability systems in the 20–50 GHz frequency rangeInt. J. Sat. Comm., 19, 317–334.
  49. Chaboureau, J., N. Söhne, J. Pinty, I. Meirold-Mautner, E. Defer, C. Prigent, J. R. Pardo, M. Mech, and S. Crewell (2008), A midlatitude precipitating cloud database validated with satellite observationsJ. Appl. Meteorol. Clim., 47(5), 1337–1353.
  50. Chae, J. H., D. L. Wu, W. G. Read, and S. C. Sherwood (2011), The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL)Atmos. Chem. Phys., 11, 3811–3821, doi:10.5194/acp-11-3811-2011.
  51. Chambers, L. H. (1997), Computation of the Effects of Inhomogeneous Clouds on Retrieval of Remotely Sensed Properties, NASA Langley Research Center.
  52. Chen, T., W. B. Rossow, and Y. Zhang (2000), Radiative Effects of Cloud-Type VariationsJ. Climate, 13(1), 264–286.
  53. Chen, R. and C. Cao (2012), Physical analysis and recalibration of MetOp HIRS using IASI for cloud studiesJ. Geophys. Res., 117, D03103, doi:10.1029/2011JD016427.
  54. Chen, M., R. B. Rood, and W. G. Read (1999), Seasonal variations of upper tropospheric water vapor and high clouds observed from satellitesJ. Geophys. Res., 104(D6), 6193–6197, doi:10.1029/1998JD200124.
  55. Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant (2001), Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1J. Geophys. Res., 106(D8), 7955–7966, doi:10.1029/2000JD900285.
  56. Chepfer, H. and V. Noel (2009), A tropical "NAT-like'' belt observed from spaceGeophys. Res. Lett., 36, L03813, doi:10.1029/2008GL036289.
  57. Chepfer, H., G. Brogniez, and Y. Fouquart (1998), Cirrus coulds' microphysical properties deduced from POLDER observationsJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 375–390.
  58. Chepfer, H., G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant (1999), Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1J. Quant. Spectrosc. Radiat. Transfer, 63, 521–543.
  59. Chernykh, I. V., O. A. Alduchov, and R. E. Eskridge (2001), Trends in Low and High Clouds Boundaries and Errors in Height Determination of Cloud BoundariesBull. Amer. Met. Soc., 82(9), 1941–1947.
  60. Chylek, P., P. Damiano, N. Kalyaniwalla, and E. P. Shettle (1995), Radiative properties of water clouds: simple approximationsAtmos. Res., 35, 139–156.
  61. Clancy, R. T., M. J. Wolff, and P. R. Christensen (2003), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitudeJ. Geophys. Res., 108(E9), 5098, doi:doi:10.1029/2003JE002058.
  62. Claud, C., B. Alhammoud, B. M. Funatsu, C. Lebeaupin Brossier, J.-P. Chaboureau, K. Béranger, and P. Drobinski (2012), A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertaintiesNat. Hazards and Earth Syst. Sci, 12, 785–798, doi:10.5194/nhess-12-785-2012.
  63. Colaprete, A., R. M. Haberle, and O. B. Toon (2003), Formation of convective carbon dioxide clouds near the south pole of MarsJ. Geophys. Res., 108(E7), doi:10.1029/2003JE002053.
  64. Comstock, J. M. and C. Jakob (2004), Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru IslandGeophys. Res. Lett., 31.
  65. Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus cloudsJ. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
  66. Considine, G. and J. A. Curry (1996), A statistical model of drop-size spectra for stratocumulus cloudsQ. J. R. Meteorol. Soc., 122, 611–634.
  67. Considine, G., J. A. Curry, and B. Wielicki (1997), Modeling cloud fraction and horizontal variability in marine boundary layer cloudsJ. Geophys. Res., 102(D12), 13,517–13,525.
  68. Coppin, D. and S. Bony (2015), Physical mechanisms controlling the initiation of convective self-aggregation in a General Circulation ModelJ. Adv. Model. Earth Syst., 7(4), 2060–2078, doi:10.1002/2015MS000571.
  69. Corti, T., B. P. Luo, Q. Fu, H. Voemel, and T. Peter (2006), The impact of cirrus clouds on tropical troposphere-to-stratosphere transportAtmos. Chem. Phys., 6, 2539–2547, doi:10.5194/acp-6-2539-2006.
  70. Costa, A. A., G. P. Almeida, and A. J. C. da Costa Sampaio (2000), A bin-microphysics cloud model with high-order, positive-definite advectionAtmos. Res., 55, 225–255.
  71. Costa, A. A., C. J. de Oliveira, J. C. P. de Oliveira, and A. J. C. da Costa Sampaio (2000), Microphysical observations of warm cumulus clouds in Ceara, BrazilAtmos. Res., 54, 167–199.
  72. Crewell, S., H. Bloemink, A. Feijt, S. G. Garcia, D. Jolivet, O. A. Krasnov, A. Van Lammeren, U. Loehnert, E. Van Meijgaard, J. Meywerk, M. Quante, and K. Pfeilsticker (2004), The BALTEX-BRIDGE campaign - An Integrated Approach for a Better Understanding of CloudsBull. Amer. Met. Soc., 85(10), 1565–1584, doi:10.1175/BAMS-85-10-1565.
  73. Cronin, T. W. and A. A. Wing (2017), Clouds, Circulation, and Climate Sensitivity in a Radiative-Convective Equilibrium Channel ModelJ. Adv. Model. Earth Syst., 9(8), 2883–2905, doi:10.1002/2017MS001111.
  74. Crueger, T. and B. Stevens (2015), The effect of atmospheric radiative heating by clouds on the Madden-Julian OscillationJ. Adv. Model. Earth Syst., 7(2), 854–864, doi:10.1002/2015MS000434.
  75. Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Max-Planck-Institute for Chemistry Department of Atmospheric Chemistry and University of California.
  76. Curry, J. A., et al. (2000), FIRE Arctic Clouds ExperimentBull. Amer. Met. Soc., 81(1).
  77. Czekala, H. and P. Bauer (1998), Clouds and Precipitation, xx.
  78. Davies, O. T., R. G. Howell, and P. A. Watson (1998), Measurement and Modelling of Cloud Attenuation at Millimetre Wavelengths, University of Bath.
  79. Deeter, M. N. and K. F. Evans (2000), A Novel Ice-Cloud Retrieval Algorithm Based on the Millimeter-Wave Imaging Radiometer (MIR) 150- and 220-GHz ChannelsJ. Appl. Meteorol., 39, 623–633.
  80. Deirmendjian, D. (1963), Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements, United States Air Force, RAND, R-422-PR.
  81. Del Genio, A. D., A. B. Wolf, and G. G. Mace (2001), Observed and Simulated Cirrus Cloud Properties at the SGP CART Site, Goddard Institute for Space Studies, University of Utah, Eleventh ARM Science Team Meeting Proceedings.
  82. Dessler, A. E. (2010), A Determination of the Cloud Feedback from Climate Variations over the Past DecadeScience, 330(6010), 1523–1527, doi:10.1126/science.1192546.
  83. Devasthale, A., O. Krueger, and H. Grassl (2005), Change in Cloud-Top Temperatures Over EuropeIEEE Geosci. Remote Sens. Let.
  84. Di Michele, S. and P. Bauer (2005), Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation, European Centre for Medium-Range Weather Forecasts ECMWF, Technical Memorandum.
  85. Dong, X., P. Minnis, T. P. Ackermann, E. E. Clothiaux, G. G. Mace, C. N. Long, and J. C. Liljegren (2000), A 25-month database of stratus cloud properties generated from gound-based measurements and the Atmospheric Radiation Measurement Southern Great Plains SiteJ. Geophys. Res., 105(D4), 4529–4537.
  86. Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Stroem, and K.-N. Liou (1997), Large-scale ice clouds in the GFDL SKYHI general circulation modelJ. Geophys. Res., 102, 21745–21768.
  87. Dowling, D. R. and L. F. Radke (1990), A summary of the physical properties of cirrus cloudsJ. Appl. Meteorol., 29, 970–978.
  88. Dusek, U., G. P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, and and M. O. Andreae S. Borrmann (2006), Size Matters More Than Chemistry for Cloud-Nuceating Ability of Aerosol ParticlesScience, 312, 1375–1378.
  89. Ebert, E. E. and J. A. Curry (1992), A Parameterization of Ice Cloud Optical Properties for Climate ModelsJ. Geophys. Res., 97(D4), 3831–3836.
  90. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
  91. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
  92. English, S. J., J. R. Eyre, and J. A. Smith (1999), A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather predictionQ. J. R. Meteorol. Soc., 125(559), 2359–2378.
  93. ESA (2001), The Five Candidate Earth Explorer Core Missions - EarthCARE- Earth Clouds, Aerosols and Radiation Explorer, European Space Agency Agence spatiale europeenne.
  94. Evans, K. F., S. J. Walter, A. J. Heymsfield, and G. M. McFarquhar (2002), Submillimeter-Wave Cloud Ice Radiometer: Simulations of retrieval algorithm performanceJ. Geophys. Res., 107(D3), doi:10.1029/2001JD000709.
  95. Evans, K. F. and W. J. Wiscombe (2004), An algorithm for generating stochastic cloud fields from radar profile statisticsAtmos. Res., 72, 263–289.
  96. Evans, K. F. (2004), Submillimeter-wave Ice Cloud Radiometry Channel Selection Study, Univerity of Colorado, Boulder.
  97. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering PropertiesJ. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
  98. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice CloudsJ. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
  99. Evans, K. F., S. J. Walter, and W. R. McGrath (1996), Submillimeter-Wave Radiometric Sensing of Cirrus Clouds Properties: The JPL Prototype Cloud Ice Radiometer, University of Colorado.
  100. Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter (1998), Modeling of Submillimeter Passive Remote Sensing of Cirrus CloudsJ. Appl. Meteorol., 37, 184–205.
  101. Evans, K. F., A. H., I. G. Nolt, and B. T. Marshall (1999), The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave SpectrometerJ. Appl. Meteorol., 38, 514–525.
  102. Evans, K. F. and T. C. Benner (1999), Three-Dimensional Broadband Solar Radiative Transfer in Small Tropical Cumulus Fields Derived from High-Resolution Imagery, University of Colorado.
  103. Evans, K. F. (1111), The Spherical Harmonic Discrete Ordinate Method: Application to 3D Radiatve Transfer in Boundary Layer Clouds, University of Colorado.
  104. Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain (2009), Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysicsJ. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
  105. Fasullo, J. T. and K. E. Trenberth (2012), A Less Cloudy Future: The Role of Subtropical Subsidence in Climate SensitivityScience, 338(6108), 792–794, doi:10.1126/science.1227465.
  106. Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist (1996), An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I MeasurementsBull. Amer. Met. Soc., 77, 891–906.
  107. Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton (2005), Parametrization of Ice Particle Size Distributions For Mid-latitude Stratiform CloudQ. J. R. Meteorol. Soc., 131, 1997–2019.
  108. Flerchinger, G. N., W. Xaio, D. Marks, T. J. Sauer, and Q. Yu (2009), Comparison of algorithms for incoming atmospheric long-wave radiationWat. Res. Res., 45, W03423, doi:10.1029/2008WR007394.
  109. Folkins, I. and R. V. Martin (2004), The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and OzoneJ. Atmos. Sci., 62, 1560–1573.
  110. Fowler, L. D., D. A. Randall, and S. A. Rutledge (1996), Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part I: Model Description and Simulated Microphysical ProcessesJ. Climate, 9(3), 489–529.
  111. Francis, P. N., A. Jones, R. W. Sauners, K. P. Shine, A. Slingo, and Z. Sun (1994), An observational and theoretical study of the radiative properties of cirrus: Some results from ICE'89Q. J. R. Meteorol. Soc., 120, 809–848.
  112. Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang (2008), Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5J. Atmos. Oceanic Technol., 25, 1057–1072, doi:10.1175/2008JTECHA1052.1.
  113. Frisch, A. S., D. H. Lenshow, S. D. Mayer, C. W. Fairall, and J. B. Sneider (2001), Island Based Radar and Microwave Radiometer Measurements of Stratus Cloud Parameters During the Atlantic Stratocumulus Transition Experiment (ASTEX), CIRA Colorado State University, NOAA Environmental Technology Laboratory, National Center for Atmospheric Research, Eleventh ARM Science Team Meeting Proceedings.
  114. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Sneider (1998), On cloud radar and microwave radiometer measurements of stratus cloud liquid water profilesJ. Geophys. Res., 103(D18), 23,195–23,197.
  115. Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu (1992), Cirrus-cloud thermostat for tropical sea surface temperatures tested using satellite dataNature, 358, 394–397.
  116. Fu, Q. and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus CloudsJ. Atmos. Sci., 50, 2008–2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
  117. Fu, Q. and Y. Takano (1994), On the limitation of using asymmetry factor for radiative transfer in cirrus cloudsAtmos. Res., 34, 299–308.
  118. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
  119. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
  120. Fuhrhop, R. (1997), MWMOD User Manual, Institute fuer Meereskunde.
  121. Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
  122. Gasiewski, A. J. (1992), Numerical Sensitivity Analysis of Passive EHF and SMMW Channels to Tropospheric Water Vapor, Clouds, and PrecipitationIEEE T. Geosci. Remote, 30(5), 859–870, doi:10.1109/36.175320.
  123. Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experimentJ. Geophys. Res., 109, doi:10.1029/2004JD004803.
  124. Geer, A. J., P. Bauer, and C. W. O'Dell (2009), A Revised Cloud Overlap Scheme for Fast Microwave Radiative Transfer in Rain and CloudJ. Appl. Meteorol. Clim., 48(11), 2257–2270, doi:10.1175/2009JAMC2170.1.
  125. Gerber, H., C. H. Twohy, B. Gandrud, A. J. Heymsfield, G. M. McFarquhar, P. J. DeMott, and D. C. Rogers (1998), Measurements of wave-cloud microphysical properties with two new aircraft probesGeophys. Res. Lett., 25(8), 1117–1120.
  126. Goldhirsch, J. (1975), Prediction Methods for Rain Attenuation Statistics at Variable Path Angles and Carrier Frequencies Between 13 and 100 GHzIEEE Trans. Antennas Propag., AP-23(6), 786–791, doi:10.1109/TAP.1975.1141179.
  127. Gordon, N. D. and J. R. Norris (2010), Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivityAtmos. Chem. Phys., 10, 6435–6459, doi:10.5194/acp-10-6435-2010.
  128. Greenwald, T. J. and S. A. Christopher (2002), Effect of cold clouds on satellite measurements near 183 GHzJ. Geophys. Res., 107, D13, doi:10.1029/2000JD000258.
  129. Greenwald, T., R. Bennartz, A. Heidinger, and C. O'Dell (xx), Radiative Transfer Model Development for Operational Global Assimilation of Passive Microwave Radiances in Precipitation Clouds, University of Wisconsin-Madison, NOAA/NESDIS.
  130. Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
  131. Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers (2001), Determination of precipitable water and cloud liquid water over ocean from the NOAA 15 advanced microwave sounding unitJ. Geophys. Res., 106(D3), 2943–2953.
  132. Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso (2003), Parameterization of Cloud-Radiation Processes in the UCLA General Circulation ModelJ. Climate, 16, 3357–3370.
  133. Hahn, C. J., W. B. Rossow, and S. G. Warren (2001), ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface ObservationsJ. Climate, 14, 11–28.
  134. Hahn, C. J. and S. G. Warren (2007), A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide, Climate change research division, Office of biological and environmental research, U.S. department of energy, This is a web distributed cloud atlas.
  135. Hamada, A., N. Nishi, S. Iwasaki, Y. Ohno, H. Kumagai, and H. Okamoto (2008), Cloud Type and Top Height Estimation for Tropical Upper-Tropospheric Clouds Using GMS-5 Split-Window Measurements Combined with Cloud Radar MeasurementsSci. Onl. Let. Atm., 4, 57–60, doi:10.2151/sola.2008-015.
  136. Han, Q., W. B. Rossow, J. Chou, and R. M. Welch (1998), Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCPJ. Climate, 11, 1516–1528.
  137. Harries, J. E. (1996), The greenhouse Earth: A view from SpaceJ. Quant. Spectrosc. Radiat. Transfer, 122(532), 799–818.
  138. Harrop, B. E. and D. L. Hartmann (2015), The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm PoolJ. Climate, 28(21), 8620–8633, doi:10.1175/JCLI-D-15-0151.1.
  139. Harrop, B. E. and D. L Hartmann (2016), The role of cloud radiative heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effectJ. Adv. Model. Earth Syst., 8, 1391–1410, doi:10.1002/2016MS000670.
  140. Harshvardhan, R. C. E. Jr. (1995), Simple parameterizations of the radiative properties of cloud layers: a reviewAtmos. Res., 35, 113–125.
  141. Hartmann, D. L. and K. Larson (2002), An important constraint on tropical cloud - climate feedbackGeophys. Res. Lett., 29(20), 12-1–12-4, doi:10.1029/2002GL015835.
  142. Hartmann, D. L. (2016), Tropical anvil clouds and climate sensitivityProc. Nat. Aca. Sci., 113(32), 8897–8899, doi:10.1073/pnas.1610455113.
  143. Hartmann, D. L. and D. A. Short (1980), On the use of earth radiation budget statistics for studies of clouds and climateJ. Atmos. Sci., 37, 1233–1249.
  144. Hartmann, D. and D. Doelling (1991), On the Net Radiative Effectiveness of CloudsJ. Geophys. Res., 96(D1), 869–891.
  145. Hatzianastassiou, N., W. Wobrock, and A. I. Flossmann (1997), The role of droplet spectra for cloud radiative propertiesQ. J. R. Meteorol. Soc., 123, 2215–2230.
  146. Havemann, S. (2000), Die Modellierung atmosphaerischer Eiskristalle und ihre Anwendung im Strahlungstransport, Christian-Albrechts-Universitaet.
  147. Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
  148. Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgetsJ. Atmos. Sci., 37, 1251–1261.
  149. Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The software package OPACBull. Amer. Met. Soc., 79(5), 831–844.
  150. Heymsfield, A. J., A. Bansemer, P.R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns.J. Atmos. Sci., 59, 3457–3491.
  151. Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
  152. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
  153. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal VelocitiesJ. Atmos. Sci., 60, 2592–2611.
  154. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate modelsJ. Atmos. Sci., 60, 2592–2611.
  155. Heymsfield, A. J., Z. Wang, and S. Matrosov (2005), Improved Radar Ice Water Content Retrieval Algorithms Using Coincident Microphysical and Radar MeasurementsJ. Appl. Meteorol., 44, 1391–1412, doi:10.1175/JAM2282.1.
  156. Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft ProbesJ. Atmos. Oceanic Technol., 23, 361–380.
  157. Heymsfield, A. J. (1987), Cloud PhysicsEncyclopedia of Physical Science and Technology, 2, 833–849.
  158. Heymsfield, A. J. and L. J. Donner (1990), A scheme for parameterizing ice cloud water content in general circulation modelsJ. Atmos. Sci., 47, 1865–1877.
  159. Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE IIJ. Atmos. Sci., 52, 4302–4326.
  160. Hobbs, P. V., A. L. Rangno, T. Uttal, and M. Shupe (2001), Airborne studies of cloud structures over the Artic Ocean and comparisons with retrievals from ship-based remote sensing measurementsJ. Geophys. Res., 106(D14), 15029–15044.
  161. Hobbs, P. V. (ed.) (1993), Aerosol-Cloud-Climate Interactions, , Vol. 54, Academic Press.
  162. Hogan, R. J., A. J. Illingworth, and H. Sauvageot (1999), Cloud Characteristics from Dual Wavelength Millimetre-Wave Radar, Department of Meterology, University of Reading.
  163. Holton, J. D., et al. (2003), Cloud MicrophysicsEncyclopedia of Atm. Sci., 2, 459–483.
  164. Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum (2008), Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOPJ. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.
  165. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Sensitivity of microwave brightness temperatures to hydrometeors in tropical deep convective cloud system at 89-190 GHz channels measurementsRadio Sci., 40, RS4003, doi:10.1029/2004RS003129.
  166. Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance MeasurementsIEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
  167. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurementsJ. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
  168. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Potential to estimate the canting angle of tilted structures in clouds from microwave radiances around 183 GHzIEEE Geosci. Remote Sens. Let., 2(1), doi:10.1109/LGRS.2004.840612.
  169. Hong, G., G. Heygster, and K. Kunzi (2006), Effect of Cirrus Clouds on the Diurnal Cycle of Tropical Deep Convective CloudsJ. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.
  170. Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick (2007), High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the TropicsJ. Appl. Meteorol. Clim., 46, doi:10.1175/2007JAMC1583.1.
  171. Hu, Y. and K. Stamnes (2000), Climate sensitivity to cloud optical propertiesTellus, 52B, 81–93.
  172. Illingworth, A. J., R. J. Hogan, E. J. O'Connor, D. Bouniol, J. Delanoë, J. Pelon, A. Protat, M. E. Brooks, N. Gaussiat, D. R. Wilson, D. P. Donovan, H. Klein Baltink, G-J. van Zadelhoff, J. D. Eastment, J. W. F. Goddard, C. L. Wrench, M. Haeffelin, O. A. Krasnov, H. W. J. Russchenberg, J-M. Piriou, F. Vinit, A. Seifert, A. M. Tompkins, and U. Willén (2007), Cloudnet — Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based ObservationsBull. Amer. Met. Soc., 88(6), 883–898, doi:10.1175/BAMS-88-6-883.
  173. Inoue, T. (1987), A Cloud Type Classification With NOAA 7 Split-Window MeasurementsJ. Geophys. Res., 92(D4), 3991–4000.
  174. Ivanov, A. B. and D. O. Muhleman (2001), Cloud Reflection Observations: Results from the Mars Orbiter Laser AltimeterIcarus, 154, 190–206, doi:10.1006/icar.2001.6686.
  175. Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus CloudsAtmos. Res., 59–60, 89–113.
  176. Ivanova, K., M. Ausloos, T. Ackermann, H. Shirer, and E. Clothiaux (2001), Some Statistical Physics Approaches for Trends and Predictions in Meteorology, Pennsylvania State University, University Liege, Pacific Northwest National Laboratory.
  177. Jakob, C. and G. Tselioudis (2003), Objective identification of cloud regimes in the Tropical Western PacificGeophys. Res. Lett., 30(21), doi:10.1029/2003GL018367.
  178. Jakob, C. and S. A. Klein (1999), The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF modelQ. J. R. Meteorol. Soc., 125(555), 941–965, doi:10.1002/qj.49712555510.
  179. Jakob, C. (1111), Cloud parametrization- Progress, Problems and Prospects, European Center for Medium-Range Weather Forecasts.
  180. James, E. P., O. B. Toon, and G. Schubert (1997), A Numerical Microphysical Model of the Condensational Venus CloudIcarus, 129, 147–171, doi:10.1006/icar.1997.5763.
  181. Jensen, E. J., O. W. Toon, S. A. Vay, J. Ovarlez, R. May, T. P. Bui, C. H. Twohy, B. W. Gandrud, R. F. Pueschel, and U. Schumann (2001), Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formationJ. Geophys. Res., 106(D15), 17,253–17,266.
  182. Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observationsJ. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
  183. Jin, Y., W. B. Rossow, and D. P. Wylie (1996), Comparison of the climatologies of high-level clouds from HIRS and the ISCCPJ. Climate, 9, 2850–2879.
  184. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol sizeJ. Geophys. Res., 107, doi:10.1029/2001JD001429.
  185. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosolsJ. Geophys. Res., 107, doi:10.1029/2001JD000470.
  186. Kärcher, B. (2002), Properties of subvisible cirrus clouds formed by homogeneous freezingAtmos. Chem. Phys., 2, 161–170, doi:10.5194/acp-2-161-2002.
  187. Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezingJ. Geophys. Res., 108, doi:10.1029/2002JD003220.
  188. Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formationAtmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
  189. Kärcher, B. (2004), Cirrus clouds in the tropical tropopause layer: Role of heteorogeneous ice nucleiGeophys. Res. Lett., 31.
  190. Kärcher, B. (2005), Supersaturation, dehydration, and denitrification in Arctic cirrusAtmos. Chem. Phys., 5, 1757–1772, doi:10.5194/acp-5-1757-2005.
  191. Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic CirrusJ. Climate, 17, 4856–4870.
  192. Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vaporJ. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
  193. Kahn, B. H., E. Fishbein, S. L. Nasiri, A. Eldering, E. J. Fetzer, M. J. Garay, and S.-Y. Lee (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievalsJ. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.
  194. Kahn, B. H., M. T. Chahine, G. L. Stephens, G. G. Mace, R. T. Marchand, Z. Wang, C. D. Barnet, A. Eldering, R. E. Holz, R. E. Kuehn, and D. G. Vane (2008), Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amountAtmos. Chem. Phys., 8, 1231–1248, doi:10.5194/acp-8-1231-2008.
  195. Kahn, B. H., C. K. Liang, A. Eldering, A. Gettelman Q. Yue, and K. N. Liou (2008), Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared SounderAtmos. Chem. Phys., 8, 1501–1518, doi:10.5194/acp-8-1501-2008.
  196. Kahnert, M., A. D. Sandvik, M. Biryulina, J. J. Stamnes, and K. Stamnes (2008), Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloudJ. Quant. Spectrosc. Radiat. Transfer, 109("7"), 1196–1218, doi:10.1016/j.jqsrt.2007.10.016.
  197. Kao, C.-Y. J. and W. S. Smith (1999), Sensitivity of a cloud parameterization package in the National Center for Atmospheric Research Community Climate ModelJ. Geophys. Res., 104(D10), 11,961–11,983.
  198. Kato, S., G. G. Mace, E. E. Clouthiaux, and J. C. Liljegren (2000), Doppler Radar and Microwave Radiometer Derived Stratus Cloud Particle Size Distributions, Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas.
  199. Key, J. R. and A. J. Schweiger (1998), Tools for atmospheric radiative transfer: STREAMER and FLUXNETComput. Geosci., 24(5), 443–451, doi:10.1016/S0098-3004(97)00130-1.
  200. Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysicsAtmos. Res., 55, 159–224.
  201. Kim, D. and V. Ramanathan (2008), Solar radiation budget and radiative forcing due to aerosols and cloudsJ. Geophys. Res., 113(D02), D02203, doi:10.1029/2007JD008434.
  202. King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou (2004), Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS dataJ. Atmos. Oceanic Technol., 21, 857–875.
  203. King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface PropertiesJ. Atmos. Oceanic Technol., 13(4), 777–794.
  204. King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, and K.-N. Liou (1997), Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase, MODIS Science Team, MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05.
  205. Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer ModelingJ. Atmos. Sci., 54, 2320–2344.
  206. Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler (2013), Are climate model simulations of clouds improving? An evaluation using the ISCCP simulatorJ. Geophys. Res., 118, 1–14, doi:10.1002/jgrd.50141.
  207. Klein, S. A. and A. Hall (2015), Emergent Constraints for Cloud FeedbacksCurr. Clim. Change Rep., 1(4), 267–287, doi:10.1007/s40641-015-0027-1.
  208. Knollenberg, R. G. and D. M. Hunten (1980), The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer ExperimentJ. Geophys. Res., 85(A13), 8039–8058, doi:10.1029/JA085iA13p08039.
  209. Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigationAtmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
  210. Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. W. Barker (2001), Microphysical properties of continental clouds from in-situ measurementsQ. J. R. Meteorol. Soc.
  211. Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical Characterization of Mixed Phase CloudsQ. J. R. Meteorol. Soc., 129, 39–65.
  212. Korolev, A. and G. Isaac (2003), Roundness and Aspect Ratio of Particles in Ice cloudsJ. Atmos. Sci., 60, 1795–1808.
  213. Korolev, A. V. and I. P. Mazin (2003), Supersaturation of Water Vapor in CloudsJ. Atmos. Sci., 60, 2957–2974.
  214. Korolev, A. and P. R. Field (2007), The Effect of dynamics on Mixed-Phase cloud: Theoretical considerationJ. Atmos. Sci., 65, 66–85, doi:10.1175/2007JAS2355.1.
  215. Korolov, A. V., G. A. Isaac, and J. Hallett (1999), Ice Particle habits in Artic clouds, Atmospheric Environment Service, Desert Research Institute.
  216. Krasnopolsky, V. A. (1985), Chemical Composition of Venus CloudsPlanet. Space Sci., 33(1), 109–117, doi:10.1016/0032-0633(85)90147-3.
  217. Kuenzi, K., G. Heygster, and J. Miao (1111), Ice Cloud and Background Water Vapour by Sub-mm and Very-High Frequency MW Radiometry, University Bremen.
  218. Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General FeaturesAtmos. Res., 66, 203–227.
  219. Laiguang, Y. and L. Yangang (1995), Some microphysical characteristics of cloud and precipitation over ChinaAtmos. Res., 35, 271–281.
  220. van Lammeren, A., et al. (1999), Clouds and Radiation: Intensive Experimental Study of clouds and Radiation in the Netherlands (CLARA), Proc. Symposium Remote Sensing of Cloud Parameters: Retrieval and Validation.
  221. Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Brogniez (1998), Measurement errors in cirrus cloud microphysical propertiesAnn. Geophys., 16, 266–276.
  222. Lawson, R. P., B. Baker, B. Pilson, and Q. X. Mo (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus cloudsJ. Atmos. Sci., 63("12"), 3186–3203.
  223. Lawson, R. P., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layerAtmos. Chem. Phys., 8(6), 1609–1620, doi:10.5194/acp-8-1609-2008.
  224. Lawson, R. P., K. Stamnes, J. Stamnes, P. Zmarzly, J. Koskuliks, C. Roden, Q. Mo, and M. Carrithers (2010), Deployment of a Tethered Balloon System for Microphysics and Radiative Measurements in Mixed-Phase Clouds at Ny-Ålesund and South PoleJ. Atmos. Oceanic Technol., Preliminary accepted version, doi:10.1175/2010JTECHA1439.1.
  225. Lawson, R. P. and A. M. Blyth (1998), A comparison of optical measurements of liquid water content and drop size distribution in adiabatic regions of Florida cumuliAtmos. Res., 47–48, 671–690.
  226. L'Ecuyer, T. S., G. L. Stevens, and R. T. Austin (2004), Mapping clouds and precipitation with CloudSat and the afternoon A-Train, In: Proceedings of the 3rd European Conference on Radar Meteorology and COST-717 Final Seminar, Visby, Sweden, September 6-10, 2004, pp. 144–149.
  227. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data setJ. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
  228. L'Ecuyer, T. S. and J. H. Jiang (2010), Touring the atmosphere aboard the A-TrainPhys. Today, 63(7), 36–41.
  229. Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
  230. Li, J., C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. Wu, W. P. Menzel, and J. J. Gurka (2005), Optimal Cloud-Clearing for AIRS Radiances Using MODISIEEE Geosci. Remote Sens., 43(6), 1266–1278.
  231. Li, Y. and D. W. J. Thompson (2015), The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Atmospheric CirculationJ. Climate, 28(18), 7263–7278, doi:10.1175/JCLI-D-14-00825.1.
  232. Liebe, H. J., T. Manabe, and G. A. Hufford (1989), Millimeter-Wave Attenuation and Delay Rates Due to Fog/Cloud ConditionsIEEE Trans. Antennas Propag., 37(12), 1617–1623.
  233. Liljegren, J. C., B. M. Lesht, S. Kato, and E. E. Clothiaux (2001), Evaluation of Profiles of Temperature, Water Vapor, and Cloud Liquid Water from a New Microwave Radiometer, Argonne National Laboratory, Hampton University, Pennsylvania State University, Eleventh ARM Science Team Meeting Proceedings.
  234. Lin, B. and W. B. Rossow (1994), Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methodsJ. Geophys. Res., 99(D10), 20907–20927.
  235. Lin, B. and W. B. Rossow (1996), Seasonal Variation of Liquid and Ice Water Path in Nonprecipitating Clouds over Oceans.J. Climate, 9, 2890–2902.
  236. Lin, B. and W. B. Rossow (1997), Precipitation water path and rainfall rate estimates for oceans using special sensor microwave imager and International Satellite Cloud Climatology Project dataJ. Geophys. Res., 102, 9359–9374.
  237. Lin, B., P. Minnis, B. Wielicks, D. R. Doelling, R. Palikonda, D. F. Young, and T. Uttal (1998), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 2. ResultsJ. Geophys. Res., 103(D4), 3887–3905.
  238. Lin, B., B. Wielicks, P. Minnis, and W. Rossow (1998), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 1. Microwave brightness temperature simulationsJ. Geophys. Res., 103(D4), 3873–3886.
  239. Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ ObservationsJ. Atmos. Sci., 55, 1928–1939.
  240. Liou, K. N. (2005), Cirrus clouds and Climate, The McGraw Hill Companies.
  241. Liou, K.-L. (1973), A Numerical Experiment on Chandrasekhar's Discrete-Ordinate Method for Radiative Transfer: Applications to Cloudy and Hazy AtmospheresJ. Atmos. Sci., 30, 1303–1314.
  242. Liou, K.-N. and Q. Zheng (1984), A Numerical Experiment on the Interactions of Radiation, Clouds and Dynamic Processes in a General Circulation ModelJ. Atmos. Sci., 41(9), 1513–1536, doi:10.1175/1520-0469(1984)041<1513:ANEOTI>2.0.CO;2.
  243. Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspectiveMon. Weather Rev., 114, 1167–1199.
  244. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling, Oxford University Press, ISBN 978-0195049107.
  245. Lipton, A. E., M. K. Griffin, and A. G. Ling (1999), Microwave Transfer Model Differeces in Remote Sensing of Cloud Liquid Water at Low TemperaturesIEEE Geosci. Remote Sens., 37(1), 620–623.
  246. Liu, Y. and P. H. Daum (2001), Statistical Physics, Information Theory and Cloud Droplet Size Distributions, Brookhaven National Laboratory, Eleventh ARM Science Team Meeting Proceedings.
  247. Liu, Y., J. R. Key, R. A. Freya, S. A. Ackerman, and W. P. Menzel (2004), Nighttime polar cloud detection with MODISRem. Sen. Env., 92, 181–194, doi:10.1016/j.rse.2004.06.004.
  248. Liu, C. and E. J. Zipser (2005), Global distribution of convection penetrating the tropical tropopauseJ. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.
  249. Liu, G. and J. A. Curry (1996), Large-scale cloud features during January 1993 in the North Atlantic Ocean as determined from SSM/I and SSM/T2 observationsJ. Geophys. Res., 101(D3), 7019–7032.
  250. Liu, Q., C. Simmer, and E. Ruprecht (1996), Three-dimensional radiative transfer effects of clouds in the microwave spectral rangeJ. Geophys. Res., 101(D2), 4289–4298.
  251. Liu, S. and S. K. Krueger (1998), Numerical Simulations of Altocumulus with a Cloud Resolving Model, University of Utah.
  252. Liu, G. and J. A. Curry (1998), Remote Sensing of Ice Water Characteristics in Tropical Clouds Using Aircraft Microwave MeasurementsJ. Appl. Meteorol., 37, 337–355.
  253. Lo, L.-I., B. M. Fannin, and A. W. Straiton (1975), Attenuation of 8.6 and 3.2 mm Radio Waves by CloudsIEEE Trans. Antennas Propag., AP-23(6), 782–786.
  254. Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCMJ. Geophys. Res., 107, doi:10.1029/2001JD000767.
  255. Lohmann, U., B. Kärcher, and C. Timmreck (2003), Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCMJ. Geophys. Res., 108(D18), doi:10.1029/2002JD003185.
  256. Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCMJ. Geophys. Res., 109, doi:10.1029/2002JD003185.
  257. Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCMJ. Geophys. Res., 108, doi:10.1029/2003JD004443.
  258. Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAMAtmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
  259. Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation modelJ. Geophys. Res., 100, 16,305–16,323.
  260. Ludlam, F. H. and B. J. Mason (1957), The Physics of Clouds, In: Handbuch der Physic, pp. 479–517.
  261. Määttänen, A., F. Montmessin, B. Gondet, F. Scholten, H. Hoffmann, F. González-Galindo, A. Spiga, F. Forget, E. Hauber, G. Neukum, J.-P. Bibring, and J.-L. Bertaux (2010), Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric modelsIcarus, 209, 452–469, doi:10.1016/j.icarus.2010.05.017.
  262. Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar DataJ. Climate, 14, 2185–2203.
  263. Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP SiteJ. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
  264. Mace, G. G., S. Benson, and E. Vernon (2005), On the Relationship Between Cirrus Clouds and the Large-Scale Atmospheric State as Revealed by 6 Years of Ground-Based Data, University of Utah, Submitted to the Journal of Climate.
  265. Mace, G. G. and S. Benson (2008), The Vertical Structure of Cloud Occurrence and Radiative Forcing at the SGP ARM Site as Revealed by 8 Years of Continuous DataJ. Climate, 21(11), 2591–2610, doi:10.1175/2007JCLI1987.1.
  266. Mace, G. G., K. Sassen, S. Kinne, and T. P. Ackerman (1998), An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case studyGeophys. Res. Lett., 25(8), 1133–1136, doi:10.1029/98GL00232.
  267. Mannozzi, L., F. di Guiseppe, and R. Rizzi (1999), Cirrus Cloud Optical Properties in Far InfraredPhys. Chem. Earth, 24(3), 269–273.
  268. Marchand, R., T. Ackerman, E. R. Westwater, S. A. Clough, K. Cady-Pereira, and J. C. Liljegren (2003), An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky dataJ. Geophys. Res., 108(D24), doi:10.1029/2003JD003843.
  269. Marchand, R., J. Haynes, G.G. Mace, T. Ackerman, and G. Stephens (2009), A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observationsJ. Geophys. Res., 114(8), D00A20, cited By (since 1996) 0.
  270. Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizesJ. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
  271. Marten, A., D. Rouan, J. P. Baluteau, D. Gautier, B. J. Conrath, R. A. Hanel, V. Kunde, R. Samuelson, A. Chedin, and N. Scott (1981), Study of the Ammonia Ice Cloud Layer in the Equatorial Region of Jupiter from the Infrared Interferometric Experiment on VoyagerIcarus, 46, 233–248.
  272. Mason, B. J. (1994), The shape of snow crystals- Fitness for purpose?Q. J. R. Meteorol. Soc., 120, 849–860.
  273. Mason, B. J. (1998), The production of high ice-crystal concentrations in stratiform cloudsQ. J. R. Meteorol. Soc., 124, 353–356.
  274. Masunaga, H. and C. D. Kummerow (2005), Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval AlgorithmJ. Atmos. Oceanic Technol., 22, 909–929, doi:10.1175/JTECH1751.1.
  275. Matrosov, S. Y. and A. J. Heymsfield (2008), Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurementsJ. Geophys. Res., 113, 1–8, doi:10.1029/2007JD009633.
  276. Matrosov, S. Y., B.W. Orr, R. A. Kropfli, and J. B. Snider (1994), Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer MeasurementsJ. Appl. Meteorol., 33, 617–626.
  277. Mattioli, V., P. Basili, S. Bonafoni, P. Ciotti, and E. R. Westwater (2009), Analysis and improvements of cloud models for propagation studiesRadio Sci., 44, RS2005, doi:10.1029/2008RS003876.
  278. Mayer, B. (2009), Radiative transfer in the cloudy atmosphereEur. Phys. J. Conferences, 1, 75–99, doi:10.1140/epjconf/e2009-00912-1.
  279. McFarquhar, G. M., P. Yang, A. Macke, S. Iacobellis, and R. C. J. Somerville (2001), Sensitivies of SCMs to New Parameterizations of Clouds-Radiative Interactions, National Center for Atmospheric Research, Goddard Earth Sciences and Technology Center, Universitaet zu Kiel, Scripps Institution of Oceanography, Eleventh ARM Science Team Meeting Proceedings.
  280. McFarquhar, G. M. and A. J. Heymsfield (1998), The Definition and Significance of an Effective Radius for Ice CloudsJ. Atmos. Sci., 55, 2039–2052.
  281. Medaglia, C. M., C. Adamo, F. Baordo, S. Dietrich, S. Di Michele, V. Kotroni, K. Lagouvardos, A. Mugani, S. Pinori, E. A. Smith, and G. J. Tripoli (2005), Comparing microphysical/dynamical outputs by different cloud resolving models: impact on passive microwave precipitation retrieval from satelliteAdv. Geosci., 2, 195–199.
  282. Meyer, K., P. Yang, and B.-C. Gao (2004), Optical Thickness of Tropical Cirrus Clouds Derived From the MODIS 0.66- and 1.375-μm channelsIEEE T. Geosci. Remote, 42(4), 833–841.
  283. Miao, J., T. Rose, K. Kunzi, and P. Zimmermann (2002), A Future Millimeter/Sub-Millimeter Radiometer for Satellite Observation of Ice CloudsInt. J. Inf. Millim. Waves, 23(8), 1159–1170.
  284. Milbrandt, J. A. and R. Mctaggart (2010), Sedimentation-Induced Errors in Bulk Microphysics SchemesJ. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.
  285. Miller, S .D., G. L. Stephen, C. K. Drummond, A. K. Heidinger, and P. T. Partain (2000), A multisensor diagnostic satellite cloud property retrieval schemeJ. Geophys. Res., 105(D15), 19955–19971.
  286. Miloshevich, L. M. and A. J. Heymsfield (1997), A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency AnalysisJ. Atmos. Oceanic Technol., 14, 753–768.
  287. Minnis, P., G. Hong, S. Sun-Mack, W. L. Smith Jr., Y. Chen, and S. D. Miller (2016), Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network methodJ. Geophys. Res., 121(9), 4907–4932, doi:10.1002/ 2015JD024456.
  288. Minnis, P. and W. L. Smith Jr. (1998), Cloud and radiative fields derived from GOES-8 during SUCCESS and the ARM-UAV spring 1996 flight seriesGeophys. Res. Lett., 25(8), 1113–1116.
  289. Mitchell, D. L., R. P. Lawson, and B. Baker (2011), Understanding effective diameter and its application to terrestrial radiation in ice cloudsAtmos. Chem. Phys., 11, doi:10.5194/acp-11-3417-2011.
  290. Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study AnalysisJ. Atmos. Sci., 53(20), 2952–2987.
  291. Mlawer, E. J., L. S. Delamere, C. J. Scott, S. A. Clough, L. C. Harrison, J. J. Michalsky, P. W. Kiedron, H. W. Barker, and T. R. Shippert (2001), Comparison Between RSS Measurements and LBLRTM/CHARTS Calculations for Clear and Cloudy Conditions, Atmospheric and Environmental Research, Atmospheric Sciences Research Center, Environment Canada, Pacific Northwest National Laboratory, Eleventh ARM Science Team Meeting Proceedings.
  292. Moncrieff, M. W. (1995), Mesoscale convection from a large-scale perspectiveAtmos. Res., 35, 87–112.
  293. Moncrieff, W. M., S. K. Krueger, D. Gregory, J.-L. Redelsperger, and W.-K. Tao (1997), GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud SystemsBull. Amer. Met. Soc., 78(5), 831–845.
  294. Montmessin, F., B. Gondet, J.-P. Bibring, Y. Langevin, P. Drossart, F. Forgeta, and T. Fouchet (2007), Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of MarsJ. Geophys. Res., 112(E11S90), doi:10.1029/2007JE002944.
  295. Moores, J. E., L. Komguem, J. A. Whiteway, M. T. Lemmon, C. Dickinson, and F. Daerden (2011), Observations of near-surface fog at the Phoenix Mars landing siteGeophys. Res. Lett., 38, L04203, doi:10.1029/2010GL046315.
  296. Morcrette, J.-J., L. Illari, E. Klinker, H. Le Treut, M. Miller, P. Rasch, and M. Tiedtke (1991), Clouds and radiation, European Centre for Medium-Range Weather Forecasts.
  297. Morrison, H., J. A. Curry, and V. I. Khvorostyanov (2005), A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: DescriptionJ. Atmos. Sci., 62, 1665–1677, doi:10.1175/JAS3446.1.
  298. Mugnai, A. and E. A. Smith (1988), Radiative Transfer to Space through a Precipitating Cloud at Multiple Microwave Frequencies. Part I: Model DescriptionJ. Appl. Meteorol., 27, 1055–1073.
  299. Mugnai, A., P. Coppo, N. Grant, A. Slingo, L. Vial, P. Zimmermann, R. Bordi, A. Sutera, S. Tibaldi, J. Harries, M. Debois, and K. Kuenzi (1999), Report of the Pre-Phase A Industrial Study for a Cloud and Radiation Monitoring Satellite (Clouds), xxxx.
  300. Muller, B. M., H. E. Fuelberg, and X. Xiang (1994), Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness TemperaturesJ. Appl. Meteorol., 33, 1133–1154.
  301. Munchak, S. J., C. D. Kummerow, and G. Elsaesser (2012), Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMMJ. Climate, 25(8), 2963–2978, doi:10.1175/JCLI-D-11-00274.1.
  302. Murata, Kentarou (2010), Possibility of the detection of Polar Stratospheric Clouds from SMILES Observations, , Bachelor thesis, in Japanese.
  303. Noda, A. T., T. Seiki, M. Satoh, and Y. Yamada (2016), High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulationsGeophys. Res. Lett., 43(5), 2307–2314, doi:10.1002/2016GL067742.
  304. Noel, V. and K. Sassen (2005), Study of Planar Ice Crystal Orientations in Ice Clouds from Scanning Polarization Lidar ObservationsJ. Appl. Meteorol., 44, 653–664.
  305. Nolt, I. G., M. D. Vanek, N. D. Tappan, P. Minnis, J. L. Alltop, P. A. R. Ade, C. Lee, P. A. Hamilton, K. F. Evans, A. H. Evans, E. E. Evans, E. E. Clothiaux, and A. J. Baran (1999), Far infrared measurements of cirrus, xxxx, Remote Sensing of Clouds and Atmosphere.
  306. Norris, J. R. (2005), Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcingJ. Geophys. Res., 110.
  307. Ockert-Bell, M. E. and D L. Hartmann (1992), The Effect of Cloud Type on Earth's Energy Balance: Results of Selected RegionsJ. Climate, 5, 1157.
  308. Ono, A. (1969), The Shape and Riming Properties of Ice Crystals in Natural CloudsJ. Atmos. Sci., 26, 138–147.
  309. Orepoulos, L., R.F. Cahalan, and S. Platnick (2007), The Plane-Parallel Albedo Bias of Liquid Clouds from MODIS ObservationsJ. Climate, 20, 5114–5125, doi:10.1175/JCLI4305.1.
  310. Orr, B. W. and T. Uttal (2001), Microwave Radiometer Observations of Integrated Atmospheric Water Vapor and Cloud Liquid Water at Sheba and ARM'sNSA Site using new Absorption ModelsJ. Geophys. Res., 106(D6).
  311. Orville, H. D. (1996), A Review of Cloud Modeling in Weather ModificationBull. Amer. Met. Soc., 77(7), 1535–1555.
  312. O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus cloudsJ. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
  313. Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCAGeophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
  314. Parol, F., J. C. Buriez, C. Vanbauce, P. Couvert, S. Seze, P. Goloub, and S. Cheinet (1999), First Results of the POLDER "Earth Radiation Budget and Clouds" Operational AlgorithmIEEE T. Geosci. Remote, 37, 1597–1613.
  315. Parungo, F. (1995), Ice Crystals in High Clouds and ContrailsAtmos. Res., 38, 249–262.
  316. Pawlowska, H., J. L. Brenguier, and F. Burnet (2000), Microphysical properties of stratocumulus cloudsAtmos. Res., 55, 15–33.
  317. Pawlowska, H., J.-L. Brenguier, and L. Schueller (1999), Microphysical and Radiative Properties of StratocumulusPhys. Chem. Earth, 24(8), 927–932.
  318. Penner, J. E. (2004), Climate change: The cloud conundrumNature, 432(7020), 962–963, doi:10.1038/432962a.
  319. Petrushin, A. G. and T. B. Zhuavleva (2001), Modeling of Brightness Fields of Ice-Crystal Broken Clouds, Institute of Experimental Meteorology, Institute of Atmospheric Optics, Eleventh ARM Science Team Meeting Proceedings.
  320. Pfister, L., K. H. Rosenlof H. B. Selkirk, D. O. Starr, and P. A. Newman (2010), A meteorological overview of the TC4 missionJ. Geophys. Res., 115, D00J12, doi:10.1029/2009JD013316.
  321. Phalippou, L. (1995), Variational retrieval of humidity profile, wind speed and cloud liquid water path with SSM/I: potential for numerical weather prediction, European Centre for Medium-Range Weather Forecasts ECMWF, Technical Memorandum No.216.
  322. Pinty, J.-P. and P. Jabouille (1998), A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitationProc. Conf. on Cloud Physics, 217–220.
  323. Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
  324. Platnick, S. (2000), Vertical photon transport in cloud remote sensing problemsJ. Geophys. Res., 105(D18), 22,919–22,935.
  325. Platnick, S., M. D. King, S. A. Ackermann, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS Cloud Products: Algorithms and Examples From TerraIEEE T. Geosci. Remote, 41(2), 459–473.
  326. Poetzsch-Heffter, C., Q. Liu, E. Ruperecht, and C. Simmer (1995), Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset: Methodology and Initial ResultsJ. Climate, 8(4), 829–843.
  327. Pouncy, F. J. (2003), A history of cloud codes and symbolsWeather, 58(2), 69–80, doi:10.1256/wea.219.02.
  328. Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran (1988), Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRISJ. Appl. Meteorol. Clim., 27(4), 379–399, doi:10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.
  329. Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systemsGeophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
  330. Pruppacher, H. R. and J. D. Klett (1997), Microphysics of Clouds and Precipitation, Johannes Gutenberg University, New Mexico State University.
  331. Pulvirenti, L., N. Pierdicca, and F. S. Marzano (2005), Simulating Brightness Temperatures in Cloudy Conditions Over the Mediterranean Sea, In: Proceedings of the XXIXth General Assembly of International Union of Radio Science (URSI), New Delhi.
  332. Quante, M. (2004), The role of clouds in the climate systemJ. Phys. IV France, 61–86, doi:10.1051/jp4:2004121003.
  333. Racette, P., R. F. Adler, J. R. Wang, A. J. Gasiewski, D. M. Jakson, and D. S. Zacharias (1996), An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor StudiesJ. Atmos. Oceanic Technol., 13, 610–619.
  334. Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement (2016), Amplification of El Niño by cloud longwave coupling to atmospheric circulationNature Geosci., 9(2), 106–110, doi:10.1038/NGEO2630.
  335. RAL Space (2013), Cloud and Precipitation Airborne Radiometer – RECEIVER TEST & CHARACTERISATION REPORT, RAL Space.
  336. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget ExperimentScience, 243, 57–63.
  337. Ramaswamy, V. and J. Li (1996), A line-by-line investigation of solar radiative effects in vertically inhomogeneous low cloudsQ. J. R. Meteorol. Soc., 122, 1873–1890.
  338. Rao, G. V. and R. D. Tamin (1995), Microphysical characteristics of monsoon clouds and cloud sublayers as revealed my the MONEX aircraft observationsAtmos. Res., 38, 333–350.
  339. Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995)Int. J. Climatol., 25, 1103–1125.
  340. Raschke, E., P. Flamant, Y. Fouquart, P. Hignett, H. Isaka, P. R. Jonas, H. Sundquist, and P. Wendling (1998), Cloud-Radiation Studies during the European Cloud and Radiation Experiment EUCREXSurvey in Geophysics, 19(2), 89–138, doi:10.1023/A:1006544220339.
  341. Rathke, C., W. Armbruster, J. Fischer, E. Becker, and J. Notholf (2000), Comparison of stratus cloud properties derived from coincident airborne visible and ground-based infrared spectrometer measurementsGeophys. Res. Lett., 27(17), 2641–2644.
  342. Richiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998), SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earths AtmosphereBull. Amer. Met. Soc., 79(10), 2101–2114, doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.
  343. Rieck, M., L. Nuijens, and B. Stevens (2012), Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity AtmosphereJ. Atmos. Sci., 69(8), 2538–2550, doi:10.1175/JAS-D-11-0203.1.
  344. Ringer, M. A. and R. P. Allan (2004), Evaluating climate model simulations of tropical cloudTellus, 56A(4), 308–327.
  345. Roberti, L., J. Haferman, and C. Kummerow (1994), Microwave radiative transfer through horizontally inhomogeneous precipitating cloudsJ. Geophys. Res., 99(D8), 16,707–16,718.
  346. Roberti, L. and C. Kummerow (1999), Monte Carlo calculations of polarized microwave radiation emerging from cloud structuresJ. Geophys. Res., 104(D2), 2093–2104.
  347. Rogers, R. R. and M. K. Yau (1976), A Short Course in Cloud Physics, McGill University.
  348. Rosenfeld, D. and I. M. Lensky (1998), Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective CloudsBull. Amer. Met. Soc., 79(11), 2457–2476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.
  349. Rosenkranz, P. W. (2006), Clouds liquid-water profile retrieval algorithm and validationJ. Geophys. Res., 111, D09S08, doi:10.1029/2005JD005832.
  350. Rosenkranz, P. W. (1995), A Rapid Atmospheric Transmittance Algorithm for Microwave Sounding ChannelsIEEE Geosci. Remote Sens., 33(5), 1135–1140.
  351. Rossow, W. B. and E. Duenas (2004), International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for researchBull. Amer. Met. Soc., 85, 167–172, doi:10.1175/BAMS-85-2-167.
  352. Rossow, W. B. and C. Pearl (2007), 22-Year survey of tropical convection penetrating into the lower stratosphereGeophys. Res. Lett., 34(4), L04803, doi:10.1029/2006GL028635.
  353. Rossow, W. B. and R. A. Schiffer (1991), ISCCP Cloud Data ProductsBull. Amer. Met. Soc., 72, 2–20.
  354. Rossow, W. B. and R. A. Schiffer (1999), Advances in Understanding Clouds From ISCCPBull. Amer. Met. Soc., 80(11), 2261–2288.
  355. Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey (2003), Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical TropopauseJ. Climate, 16, 3428–3446.
  356. Santhanam, M. S. and P. K. Patra (2001), Statistics of Atmospheric Correlations, Indian Institute of Technology.
  357. Sarkar, S. K. and R. Kumar (2002), Cloud Characteristics and Cloud Attenuation in Millimeter Wave and Microwave Frequency Bands for Satellite and Remote Sensing Applications over a Northern Indian Tropical StationInt. J. Inf. Millim. Waves, 23(5), 937–944.
  358. Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic PropertiesJ. Atmos. Sci., 58, 481–496.
  359. Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar DepolarizationJ. Atmos. Sci., 58, 2103–2112.
  360. Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative PropertiesJ. Atmos. Sci., 58, 2113–2127.
  361. Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical ModelJ. Appl. Meteorol., 41, 620–628.
  362. Sassen, K., K.-N. Liou, Y. Takano, and V. I. Khvorostyanov (2003), Diurnal effects in the composition of cirrus cloudsGeophys. Res. Lett., 30, doi:1029/2003GL017034.
  363. Sathiyamoorthy, V., P. K. Pal, and P. C. Jos (2004), Influence of the Upper-Tropospheric Wind Shear upon Cloud Radiative Forcing in the Asian Monsoon RegioJ. Climate, 17(4), 2725–2735.
  364. Schaller, E. L., M. E. Brown, H. G. Roe, A. H. Bouchez, and C. A. Trujillo (2006), Dissipation of Titan's south polar cloudsIcarus, 184, 517–523, doi:10.1016/j.icarus.2006.05.025.
  365. Schlimme, I., A. Macke, and J. Reichardt (2005), The Impact of Ice Crystal Shapes, Size Distributions, and Spatial Structures of Cirrus Clouds on Solar Radiative FluxesJ. Atmos. Sci., 62, 2274–2283.
  366. Schmitt, C. G. and A. J. Heymsfield (2009), The Size Distribution and Mass-Weighted Terminal Velocity of Low-Latitude Tropopause Cirrus Crystal PopulationsJ. Atmos. Sci., 66, 2013–2028, doi:10.1175/2009JAS3004.1.
  367. Schneider, T., C. M. Kaul, and K. G. Pressel (2019), Possible climate transitions from breakup of stratocumulus decks under greenhouse warmingNature Geosci., 12(3), 163–167, doi:10.1038/s41561-019-0310-1.
  368. Schpok, J., J. Simons, D. S. Ebert, and C. Hansen (2003), A Real-Time Cloud Modeling, Rendering, and Animation System, In: Eurographics/SIGGRAPH Symposium on Computer Animation, Edited by Breen, D. and M. Lin, Presentation at the 14th International Conference on Atmospheric Aerosols, Helsinki, Finland, 26–30 August 1996.
  369. Schröder, F., B. Kärcher, C. Duroure, J. Ström, A. Petzold, J.-F. Gayet, B. Strauss, P. Wendling, and S. Borrmann (2000), On the Transition of Contrails into Cirrus CloudsJ. Atmos. Sci., 57, 464–480, doi:10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2.
  370. Seinfeld, J. H. (1998), Clouds, contrails and climateNature, 391, 837–838.
  371. Seiz, G., S. Tjemkes, and P. Watts (2007), Multiview Cloud-Top Height and Wind Retrieval with Photogrammetric Methods: Application to Meteosat-8 HRV ObservationsJ. Appl. Meteorol. Clim., 46(5), 1182–1195, doi:10.1175/JAM2532.1.
  372. Senior, C. A. and J. F. B. Mitchell (1993), Carbon Dioxide and Climate: The Impact of Cloud ParameterizationJ. Climate, 6(3), 393–418.
  373. Seo, E.-K. and G. Liu (2005), Retrievals of ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP siteJ. Geophys. Res., 110, D14203, doi:10.1029/2004JD005727.
  374. Sherwood, S. C. (1999), On moistening of the tropical troposphere by cirrus cloudsJ. Geophys. Res., 104(13), 11949–11960, doi:10.1029/1999JD900162.
  375. Shupe, M. D., T. Uttal, S. Matrosov, and S. Frisch (2001), Cloud Water Contents and Hydrometer Sizes During the FIRE-Arctic Cloud ExperimentJ. Geophys. Res., 106, 15015–15028.
  376. Sinha, A. and K. P. Shine (1995), Simulated sensitivity of the earth's radiation budget to 'change in cloud propertiesJ. Quant. Spectrosc. Radiat. Transfer, 121, 797–819.
  377. Slingo, A. and J. Slingo (1988), Response of a general circulation model to cloud longwave radiative forcing: Part 1 Introduction and initial experimentsQ. J. R. Meteorol. Soc., 114, 1027–1062.
  378. Slingo, A. and J. M. Slingo (1991), Response of the National Center for Atmospheric Research Community Climate Model to Improvements in the Represenatation of CloudsJ. Geophys. Res., 96(D8), 15,341–15,357.
  379. Slobin, S. D. (1982), Microwave noise temperature and attenuation of clouds: Statistics of these effects at various sites in the United Stated, Alaska, and HawaiiRadio Sci., 17(6), 1443–1454.
  380. Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi (2002), Intercomparison of Microwave Radiative Transfer Models for Precipitating CloudsIEEE Geosci. Remote Sens., 40(3), 541–549.
  381. Smith, M. D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999-2003Icarus, 167(1), 148–165, doi:10.1016/j.icarus.2003.09.010.
  382. Smith, W. L. and C. M. R. Platt (1978), Comparison of Satellite-Deduced Cloud Heights with Indications from Radiosonde and Ground-Based Laser MeasurementsJ. Appl. Meteorol., 17, 1796–1802.
  383. Smith, E. A., A. Mugnau, H. J. Cooper, G. J. Tripoli, and X. Xiang (1992), Foundations for Statistical-Physical Precipitation Retrieval from Passive Microwave Satellite Measurements. Part I.: Brightness-Temperature Properties of a Time-dependent Cloud-Radiation ModelJ. Appl. Meteorol., 31, 506–531.
  384. Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus cloudsGeophys. Res. Lett., 25(8), 1137–1140.
  385. Soden, B. J. (2000), The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphereGeophys. Res. Lett., 27(15), 2173–2176.
  386. Soden, B. J., L. J. Donner, J. J. Hack, and O. Brown (2004), Testing Climate Model Simulations of Cloud Lifecycle Dynamics Using NASA A-Train Measurements, University of Miami, National Oceanic and Atmospheric Administration, National Center for Atmospheric Research.
  387. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
  388. Sohn, B.-J. and J. Schmetz (2004), Water Vapor-Induced OLR Variations Associated with High Cloud Changes over the Tropics: A Study from Meteosat-5 ObservationsJ. Climate, 18, 1987–1996.
  389. Solheim, F., J. Godwin, and R. Ware (1998), Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometerMet. Zeit.
  390. Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware (1998), Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methodsRadio Sci., 33, 393–404.
  391. Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case studyQ. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
  392. Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J.-F. Gayet (2004), On the distribution of relative humidity in cirrus cloudsAtmos. Chem. Phys., 4, 365–397, doi:10.5194/acp-4-639-2004.
  393. Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1a: Model description and validationAtmos. Chem. Phys., 9, 685–706, doi:10.5194/acp-9-685-2009.
  394. Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1b: Structuring cirrus clouds by dynamicsAtmos. Chem. Phys., 9, 707–719, doi:10.5194/acp-9-707-2009.
  395. Stankov, B. B. (1111), Ground- and Space-Based Humidity Profiling in a Cloudy Atmosphere with Strong Elevated Temperature Inversion, Environmental Technology Laboratory.
  396. Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team (2002), The CloudSat mission and the A-trainBull. Amer. Met. Soc., 83(12), 1771–1790, doi:10.1175/BAMS-83-12-1771.
  397. Stephens, G. L. (2003), The Useful Pursuit of ShadowsAm. Sci., 91, 442–449.
  398. Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical reviewJ. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
  399. Stephens, G. L. and C. D. Kummerow (2007), The Remote Sensing of Clouds and Precipitation from Space: A ReviewJ. Atmos. Sci., 64(11), 3742–3765, doi:10.1175/2006JAS2375.1.
  400. Stephens, G. L. (1978), Radiation Profiles in Extended Water Clouds. I: TheoryJ. Atmos. Sci., 35, 2111–2122.
  401. Stephens, G. L. (1978), Radiation Profiles in Extended Water Clouds. II: Parameterization SchemesJ. Atmos. Sci., 35, 2123–2132.
  402. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
  403. Stephens, G. L. and T. J. Greenwald (1991), The Earth's Radiation Budget and Its Relation to Atmospheric Hydrology II. Observations of Cloud EffectsJ. Geophys. Res., 96(D8), 15,325–15,340.
  404. Stevens, B., D. Farrell, L. Hirsch, F. Jansen, L. Nuijens, I. Serikov, B. Brügmann, M. Forde, H. Linne, K. Lonitz, and J. M. Prospero (2016), The Barbados Cloud ObservatoryBull. Amer. Met. Soc., 97(5), 787–801, doi:10.1175/BAMS-D-14-00247.1.
  405. Stokes, G. M. and S. E. Schwartz (1994), The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test BedBull. Amer. Met. Soc., 75(7), 1201–1221.
  406. Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
  407. Storelvmo, T., J. E. Kristjánsson, and U. Lohmann (2008), Aerosol Influence on Mixed-Phase Clouds in CAM-OsloJ. Atmos. Sci., 65, 3214–3230, doi:10.1175/2008JAS2430.1.
  408. Strabala, K. I., S. A. Ackerman, and W. P. Menzel (1994), Cloud properties inferred from 8–12-μm dataJ. Appl. Meteorol., 33(2), 212–229.
  409. Ström, J., M. Seifert, B. Kärcher, J. Ovarlez, A. Minikin, J.-F. Gayet, R. Krejci, A. Petzold, F. Auriol, W. Haag, R. Busen, U. Schumann, and H. C. Hansson (2003), Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experimentAtmos. Chem. Phys., 3, 1807–1816, doi:10.5194/acp-3-1807-2003.
  410. Stubenrauch, C. J., F. Eddounia, and L. Sauvage (2005), Cloud heights from TOVS Path-B: Evaluation using LITE observations and distributions of highest cloud layersJ. Geophys. Res., 110, D19203, doi:10.1029/2004JD005447.
  411. Stubenrauch, C. J., R. Armante, G. Abdelaziz, C. Crevoisier, C. Pierangelo, N. A. Scott, and A. Chedin (2006), Cloud properties from AIRS, In: 15th International TOVS Study Conference Proceedings, Maratea, Italy, 4-10 Oct. 2006, pp. 4–10.
  412. Stubenrauch, C. J., W. B. Rossow, F. Cheruy, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part I: Evaluation of Cloud ParametersJ. Climate, 12, 2189–2213.
  413. Stubenrauch, C. J., A. Chedin, R. Armante, and N. A. Scott (1999), Clouds as seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I AlgorithmsJ. Climate, 12, 2214–2223.
  414. Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative EffectsJ. Climate, 12, 3419–3442.
  415. Sun, Z. and K. P. Shine (1994), Studies of the radiative properties on ice and mixed-phase cloudsQ. J. R. Meteorol. Soc., 120, 111–137.
  416. Susskind, J., C. D. Barnet, and J. Blaisdell (2003), Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of cloudsIEEE Geosci. Remote Sens., 41, 390–409, doi:10.1109/TGRS.2002.808236.
  417. Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand (2008), CloudSat's Cloud Profiling Radar after Two Years in Orbit: Performance, Calibration, and ProcessingIEEE T. Geosci. Remote, 46(11), 3560–3573.
  418. Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometryQ. J. R. Meteorol. Soc., 121, 1083–1112.
  419. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  420. Tian, B., B. J. Soden, and X. Wu (2004), Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation modelJ. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.
  421. Tian, B., I. M. Held, N-C. Lau, and B. J. Soden (2005), Diurnal cycle of summertime deep convection over North America: A satellite perspectiveJ. Geophys. Res., 110, D08108.
  422. Tiedtke, M. (1987), Parametrization of non-convective condensation process May 1987, European Centre for Medium-Range Weather Forecasts, Meteorological Training Course Lecture Series.
  423. Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parametrization in large-scale modelsMon. Weather Rev., 117, 1779–1800.
  424. Tiedtke, M. (1993), Representation of clouds in large-scale models (May 1992), European Centre for Medium-Range Weather Forecasts, Meteorological Training Course Lecture Series.
  425. Tiedtke, M. (1993), Representation of clouds in large-scale modelsMon. Weather Rev., 121, 3040–3061.
  426. Tinel, C., J. Guyot, and K. Caillault (2000), Cloud Parameter Retrieval from Combined Remote Sensing ObservationsPhys. Chem. Earth, 25(10–12), 1063–1067.
  427. Toon, O. B. and R. C. Miake-Lye (1998), Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS)Geophys. Res. Lett., 25(8), 1109–1112.
  428. Trenberth, K. E. and J. T. Fasullo (2010), Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern OceansJ. Climate, 23(2), 1272–1282, doi:10.1175/2009JCLI3152.1.
  429. Tselioudis, G., Y. Zhang, and W. B. Rossow (2000), Cloud and Radiation Variations Associated with Northern Midlatitude Low and High Sea Level Pressure RegimesJ. Climate, 13(2), 312–327.
  430. Turner, D. D., S. Kneifel, and M. P. Cadeddu (2016), An Improved Liquid Water Absorption Model at Microwave Frequencies for Supercooled Liquid Water CloudsJ. Atmos. Oceanic Technol., 33(1), 33–44, doi:10.1175/JTECH-D-15-0074.1.
  431. Twohy, C. H., J. A. Coakley, and W. R. Tahnk (2009), Effect of changes in relative humidity on aerosol scattering near cloudsJ. Geophys. Res., 114, D05205, doi:10.1029/2008JD010991.
  432. Udelhofen, P. M. and D. L. Hartmann (1995), Influence of tropical cloud systems on the relative humidity in the upper troposphereJ. Geophys. Res., 100(D4), 7423–7440.
  433. Ushio, T., D. Katagami, K. Okamoto, and T. Inoue (2007), On the Use of Split Window Data in Deriving the Cloud Motion Vector for Filling the Gap of Passive Microwave Rainfall EstimationSci. Onl. Let. Atm., 3, 1–4, doi:10.2151/sola.2007-001.
  434. Vali, G. and S. Haimov (2001), Observed Extinction by Clouds at 95GHz, University of Wyoming.
  435. Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radianceAppl. Opt., 40(13).
  436. Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring (2011), New near-IR observations of mesospheric CO2 and H2O clouds on MarsJ. Geophys. Res., 5(E00J02), doi:10.1029/2011JE003827.
  437. Vivekanandan, J., G. Zhang, and M. K. Politovich (2000), Estimation of Cloud Droplet Size and Liquid Water Content Using Dual-Wavelength Radar Measurements, National Center for Atmospheric Research.
  438. Vivekanandan, J., L. Li, L. Tsang, and C. Chan (1997), Microwave Radiometrics Technique to Retrieve Vapor, Liquid and Ice: Part II- Joint Studies of Radiometer and Radar in Winter CloudsIEEE Geosci. Remote Sens., 35(2), 237–247.
  439. Voigt, A., S. Bony, J.-L. Dufresne, and B. Stevens (2014), The radiative impact of clouds on the shift of the Intertropical Convergence ZoneGeophys. Res. Lett., 41(12), 4308–4315, doi:10.1002/2014GL060354.
  440. Voigt, A. and T. A. Shaw (2015), Circulation response to warming shaped by radiative changes of clouds and water vapourNature Geosci., 8(2), 102–106, doi:10.1038/ngeo2345.
  441. Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progressJ. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
  442. Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (2001), Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurementsJ. Geophys. Res., 106(15), 15251–15264, doi:10.1029/2000JD900262.
  443. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ DataJ. Appl. Meteorol., 41, 218–229.
  444. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative PropertiesJ. Atmos. Sci., 59, 2291–2302.
  445. Wang, Z., D. N. Whiteman, B. B. Demoz, and I. Veselovskii (2004), A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidarGeophys. Res. Lett., 31, L15101, doi:10.1029/2004GL020004.
  446. Wang, P. K., K.-Y. Cheng, M. Setvak, and C.-K. Wang (2016), The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO imagesJ. Geophys. Res., 121(7), 3729–3738, doi:10.1002/2015JD024111.
  447. Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens (1996), A 6-Year Climatology of Cloud Occurrence Frequency from Stratospheric Aerosol and Gas Experiment II Observations (1985-1990)J. Geophys. Res., 101, 29407–29429.
  448. Wang, J. R. and P. Racette (1998), Airborne Millimeter-wave Radiometric Observations of Cirrus Clouds, Laboratory for Hydrospheric Processes.
  449. Wang, J. R., P. Racette, J. D. Spinhirne, K. F. Evans, and W. D. Hart (1998), Observations of cirrus clouds with airborne MIR CLS, and MAS during SUCCESSGeophys. Res. Lett., 25, 1145–1148, doi:10.1029/97GL03194.
  450. Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (1999), Observations and Retrievals of Cirrus Cloud Parameters Using Multichannel Millimeter-wave Radiometric MeasurementsJ. Geophys. Res.
  451. Ward, A., C. Griner, D. Vane, C. Trepte, A. Buis, C. Rink, and K. Lorentz (2005), CloudSat and CALIPSO: Unveiling the Mysteries of Clouds and AerosolsThe Earth Observer, 17(5), 9–13.
  452. Ware, R. H. and F. S. Solheim (2000), Microwave profiling of atmospheric temperature, humidity, and cloud liquid water, Radiometrics Corporation, Microwave Remote Sensing of the Atmosphere and Environment II.
  453. Warren, S. G. and C. J. Hahn (2002), Encyclopedia of Atmospheric Sciences, chap. Clouds | Climatology, pp. 476–483, Academic Press, doi:10.1016/B0-12-227090-8/00113-5.
  454. Weil, H. and T. M. Willis III (1982), A model for polarization effects in remote probing of cloudsRadio Sci., 17(5), 1018–1026.
  455. Weng, F. and N. C. Grody (2000), Retrieval of Ice Cloud Parameters Using a Microwave Imaging RadiometerJ. Atmos. Sci., 1069–1081.
  456. West, R. A., K. H. Baines, A. J. Friedson, D. Banfield, B. Ragent, and F. W. Taylor (2004), Jupiter: The Planet, Satellites and Magnetosphere, chap. Jovian Clouds and Haze, Cambridge University Press, ISBN 978-0521035453.
  457. Westbrook, C. D. and A. J. Illingworth (2011), Evidence that ice forms primarily in supercooled liquid clouds at temperatures > -27°CGeophys. Res. Lett., 38, L14808, doi:10.1029/2011GL048021.
  458. Westwater, E. R. and F. O. Guiraud (1980), Ground-based microwave radiometric retrieval of precipitable water vapor in the prescence of clouds with high liquid contentRadio Sci., 15(5), 947–957.
  459. Wetherald, R. T. and S. Manabe (1987), Cloud Feedback Processes in a General Circulation ModelJ. Atmos. Sci., 45(8), 1397–1416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.
  460. Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne CampaignsGeophys. Res. Lett., 31.
  461. Wielicki, B. A. and L. Parker (1992), On the Determination of Cloud Cover From Satellite Sensors: The Effect of Sensor Spatial ResolutionJ. Geophys. Res., 97(D12), 12799–12823.
  462. Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison (1995), Mission to Planet Earth: Role of Clouds and Radiation in ClimateBull. Amer. Met. Soc., 76(11), 2125–2153.
  463. Wielicki, B. A. (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth observing experimentBull. Amer. Met. Soc., 77, 853–872.
  464. Wilheit Jr., T. T. and K. D. Hutchison (2000), Retrieval of Cloud Base Heights from Passive Microwave and Cloud Top Temperature DataIEEE Geosci. Remote Sens., 38(3), 1253–1259.
  465. Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parametersInt. J. Remote Sensing, 18(15), 3263–3277.
  466. Winker, D. M., J. R. Pelon, and M. P. McCormick (2003), The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, In: Lidar Remote Sensing for Industry and Environment Monitoring III, pp. 1–11, Edited by U. N. Singh, T. Itabe, Z. Liu, doi:10.1117/12.466539.
  467. Wolde, M. and G. Vali (2002), Cloud structure and crystal growth in nimbostratusAtmos. Res., 61, 49–74.
  468. Wu, D. L., J. H. Jiang, and C.P. Davis (2006), EOS MLS Cloud Ice Measurements and Cloudy-Sky Radiative Transfer ModelIEEE T. Geosci. Remote, 44(5), 1156–1165.
  469. Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aurs MLS cloud ice water content measurementsJ. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
  470. Wu, J., A. D. Del Genio, M.-S. Yao, and A. B. Wolf (2009), WRF and GISS SCM simulations of convective updraft properties during TWP-ICEJ. Geophys. Res., 114, D04206, doi:10.1029/2008JD010851.
  471. Wu, R. and J. A. Weinman (1984), Microwave Radiances from Precipitating Clouds Containing Aspherical Ice, Combined Phase, and Liquid HydrometeorsJ. Geophys. Res., 89(D5), 7170–7178.
  472. Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates (2005), Trends in global cloud cover in two decades of HIRS observationsJ. Climate, 18, 3021–3031.
  473. Wylie, D. P., W. P. Menzel, and K. I. Strabala (1994), Four years of global cirrus cloud statistics using HIRSJ. Climate, 7(12), 1972–1986.
  474. Wylie, D. P. and P.-H. Wang (1997), Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment IIJ. Geophys. Res., 102, 29893–29900.
  475. Wylie, D. P. and W. P. Menzel (1999), Eight years of cloud statistics using HIRSJ. Climate, 12, 170–184.
  476. Wyser, K., C. G. Jones, P. Du, E. Girard, U. Willén, J. Cassano, J. H. Christensen, J. A. Curry, K. Dethloff, J.-E. Haugen, D. Jacob, M. Køltzow, R. Laprise, A. Lynch, S. Pfeifer, A. Rinke, M. Serreze, M. J. Shaw, M. Tjernström, and M. Zagar (2007), An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate modelsClimate Dynamics, 30(2–3), 203–223, doi:10.1007/s00382-007-0286-1.
  477. Yang, R. and Z. Wu (2002), MMW-Band Backscattering Cross Sections from Typical Clouds over Xi'AnInt. J. Inf. Millim. Waves, 23(1), 177–185.
  478. Young, A. H., J. J. Bates, and J. A. Curry (2013), Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective cloudsJ. Geophys. Res., 118(10), 4689–4699, doi:10.1002/jgrd.50306.
  479. Young, D. F., P. Minnis, D. Baumgardner, and H. Gerber (1998), Comparison of in situ and satellite-derived cloud properties during SUCCESSGeophys. Res. Lett., 25(8), 1125–1128.
  480. Yum, S. S. and J. G. Hudson (2001), Microphysical relationships in warm cloudsAtmos. Res., 57, 81–104.
  481. Zelinka, M. D. and D. L. Hartmann (2010), Why is longwave cloud feedback positive?J. Geophys. Res.: Atm., 115(D16), D16117, doi:10.1029/2010JD013817,.
  482. Zelinka, M. D. and D. L. Hartmann (2011), The observed sensitivity of high clouds to mean surface temperature anomalies in the tropicsJ. Geophys. Res., 116(D23), D23103, doi:10.1029/2011JD016459,.
  483. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster (2013), Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5J. Climate, 26(14), 5007–5027, doi:10.1175/JCLI-D-12-00555.1.
  484. Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formationAtmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
  485. Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystalsAppl. Opt., 43(12).
  486. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
  487. Zhang, S., H. Xue, and G. Feingold (2011), Vertical profiles of droplet effective radius in shallow convective cloudsAtmos. Chem. Phys., 11, 4633–4644, doi:10.5194/acp-11-4633-2011.
  488. Zhang, G. and J. Vivekanandan (1999), Microwave Radiation from Mixed Phase Cloud and Parameter Retrievals, National Center for Atmospheric Research.
  489. Zhang, G., J. Vivekanandan, and M. K. Politovich (1999), Scattering Effects on Microwave Passive Remote Sensing of Cloud Parameters, National Center for Atmospheric Research.
  490. Zhao, Z. and Z. Wu (2000), Millimeter-Wave Attenuation Due to Fog and CloudsInt. J. Inf. Millim. Waves, 21(10), 1607–1615.
  491. Zhao, L. and F. Weng (2002), Retrieval of Ice Cloud Parameters Using the Advanced Microwave Sounding UnitJ. Appl. Meteorol., 41, 384–395.
  492. Zhu, P. and P. Zuidema (2009), On the use of PDF schemes to parameterize sub-grid cloudsGeophys. Res. Lett., 36, L05807, doi:10.1029/2008GL036817.