Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:models

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Anderson, G. P., F. X. Keizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, and J. E. A. Selby (1995), FASCODE/MODTRAN/LOWTRAN: Past/Present/Future, , 18th Annual Review Conference on Atmospheric Transmission Models.
  2. Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depthJ. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
  3. Bauer, P., A. J. Geer, P. Lopez, and D. Salmond (2010), Direct 4D-Var assimilation of all-sky radiances. Part I: ImplementationQ. J. R. Meteorol. Soc., 136(652), 1868–1885, doi:10.1002/qj.659.
  4. Bennhold, F. and S. Sherwood (2008), Erroneous Relationships among Humidity and Cloud Forcing Variables in Three Global Climate ModelsJ. Climate, 21, 4190–4206, doi:10.1175/2008JCLI1969.1.
  5. Berk, A., G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis (2005), MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, pp. 662–667, Edited by Shen, S. S. and P. E. Lewis, SPIE, doi:10.1117/12.606026.
  6. Brands, S., S. Herrera, J. Fernández, and J. M. Gutiérrez (2013), How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?Climate Dynamics, 41(3–4), 803–817, doi:10.1007/s00382-013-1742-8.
  7. Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas (2011), Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRIAtmos. Chem. Phys., 11, 5603–5624, doi:10.5194/acp-11-5603-2011.
  8. Cavazos, T. and B. C. Hewitson (2005), Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitationClimate Research, 28(2), 95–107, doi:10.3354/cr028095.
  9. Chen, C.-T. and E. Roeckner (1996), A Comparison of Satellite Observations and Model Simulations of Column-Integrated Moisture and Upper-Tropospheric HumidityJ. Climate, 9, 1561–1584.
  10. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
  11. Colman, R. (2003), A comparison of climate feedbacks in general circulation modelsClimate Dynamics, 20, 865–873.
  12. Dai, A. and K. E. Trenberth (2004), The Diurnal Cycle and Its Depiction in the Community Climate System ModelJ. Climate, 17, 930–951.
  13. Dessler, A. E. and S. M. Davis (2010), Trends in tropospheric humidity from reanalysis systemsJ. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.
  14. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organizationGeosci. Model Dev., 9(5), 1937–1958, doi:10.5194/gmd-9-1937-2016.
  15. Feltens, J., M. Angling, N. Jackson-Booth, N. Jakowski, M. Hoque, M. Hernández-Pajares, A. Aragón-Àngel, R. Orús, and R. Zandbergen (2011), Comparative testing of four ionospheric models driven with GPS measurementsRadio Sci., 46, RS0D12, doi:10.1029/2010RS004584.
  16. Fläschner, D. (2016), Intermodel spread in global tropical precipitation changes, Ph.D. thesis, University of Hamburg.
  17. Fläschner, D., T. Mauritsen, and B. Stevens (2016), Understanding the Intermodel Spread in Global-Mean Hydrological SensitivityJ. Climate, 29, 801–817, doi:10.1175/JCLI-D-15-0351.1.
  18. Forget, F., F. Hourdin, R. Foumier, C. Hourdin, and O. Talagran (1999), Improved general circulation models of the Martian atmosphere from the surface to above 80 kmJ. Geophys. Res., 104, 155–175.
  19. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
  20. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
  21. Giorgetta, M. and M. Wild (1995), The Water Vapour Continuum and its Representation in ECHAM4, Max-Planck-Institut fuer Meteorologie.
  22. Han, Y., P. van Delst, and F. Weng (2010), An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channelsJ. Geophys. Res., 115, D15109, doi:10.1029/2010JD013878.
  23. Heymsfield, A. J. and L. J. Donner (1990), A scheme for parameterizing ice cloud water content in general circulation modelsJ. Atmos. Sci., 47, 1865–1877.
  24. Illingworth, A. J., R. J. Hogan, E. J. O'Connor, D. Bouniol, J. Delanoë, J. Pelon, A. Protat, M. E. Brooks, N. Gaussiat, D. R. Wilson, D. P. Donovan, H. Klein Baltink, G-J. van Zadelhoff, J. D. Eastment, J. W. F. Goddard, C. L. Wrench, M. Haeffelin, O. A. Krasnov, H. W. J. Russchenberg, J-M. Piriou, F. Vinit, A. Seifert, A. M. Tompkins, and U. Willén (2007), Cloudnet — Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based ObservationsBull. Amer. Met. Soc., 88(6), 883–898, doi:10.1175/BAMS-88-6-883.
  25. Jakob, C. (2014), Going back to basicsNature Clim. Change, 4(12), 1042–1045, doi:10.1038/nclimate2445.
  26. Jakob, C. and S. A. Klein (1999), The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF modelQ. J. R. Meteorol. Soc., 125(555), 941–965, doi:10.1002/qj.49712555510.
  27. Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observationsJ. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
  28. Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao (2008), The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCMJ. Climate, 21(14), 3521–3532, doi:10.1175/2007JCLI2146.1.
  29. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMsJ. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
  30. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (1999), A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmospherePhys. Chem. Earth, 24, 231–236.
  31. Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies (2013), The four cumulus cloud models and their progression during rainfall events: A C-band polarimetric radar perspectiveJ. Geophys. Res., 118(15), 8375–8389, doi:10.1002/jgrd.50640.
  32. Li, H., J. Sheffield, and E. F. Wood (2010), Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matchingJ. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.
  33. Liu, G. (1998), A Fast and Accurate Model for Microwave Radiance CalculationsJ. Meteorol. Soc. Jpn., 76(2), 335–343.
  34. Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCMJ. Geophys. Res., 107, doi:10.1029/2001JD000767.
  35. Lohmann, U., B. Kärcher, and C. Timmreck (2003), Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCMJ. Geophys. Res., 108(D18), doi:10.1029/2002JD003185.
  36. Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCMJ. Geophys. Res., 109, doi:10.1029/2002JD003185.
  37. Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCMJ. Geophys. Res., 108, doi:10.1029/2003JD004443.
  38. Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAMAtmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
  39. Lohmann, U. and E. Roeckner (1996), Design and performance of a new microphysics schemen developed for the ECHAM general circulation modelClimate Dynamics, 12, 557–572.
  40. Masunaga, H., T. Matsui, W. K. Tao, A. Y. Hou, C. D. Kummerow, T. Nakajima, P. Bauer, W. S. Olson, M. Sekiguchi, and T.Y. Nakajima (2010), Satellite Data Simulator Unit (SDSU): A multi-sensor, multi-spectral satellite simulatorBull. Amer. Met. Soc.
  41. Matteo, N. A. and Y. T. Morton (2011), Comparison of IGRF model prediction and satellite measurements 1991–2010Radio Sci., 46, RS4003, doi:10.1029/2010RS004529.
  42. Mattioli, V., P. Basili, S. Bonafoni, P. Ciotti, and E. R. Westwater (2009), Analysis and improvements of cloud models for propagation studiesRadio Sci., 44, RS2005, doi:10.1029/2008RS003876.
  43. Mauritsen, T. and B. Stevens (2015), Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in modelsNature Geosci., 8, 346–351, doi:10.1038/ngeo2414.
  44. Mayer, B. and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of useAtmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.
  45. Mitchell, J. L., R. T. Pierrehumbert, D. M. W. Frierson, and R. Caballero (2006), The Dynamics behind Titan's Methane CloudsProc. Nat. Aca. Sci., 103(49), 18421–18426, doi:10.1073/pnas.0605074103.
  46. Nolte-Holube, R., U. Karstens, D. Lohmann, B. Rockel, and R. Stuhlmann (1996), Regional scale atmospheric and hydrological modelling: Results and validation for the Baltic Sea and Weser catchments, Institute fuer Athmosphaerenphysik, GKSS-Forschungszentrum.
  47. Pierce, D. W., T. P. Barnett, E. J. Fetzer, and P. J. Gleckler (2006), Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite systemGeophys. Res. Lett., 33, L21701, doi:10.1029/2006GL027060.
  48. Pierrehumbert, R. T. (2011), A palette of climates for Gliese581gAstrophys. J. Lett., 786(L8), doi:10.1088/2041-8205/726/1/L8.
  49. Pincus, R. and B. Stevens (2013), Paths to accuracy for radiation parametrizations in atmospheric modelsJ. Adv. Model. Earth Syst., 5(2), 225–233, doi:10.1002/jame.20027.
  50. Pulvirenti, L., N. Pierdicca, and F. S. Marzano (2005), Simulating Brightness Temperatures in Cloudy Conditions Over the Mediterranean Sea, In: Proceedings of the XXIXth General Assembly of International Union of Radio Science (URSI), New Delhi.
  51. Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation modelAtmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
  52. Rädel, G. and K. P. Shine (2010), Validating ECMWF forecasts for the occurrence of ice supersaturation using visual observations of persistent contrails and radiosonde measurements over EnglandQ. J. R. Meteorol. Soc., doi:10.1002/qj.670.
  53. Randall, D. A., R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi, and K. E. Taylor (2007), Climate models and their evaluation, In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Biller, Cambridge University Press.
  54. Richardson, M., K. Cowtan, E. Hawkins, and M. B. Stolpe (2016), Reconciled climate response estimates from climate models and the energy budget of EarthNature Clim. Change, doi:10.1038/NCLIMATE3066.
  55. Rodrigo, R., E. G. Alvarez, and M. J. Lopez (1990), A Nonsteady One-Dimensional Theoretical Model of Mars Neutral Atmospheric Composition Between 30 and 200 kmGeophys. Res. Lett., 95, 14795–14810.
  56. Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5. Part I: model description. 127pp., MPI Hamburg.
  57. Ross, R. J., W. P. Elliot, and D. J. Seidel (2002), Lower-Tropospheric Humidity-Temperature Relationships in Radiosonde Observations and Atmospheric General Circulation ModelsJournal of Hydrometerology, 3, 26–38.
  58. Schaller, N., I. Mahlstein, J. Cermak, and R. Knutti (2011), Analyzing precipitation projections: A comparison of different approaches to climate model evaluationJ. Geophys. Res., 116, D10118, doi:10.1029/2010JD014963.
  59. Slingo, A., K. I. Hodges, and G. J. Robinson (2004), Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7Q. J. R. Meteorol. Soc., 130, 1449–1467, doi:10.1256/qj.03.165.
  60. Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi (2002), Intercomparison of Microwave Radiative Transfer Models for Precipitating CloudsIEEE Geosci. Remote Sens., 40(3), 541–549.
  61. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
  62. Spangenberg, D. A., G. G. Mace, T. P. Ackerman, N. L. Seaman, and B. J. Soden (1997), Evaluation of model-simulated upper troposphere humidity using 6.7 μm satellite observationsJ. Geophys. Res., 102(D22), 25737–25749.
  63. Stamnes, K., S.-C. Tsay, and I. Laszlo (2000), DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Dept. of Physics and Engineering Physics Stevens Institute of Technology,NASA Goggard Space Flight Center, Department of Meteorology University of Maryland.
  64. Stevens, B. and S. Bony (2013), What are Climate Models MissingScience, 340(6136), 1053–1054, doi:10.1126/science.1237554.
  65. Su, H., J. H. Jiang, C. Zhai, T. J. Shen, J. D. Neelin, G. L. Stephens, and Y. L. Yung (2014), Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivityJ. Geophys. Res., 119(10), 5787–5805, doi:10.1002/2014JD021642.
  66. Trenberth, K. E. and J. T. Fasullo (2010), Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern OceansJ. Climate, 23(2), 1272–1282, doi:10.1175/2009JCLI3152.1.
  67. Turner, D. D., S. Kneifel, and M. P. Cadeddu (2016), An Improved Liquid Water Absorption Model at Microwave Frequencies for Supercooled Liquid Water CloudsJ. Atmos. Oceanic Technol., 33(1), 33–44, doi:10.1175/JTECH-D-15-0074.1.
  68. Vial, J., J.-L. Defrusne, and S. Bony (2013), On the interpretation of inter-model spread in CMIP5 climate sensitivity estimatesClimate Dynamics, 41(11), 3339–3362, doi:10.1007/s00382-013-1725-9.
  69. Watterson, I. G., M. R. Dix, and R. A. Colman (1999), A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation modelsJ. Geophys. Res., 104(D2), 1943–1956.
  70. Webb, M. J., T. Andrews, A. Bodas-Salcedo, S. Bony, C. S. Bretherton, R. Chadwick, H. Chepfer, H. Douville, P. Good, J. E. Kay, S. A. Klein, R. Marchand, B. Medeiros, A. Pier Siebesma, C. B. Skinner, B. Stevens, G. Tselioudis, Y. Tsushima, and M. Watanabe (2016), The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6Geosci. Model Dev. Discuss., 2016, 1–27, doi:10.5194/gmd-2016-70.
  71. Woods, C. P., D. E. Waliser, J.-L. Li, R. T. Austin, G. L. Stephens, and D. G. Vane (2008), Evaluating CloudSat ice water content retrievals using a cloud- resolving model: Sensitivities to frozen particle propertiesJ. Geophys. Res., 113, D00A11, doi:10.1029/2008JD009941.
  72. Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden (2006), A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocityClimate Dynamics, 27, 261–279, doi:10.1007/s00382-006-0138-4.
  73. Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf (2015), The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical coreQ. J. R. Meteorol. Soc., 141(687), 563–579, doi:10.1002/qj.2378.
  74. Zelinka, M. D. and D. L. Hartmann (2010), Why is longwave cloud feedback positive?J. Geophys. Res.: Atm., 115(D16), D16117, doi:10.1029/2010JD013817,.
  75. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster (2013), Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5J. Climate, 26(14), 5007–5027, doi:10.1175/JCLI-D-12-00555.1.